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Abstract

We present a three-dimensional (3D) formulation of the multiscale Dendritic Needle Network (DNN) model
for dendritic microstructure growth. This approach is aimed at simulating quantitatively the solidification
dynamics of complex hierarchical networks in spatially extended dendritic arrays, hence bridging the scale
gap between phase-field simulations at the scale of a few dendrites and coarse-grained simulations on the
larger scale of entire polycrystalline structures. In the DNN model, the dendritic network is represented by
a network of branches that interact through the solutal diffusion field. The tip velocity V' (t) and tip radius
p(t) of each needle is determined by combining a standard solvability condition that fixes the product p?V
and a solute flux conservation condition that fixes the product pV2? in 2D and pV in 3D as a function of
a solutal flux intensity factor F(t). The latter measures the intensity of the solute flux in the dendrite tip
region and can be calculated by contour (2D) or surface (3D) integration around the tip of each needle.
We first present an extended formulation of the 2D DNN model where needles have a finite thickness and
parabolic tips. This formulation remains valid for a larger range of tip Péclet number than the original
thin needle formulation and is readily extended to 3D needles with paraboloidal tips. The 3D DNN model
based on this thick-needle formulation is developed for both isothermal and directional solidification. Model
predictions are validated by comparisons with known analytical solutions that describe the early transient
and steady-state growth regimes. We exploit the power of the DNN model to characterize the competitive
growth of well-developed secondary branches in 3D on the scale of the diffusion length. The results show
that the length of active secondary branches increases as a power law of distance behind the tip with an
exponent in good quantitative agreement with experimental measurements. Finally, we apply the model to
simulate the three-dimensional directional solidification of an Al-7wt%Si alloy, which we directly compare
to observed microstructures from microgravity experiments onboard the International Space Station. The
predictions of selected microstructural features, such as dendrite arm spacings, show a good agreement with
experiments. The computationally-efficient DNN model opens new avenues for investigating the dynamics

of large dendritic arrays at length and time scales relevant to solidification experiments and processes.

© 2016. This manuscript version is made available under the Elsevier user license
http://www.elsevier.com/open-access/userlicense/1.0/



Keywords: solidification, dendritic growth, microstructure, multiscale modeling, alloy.

1. Introduction

Dendritic microstructures are the most common among cast metals and alloys [1, 2]. The geometrical
features of these structures arise from a subtle interplay between microscopic interfacial phenomena and
macroscopic solute and heat transport, and are crucial to mechanical properties of a cast part, and subse-
quently to its performance during service [1, 3, 4]. Within a grain, interactions among individual dendritic
branches determine its inner structure, such as the primary spacing crucial for the mechanical strength of
a dendritic grain. In polycrystalline microstructures too, long range interactions between the growing den-
drites play a key role in shaping the grain structure that critically influences the mechanical properties of
a material. Hence, our ability to understand, predict, and control the microstructure selection mechanisms
across all critical length and time scales is key to develop innovative materials and processes.

At the scale of an entire solidification process or experiment, computational approaches include contin-
uum models [5, 6, 7, 8], models based on dynamics of average dendritic grain enveloppes [9, 10, 11, 12, 13],
and approaches coupling cellular automata with finite elements [14, 15, 16], finite differences [17], or Lattice
Boltzmann methods [18, 19]. This type of models can be used at the scale of a dendritic array to investigate
mechanisms of intragrain [17] or intergrain [20] microstructure selection up to the scale of entire casting
experiments, thus providing average statistical predictions of microstructure selection by complex phenom-
ena such as the columnar-to-equiaxed transition [21]. However, those volume-averaged equilibrium-based
models do not resolve quantitatively the transient interactions between individual dendritic branches that
are crucial to dendritic microstructure selection.

At a smaller scale, the phase-field (PF) approach is the method of choice to quantitatively simulate
complex solid-liquid interface patterns [22]. The theoretical development of the thin-interface limit [23,
24] and the anti-trapping current for alloy solidification [25, 26, 27], combined with advanced numerical
techniques such as adaptive meshing [28, 29] and massive parallelization [30, 31], now enable quantitative PF
predictions at the scale of spatially extended three-dimensional arrays of cells [32, 33] and dendrites [34, 35].
However, quantitative predictions of dendritic growth dynamics with PF require an accurate morphological
description of each dendrite tip, which makes simulations extremely challenging for concentrated alloys that
usually solidify as a hierarchical network of thin branches with several orders of magnitude separating the
scale of a dendrite tip radius and the larger scale of diffusive transport in the melt.

In order to bridge the scale gap between phase-field and coarse-grained models, we recently developed a

multiscale Dendritic Needle Network (DNN) approach that quantitatively predicts the dynamics of individual
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branches in complex dendritic networks during alloy solidification at a scale much larger than the diffusion
length. This model, first developed in 2D [36, 37], is rigorously valid as long as the dendrite tip Péclet
number remains relatively small, which is the case for many common processing conditions. Hence, the
approach is well suited to describe concentrated alloys where dendrites form hierarchical tree-like structures
with several generations of needle-like branches.

In this approach, a dendritic grain, such as the crystal in Fig. 1a [38], is modeled as a network of thin
needles, as in Fig. 1b. The dynamics of each needle tip is prescribed by two conditions that jointly determine
the evolution of its velocity V (¢) and radius p(¢).

The first condition is a solute conservation equation formulated at an intermediate scale much larger
than the dendrite tip radius p and much smaller than the diffusion length D/V| with D the solute diffusion
coefficient in the liquid (Fig. 1c). In 2D, this condition links the product pV? to a flux intensity factor F(¢)
that measures the strength of the incoming solute flux at the tip [36]. The value of F(¢) can be calculated
using a contour integral around the tip, e.g. in Ref. [36] using the J-integral classically used in fracture
mechanics to compute stress intensity factors at the tip of a crack [40].

The second condition, formulated at the scale of the dendrite tip (Fig. 1d), is a standard microscopic
solvability condition for the existence of a solution to the shape-preserving growth of a parabola/paraboloid.
It relates the product p?V to the strength of surface tension anisotropy [41, 42, 43]. While p?V remains
constant in the DNN model, the flux intensity factor F(t) at each needle tip evolves with the surrounding
solutal field, hence enabling the approach to capture long-range diffusive interactions between branches in
both transient and steady-state growth regimes.

The DNN model derives its efficiency from the fact that the solid-liquid interface is not explicitly tracked
and that the diffusion field can be discretized on a scale comparable to or larger than p. In comparison,
phase-field typically requires a computational grid size one order of magnitude smaller than the tip radius
for a reliable morphological description of the dendrite tip and hence of its growth dynamics [24, 44]. This
leads to DNN simulations faster than PF simulations by four to five orders of magnitude in 2D and 3D,
respectively, if both models are discretized on a finite-difference grid using an explicit time stepping.

In this article, we present a three-dimensional formulation of the DNN model. In Section 2, we summarize
the sharp interface solidification problem and the two-dimensional model as presented in Ref. [36]. Then,
we propose a new 2D formulation for thick branches with parabolic tips. This thick-needle formulation has
the dual benefit that it increases the range of tip Péclet number where the DNN approach is quantitatively
valid and that it can be readily extended to 3D where branches have paraboloidal tips. We provide details
of our first numerical implementation in Section 3. In Section 4, we validate the DNN predictions through
comparisons with analytical solutions in a steady-state growth regime and with an analytical scaling law for
the early stage transient growth of an equiaxed 3D grain with six branches growing along principal crystal
axes. In Section 5, we compare the predicted dynamics of secondary sidebranches against experimental
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measurements of dendritic envelope shapes. Then, in Section 6, we apply the DNN model to a fully three-
dimensional directional solidification experiment of an Al-7wt%$Si alloy, and directly compare the results
to microgravity experiments performed in the framework of the CETSOL project [45, 46, 47] (Columnar-
to-Equiaxed Transition in SOLidification Processing). Finally, in Section 7, we summarize our results and

discuss further investigations made possible by this new modeling approach.

2. Modeling

2.1. Sharp-interface solidification model
We consider the solidification of a binary alloy in a purely diffusive regime with negligible diffusion in

the solid phase, such that the solute concentration c¢ in the liquid follows the diffusion equation

%= DVZc. (1)

The solid-liquid interface evolves with a normal velocity v, given by mass conservation at the interface,
i.e. by the Stefan condition
(1-=k)equv, =-D % K (2)
where k is the solute partition coefficient at the interface, ¢; the concentration at the interface in the liquid,
and Oc/On|; is the normal solute concentration gradient at the interface in the liquid.
Thermal diffusion is considered to be much faster than solute diffusion, so that the surrounding temper-

ature T can be fixed, for instance at T" = Tj for isothermal solidification. Thus, the concentration at the

interface ¢; is determined by local thermodynamic equilibrium, i.e. by the Gibbs-Thomson relation
T =Ty +mc — Fslf(é))n, (3)

with Ty the melting temperature of the pure solvent, m the liquidus slope (with m < 0), I'y; the Gibbs-
Thomson coefficient of the interface, and « the interface curvature. The term f(#) models the dependence
of the interface stiffness v + g9 on the orientation 6, where « is the excess free-energy of the solid-liquid
interface and ~ygp denotes the second derivative of v with respect to 6.

We reformulate Egs. (1), (2) and (3) as a function of a reduced solute field

0
¢ —c

(1—k))’

(4)

u

with ¢ = (T — To)/|m| the liquid equilibrium composition for a flat interface at a reference temperature

Ty. Thus, the problem reduces to

ou
5 = DV?u, (5)
[1—(1—k)ui]vn=D% K (6)
ui = dof (O). @)



with u; = (¢! —c;)/ [(1 — k)c] the value of u at the interface and dy = I's;/ [|m|(1 — k)c] the solute capillary
length at Ty. The condition ¢ — ¢4 far from the solid becomes u — €2 with the solute supersaturation

0
€] — Coo

T "

2.2. Dendritic needle network model for isothermal solidification

At a low supersaturation €2 < 1 relevant to most castings and experiments, crystal structures usually
grow in the form of a network of thin needle-like dendritic branches, like the crystal illustrated in Fig. la.
In this case, the DNN model [36] represents a dendritic grain as a network of sharp line segments at local
equilibrium, like in Fig. 1b. The growth dynamics of each branch can be formulated by combining two
independent conditions at two distinct length scales: (i) a mass conservation condition at an intermediate
scale between the tip radius p and the diffusion length D/V (Fig. 1c), and (ii) a solvability condition at the
scale of p (Fig. 1d). These two conditions, respectively summarized in Sections 2.2.2 and 2.2.1, uniquely

prescribe the instantaneous tip radius p(t) and tip velocity V (¢) of each individual dendritic branch.

2.2.1. Solvability condition at the tip
Numerous studies [41, 42, 43, 48] have established that the sharp interface problem, Egs. (5)-(7), ne-
glecting the small capillary correction in Eq. (6) such that v, ~ DOu/0n|;, admits a steady solution only
if
2Ddy

2V = 9
p pat 9)

where the tip selection parameter o is uniquely fixed by the strength of crystalline anisotropy. This solvability
theory was validated by phase-field simulations, e.g. [23, 28, 49]. Furthermore, since the solute field relaxes
on the tip scale in a time ~ p?/D, which is much smaller than the diffusive time ~ D/V?2, the product
p*V relaxes to a constant value early during the transient development of a dendrite, while both p(t) and
V(¢) still exhibit significant time variations [49]. Hence, this allows us to consider Eq. (9) valid in the early

transient growth regime of each needle.

2.2.2. Solute flux intensity around the tip

At a scale much larger than the tip radius p, surface tension effects can be neglected and the dendritic
branches can essentially be considered as infinitely sharp line segments at the equilibrium concentration,
ie. u=0at T = Tp. Also, at a scale much smaller than the diffusion length D/V, the solute field relaxes
sufficiently fast to assume a Laplacian u field in the vicinity of a needle tip. Yet, in two dimensions, the
solution of V2u = 0 with v = 0 on a sharp needle exhibits a square root singularity of the normal solute

gradient in the vicinity of the tip such that [50]

Ou - when z — ay, (10)

dy y=0 - do(z¢ — )
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where +x is the needle growth direction, and x = x; and y = 0 are the tip coordinates.
Additionally, on a scale > p, the region behind the tip may be considered quasi-planar, so that the

normal velocity of the solid-liquid interface follows

_dyit) _ 0u
o dt _Day

UTL

, (11)
y=yi(t)

where y;(t) is the interface position along the y axis perpendicular to the needle. Since y;(t) < D/V for
) < 1, the last term du/dy can be evaluated at y = 0 instead of y = y;(¢), which yields

dyi(t) . Ou
e~ b dy

__DF )

=0 Vdo(zy — )

At this scale, z; — x <« D/V, and one can assume that the interface grows in a quasi steady-state, i.e.

with very slow variations of the flux intensity factor F on a diffusive time scale. Hence, one can apply the

change of variable z; — x = V't, and integrate Eq. (12) to find the shape y;(z) of the needle

DF |xy—=x
i(x) = 2—— . 13
n(a) =255 [T (13)
This is the equation of a parabola x = z; — y?/(2p) with a tip radius p = 2(FD/V)?/dy, which yields
2D*F?
PV = : (14)
do

The combination of Egs. (9) and (14) prescribes the growth conditions p and V of a needle. While the
solvability condition, Eq. (9), imposes a constant value of p?V, the flux condition, Eq. (14), accounts for the
evolution of the long range diffusive field seen by the tip, by introducing the time-dependent flux intensity
factor (FIF) F(t), defined as

F(t) = lim \/do(ey —a) 248D

1

y=0

In 2D, we have shown [36] that the FIF may be calculated exactly using a contour integral similar
to the J-integral commonly used in elasticity to calculate the stress intensity factors in the vicinity of a
crack tip [40], and also used in various problems involving a Laplacian field, e.g. in the case of viscous
fingering [51]. Using the mathematical isomorphism between mode III pure antiplane shear fracture and

Laplacian diffusion, we can write [36]

do ou\ 2 ou\ 2 ou Ou
Fr=% (—) - (—) o228, Lar 16
27r/p{l8x dy Mo + 8x8yny (16)
along an open contour I' surrounding the tip, as in Fig. 2a, where (n,,n,) are the coordinates of the normal

ntoI.



2.2.3. Summary of the 2D isothermal model with sharp branches

In summary, the solute field in the liquid follows

Ju
— =DV? 17
5 u (17)
with the boundary conditions
u =0 on the needles, (18)
u=CQ far away, (19)

while the dynamics of each needle in the network is obtained by combining the tip flux condition, Eq. (14),
with the solvability condition, Eq. (9), hence yielding

p(t) _ 2\1/3 —2

o = @) T FO T, (20)
V(t)dy 1/

5 = (20)2F1)*?, (21)

where only V(¢) is required for the needle network to evolve. The FIF at each needle tip can be calculated
by the integration of Eq. (16) along an open contour I' surrounding the needle tip (Fig. 2a).

Additionally, the position of the solid-liquid interface can be approximately reconstructed using the quasi-
one-dimensional form of the Stefan condition on the side of a needle with the normal gradient evaluated on
the needle,

dy;(t) ou

~D — . 22
dt 9 |,—o (22)

This description of the DNN model corresponds to the one presented in Ref. [36], which is here referred
to as the sharp needle formulation of the model. Because in three dimensions there is no analytical solution
for a Laplacian field around a sharp tip at a fixed concentration, such as Eq. (10) in 2D, this formulation
of the model is not possible to directly extend to 3D. Thus, in the following subsection, we propose an
alternative thick needle formulation of the model in 2D that accounts for a finite thickness of a needle. This
formulation extends the quantitative validity of the approach to larger tip Péclet number and can be directly

extended to 3D.

2.3. Extension to a parabolic needle

Let us consider, as schematized in Fig. 2b, a parabolic needle tip of radius p growing at a velocity V in
the +a direction, with u = 0 on the interface location, i.e. along y;(z) = \/m . At the corresponding
time scale, one may assume that the growth of the needle tip is quasi-stationary and that the parabolic tip
shape is preserved in a moving frame progressing at a velocity V in the needle growth direction. Hence, the

solute flux normal to the solid-liquid interface DOu/On = v, only contributes to its advancing in the main



growth direction at a velocity V. The integration of the solute conservation at the interface in the tip region
over a length a, i.e. over a contour IV between x = x; — a and = x; as in Fig. 2b, yields

a Ya
D[ &ar = [ vdy=2v\/2pa. (23)
T (977, —Ya

with y, = yi(x¢ — a) = /2pa. Thus, we can write

pro L D/ 9 g ’ (24)
p 780/ T an ’

such that, if we define the flux intensity factor as

ou gy, (25)

W 4\/a/d0 T’ on

the product pV? follows a similar law as Eq. (14),

2D*F?

VZ=
p @

(26)

In order to integrate the value of F(t), now defined by Eq. (25), we write Laplace equation in a moving
frame of velocity V,
ou

DVu= -V, (27)

Then, if we integrate V2u over a surface ¥ bounded by the contours I and I as in Fig. 2b, we can use the

divergence theorem to write

6—“dr’ —dF_—/ Vud®

F/an
\%
_5//2%0127 (28)

where, in order to be consistent with the sharp needle model, we choose to have the normal n pointing
outward of the closed contour (I' + I'") along I' (see Fig. 2a), while pointing outward of the dendrite, i.e.
inward the contour, along I (see Fig. 2b), which justifies the minus sign in the left hand side of Eq. (28).
Hence, the FIF can be calculated from Eq. (25) where the integral along I is given by

Ou gpr — —dF V//—dZ (29)

T 8n

using any contour I' joining the needle at x = x; — a.

The resulting thick needle DNN model follows the same growth laws as the sharp needle model, with a
constant value of p?V and a product pV2? ~ F(¢)2. The only differences are the new definition of the flux
intensity factor F(¢), Eq. (25), where the integral term of the flux over the contour I can be integrated
over a chosen outer contour I" using Eq. (29), as well as imposing u at equilibrium on a parabolic interface

instead of a sharp line segment.



Alternatively, the limit of this formulation for a vanishingly thin needle can be used to replace the
calculation of F through the J-integral, Eq. (16), in a model with a sharp needle. In this case, the integration
contour can also be taken vanishingly small with IV = T', such that the flux intensity factor defined by Eq. (25)
can be directly integrated along the contour IV by integration of the lateral flux normal to the sharp needle
between = z; and © = x; — a, together with the contribution in the z-direction facing the growth of the
needle at the tip location. This alternative thin-needle formulation has the advantages of not requiring the
definition of an outer contour I' but only the choice of an integration distance a, and it does not include
a velocity-dependent correction (i.e. the surface interval over ). It is therefore less likely to show results
variations with the choice of this integration contour I'. We compare these various 2D formulations in

Section 4.1.

2.4. Extension to three dimensions

The DNN model with parabolic branches can be directly extended to a three-dimensional dendrite
growing as a paraboloid of revolution with a circular cross section of radius r;(z) = \/2p(z; — ).

In 3D, I" and I" are surfaces joining at the intersection of I' with the needle at x = x; — a, and ¥ is
the volume enclosed within the closed surface (I' + I'V). Similarly as in 2D, assuming a shape-preserving
paraboloid growing in a quasi-stationary regime at a velocity V', the mass conservation DOu/dn = v,, along

the paraboloid surface up to a length a behind the tip yields

2T prg
D// har = / / Vrdrdf = 2rapV, (30)

with r, = v/2pa the cross-section radius of the paraboloid at x = x; — a. Thus, we can define the flux

=5 // —dr’, (31)

pV = DF. (32)

intensity factor
and write the flux condition at the tip

Similarly as in two dimensions, the flux over the surface IV can be calculated over any surface I' that

intersects the paraboloid at x = z; — a using

//fdr’ //*dF D///Egid& (33)

The growth conditions (p, V) of a needle tip can thus be obtained by combining the new flux balance,

Eq. (32), with the solvability condition

92Dd
O_ )

PV = (34)

which is similar to the 2D condition, only with a tip selection parameter ¢ that follows a different law with
respect to the strength of surface tension anisotropy as compared to 2D [43].
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2.5. Non-isothermal solidification

For non-isothermal conditions, one needs to set a reference temperature Ty, here chosen as the solidus

temperature of the alloy. In the case of directional solidification, the temperature profile is approximated as
T =T+ Gz —Vpt) (35)

with a given temperature gradient G' and pulling velocity V},, both oriented along the x axis. The Gibbs-

Thomson condition, Eq. (3), hence becomes

S 11— (1= k)dof(B)k— (1 =Yt

(36)
]

lp
where ¢) = coo/k is the liquid equilibrium composition for a flat interface at the solidus temperature Tp
with ¢o the nominal composition of the alloy, dy = I'/ [|m|(1 — k)c})] remains the capillarity length at T,
and Ir = [|m|(1 — k)c?]/G is the thermal length, which is the length over which the temperature variation
induced by the gradient G equals the freezing range of the alloy. As a function of the reduced solute field u
from Eq. (4), the Gibbs-Thomson condition, Eq. (7), becomes

ui = dof B+ ° Yol (37)
T

At a scale > p, where the curvature along the side of the needles can be neglected, the equilibrium along

the interface is
x— Vpt

- (39)

U; =~

varying linearly from u; = 0 at the solidus to u; = 1 at the liquidus temperature, with a far-field condition
¢ — Coo expressed as u(r — +00) = L.

At the intermediate scale of Fig. 1c and Fig. 2, also much smaller than the thermal length I, the value
of u; remains close to its value at the tip location, u;. Then, while the prefactor [1 — (1 — k)u;] in the Stefan
condition, Eq. (6), can be neglected in isothermal conditions due to u; ~ 0, it appears as prefactor of v, in
directional solidification as

ou

[1 —(1- k)ut]vn =D Il (39)

The solvability condition, Eq. (9) in 2D and Eq. (34) in 3D, can thus be derived identically as in isothermal
conditions, only replacing dy by a temperature dependent capillarity length dfj = do/{1 — (1 — k)u;}, since
dp is now defined at the reference (solidus) temperature Ty [36, 37], yielding

1 2Dd,
1-(1—ku o

PV = (40)

Additionally, using u; &~ u; along and inside the integration contour or surface I', one can derive Eq. (14)

or (26) identically as in Sections 2.2.2 and 2.3, only keeping the [1 — (1 — k)u,] prefactor to v, and hence V

10



in the Stefan condition , Eq. (39) [36, 37], yielding

1 2D?F?
[1—(1-Fkul? do
1

pV = m})f (in 3D). (42)

pV? =

(in 2D), (41)

In summary, the model for directional solidification combines the diffusion equation in the liquid, du /0t =
DV?u, with imposed boundary conditions

x—Vpt

on the needles, (43)
lr

U; =

u=1 at © — o0, (44)

with the growth of each needle obtained by combining the solvability condition, Eq. (40), and the conserva-
tion Eq. (41) in 2D, or (42) in 3D, where F(¢) is integrated with Eq. (16) or (25) in 2D, or with Eq. (31) in
3D.

2.6. Sidebranching

Similarly as in Ref. [36], sidebranches are generated periodically at a distance d = (N + dN)p behind
a needle tip of radius p each time the needle grows by a distance d, with 6N a random fluctuation in the
range [—AN/2; AN/2]. The initial length of a sidebranch is \/2pd. The frequency of sidebranching events
N and its fluctuation amplitude AN are input parameters to the model, chosen to match experimental
observations, usually showing sidebranches appearing at distance of about five to ten tip radii behind the
parent tip [38, 39]. We have shown that as long as sidebranching is frequent enough to seed the competitive
growth of sidebranches, the exact choice of model parameters N and AN has little influence on the final

selected microstructures [36].

3. Numerical implementation

3.1. Scaling

In order to numerically solve the DNN equations, we chose to scale space and time using using the
theoretical steady-state tip radius ps and velocity Vj, like in Ref. [36]. Hence, in the scaled coordinate

system (Z,9, 2) with & = z/ps, § = y/ps, and Z = z/ps, the diffusion equation in the liquid becomes

0 ~
aitf = DV2y (45)

with = tV,/ps and D = D/(p,V5).

11



In isothermal solidification in 2D, the evolution of the scaled tip radius p = p/ps and velocity V= V/Vs

of a needle thus follows
V=1 (46)
pV? = 2D F? (47)

with a flux intensity factor given by

~ 1 ou\ 2 ou\ 2 Ou Ou
2 L TN (2, + 222, Lar 4
P G G 2 E
in the sharp needle formulation [36], or by

~ 1 ou _,
]—'_4\/5 F’%dl“, (49)

for a parabolic needle, with @ = a/ps. In 3D, the mass conservation equation at the tip, Eq. (47), becomes

pV =DF (50)

~ 1 ou _,
]:7271'(1 ///%df. (&1)

For directional solidification, the growth dynamics of each needle is given by [36, 37]

with

o 1= (1—k)u,
pV_l—(l—k)ut (52)
~y  2D2F? .
V2= T a—mep - BaP (in 2D) (53)
~ 9ODF ,
=T R D) 5

where u; is the value of u; at the the steady-state for a tip of radius ps and velocity V.
In order to perform such a scaling, one needs to a priori determine steady-state growth conditions (ps, V)
in isothermal solidification, and (ps,us) in directional solidification (since in the latter case V; = V},). This

can be done by combining the steady-state solvability condition

1 2Dd,

2
Vg: 9
PV 1-(1-kus o

(55)

with a relation linking the steady-state tip Péclet number P = p;V;/(2D) to the local solute supersaturation
Qg at the tip of an isolated free dendrite. This additional relation between P and €, can be freely chosen,

but the most natural choice is the analytical Ivantsov solution [52, 3]
Qs = VaP exp(P) erfc (\/]3> (in 2D) (56)
Qs = P exp(P) E1(P) (in 3D) (57)

12



where
-2 - exp(—72) dr
erfc (n) = ﬁ/n p(—7°)d (58)

and
Ei(n) = /00 exp(=7) dr. (59)

-
In two dimensions, an alternative choice is the exact solution for a sharp needle, i.e. the approximation of
the Ivantsov solution, Eq. (56), for Q <1

Q, = VrP. (60)

In isothermal solidification, by definition € is the imposed supersaturation (2, while in directional

solidification, we use the definition of us as a function of the steady-state tip solute concentration c;,

c?—cs

(1 =k)e

Ug =

(61)

to write
Cs — k:c? 1— ug

- = - 62
(I—=Kes 1—(1—k)us (62)
and numerically solve the system of three equations, Eq. (55), Eq. (62), and the chosen relation between P

and Qs, e.g. Eq. (56) in 2D or Eq. (57) in 3D.

Q,

In our simulations, the 2D sharp needle model is scaled using Eq. (60) (i.e. reducing to the formulation
from Ref. [36]), the thick needle model is scaled using Eq. (56) in 2D, and using Eq. (57) in 3D. These
scalings all yield p — 1 and V — 1 for an isolated free dendrite. It is worth mentioning that the sharp 2D
model could be scaled using Eq. (56), just like the parabolic 2D model could be scaled using Eq. (60), which
would only lead to p and V not tending to one for an isolated free dendrite at the steady-state, but still

conserving ,5217 = 1. Other scalings are of course possible, e.g. using alloy parameters D and dj.

3.2. Implementation

We solve the equations of the DNN model on a finite difference grid of regular square (cubic) elements
of dimension Az, using an explicit Euler time stepping scheme with a constant time step At, equal to
Az?/(4D) in 2D, and Az?/(6D) in 3D. Both the evolution of the diffusive solute field u from Eq. (45) and
that of the growth conditions {p(t), V(¢)} of each needle from Eqgs. (52)-(54) are thus solved explicitly. For
the latter, in order to keep the time stepping purely explicit, the velocity correction term in the calculation
of the flux intensity factor F(t) uses the tip velocity V(¢) at the previous time step in Eq. (29) or (33) (in
2D and 3D, respectively).

We implemented the model for massively parallel calculation on Graphic Processing Units (GPUs) with
the Compute Unified Device Architecture (CUDA), using a single GPU per simulation. The time loop
essentially consists of three kernels, respectively performing the following steps: (i) diffusion of solute in the
liquid, (ii) growth of the needles, and (iii) generation of sidebranches. For the diffusion step, the domain is
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divided in contiguous sections of block size 16 x 32 threads in 2D, and 8 x 8 x 8 threads in 3D. The growth
step, which consists of the integration of F(¢) and the updating of w = u; along the needle interface with
the new needle length and tip radius, is parallelized such that each thread corresponds to one needle. The
sidebranching step is also performed on the GPU, but not parallelized (i.e. using only one thread), so as to
ensure that creating new branches and storing their properties in an array proceeds in an orderly manner.
(This part could be parallelized more efficiently, as long as a sufficient care is taken to avoid so-called race
conditions when creating new branches and storing them into the needle array.) An optional step occurs
periodically in order to shift the entire domain in the z direction, so that the most advanced tip remains at
the same position in the simulation domain. The parallelization of this step is similar to that of the diffusion
step, while the tracking of the most advanced tip is performed between kernel calls on the CPU.

In this first implementation of the DNN model, we consider needles growing aligned along the finite
difference grid, as illustrated for a needle growing in the x direction in Fig. 3. The restriction of a growth
direction fixed to the finite difference grid is a convenience choice for the first implementation of the model,
but not an intrinsic limitation of the model. The assumption of thick parabolic needle tips actually makes
it easier to develop implementations of the DNN model with tilted grains (see e.g. Ref. [53]).

In the current thick needle formulation, interfaces are represented as steps, as in Fig. 3. Thus, we
directly set © = u; on every point within the needle thickness, i.e. the green shaded zone in Fig. 3 within
the analytical parabolic shape in blue dashed line. Even though this simple implementation provides an
approximate description of the tip shape, e.g. the green solid profile inside the blue dashed parabola in
Fig. 3, we found this simple description to be accurate enough and yield reasonably accurate results, as
discussed in later sections.

Like the J-integral implementation presented in Ref. [36], the integration contour (or surface in 3D) I' is
chosen to intersect the center of grid elements, as shown in Fig. 3. The first order derivatives for the flux
through T" are calculated similarly as in Ref. [36], and the integration of the surface (volume in 3D) term
over 3 in Eq. (29) or (33) uses standard centered finite difference terms for each point within 3, i.e. within
the orange shaded region in Fig. 3. Since a needle tip radius and hence its parabolic thickness evolves, the
width of the integration box I' in the direction normal to the needle is also set to evolve together with the
parabolic shape of the tip. Hence, the shape of the integration box is parametrized using three user-input
dimensions A, B, and C, such that for a needle growing in the x direction the integration box spans A grid
points behind #;,, B grid points ahead of i4;,, and is C grid points wider than the needle at its intersection
with T in the direction(s) normal to the needle. This is illustrated for A =3, B = 2, and C' =1 in Fig. 3.
Note that, in the calculation of the flux intensity factor F, the integration distance a between the tip of the
needle and its intersection with T' is thus a = (A + r 4+ 1/2) Az, with rAxz the location of the tip between
iip and 44, + 1 (see Fig. 3).

An additional simplification is required to prevent numerical instabilities in the context of growth com-
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petition among several branches. During such growth competition, some branches stop as their tip velocity
V — 0. Thus, keeping the constancy of p?V, the tip radius of the needle p would tend to infinity, thus
leading to an imposed condition u = w; over an unrealistically large domain. A solution to prevent the
resulting numerical instabilities is to bound the thickness of all needles to a given thickness 7,,4,. For
instance in the 2D illustration of Fig. 3 with 7p,.,/Ax = 3, the interface location y; follows a parabola
x=x— (y;—y:)?/(2p) as long as |y; — y¢| < Tmaz, and is bounded to |y; — y¢| = rmas further behind the tip.
Similarly in 3D, the interface has a paraboloid shape in the vicinity of the tip, and is bounded to a cylinder
of diameter 7,4, further behind the tip. We show in the following section that as long as the bounding of
the needle thickness does not occur too close to the integration box I, forcing 7,4, has a small effect on the

quantitive prediction of the tip growth dynamics.

4. Analytical validations

4.1. Steady-state growth in 2D

We compare DNN predictions for the steady-state growth of an isolated dendrite to the exact Ivantsov
solution [52, 3]. For isothermal conditions, we let a single needle grow within an imposed supersaturation
Q and measure the value of the Péclet number P = pV/(2D) once p and V reach constant values.

First in two dimensions, we test three different formulations: (i) the sharp-needle formulation using the
contour integral, Eq. (16), labeled Rice integral in Fig. 4; (ii) the sharp-needle formulation using the flux
integral, Eq. (25), labeled Fluz integral; and (iii) the thick-needle formulation using the FIF from Egs. (25)
and (29), labeled Parabolic needle. For sharp needle formulations, we set Ax = 10p,; and test values of Q
from 0.01 to 0.1 by steps of 0.01, and from 0.1 to 0.2 by steps of 0.02, within a (z X y) domain of 1024x 1504
grid points. The integration contour for the Rice integral is a square of side 6Ax centered on the needle
tip. For the sharp needle formulation with flux integration following Eq. (25), we set a ~ 3Az (i.e. A =3
and B = C = 0 with Fig. 3 notations). For the parabolic needle formulation, we test {2 from 0.04 to 0.2 by
steps of 0.02, within a domain of 20482 grid points for < 0.08 and 10242 grid points for > 0.08, with a
grid spacing Az = p,. The integration contour for the estimation of F is a rectangle that spans 5p5 behind
the tip and 2p, ahead of the tip in the x direction, and in the y direction is one ps wider than the needle
at bps behind its tip —i.e. A =5, B = 2 and C = 1 following notations of Fig. 3. All boundaries are
set to no-flux symmetry conditions. The needle is aligned along (y = 0) with its tip located at 1/5 of the
simulation domain in x.

Fig. 4 shows the DNN model predictions of steady-state growth conditions compared to the Ivantsov
solution, Eq. (56), and its sharp-needle approximation, Eq. (60). For 2 < 0.1, all three formulations provide
a reasonable estimation of the flux intensity factor F, and hence of the steady-state of a growing needle.

At higher Q, the Rice integral formulation, Eq. (16), exhibits a deviation from the sharp needle solution
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Q ~ /7P (x). Since the contour integral, Eq. (16), is based on the assumption of a Laplacian field
around the tip, and does not include the velocity correction linked to the moving frame as in Eq. (29),
this formulation does not remain accurate with a fixed size of the integration contour I', while the diffusion
length gets smaller at higher . In contrast, the direct integration of the flux along a sharp needle following
Eq. (25) yields predictions that follow € ~ V7P up to higher supersaturations (+). Furthermore, using a
flux integration by Egs. (25) and (29) and a parabolic needle, the thick-needle formulation closely predicts
the exact Ivantsov solution (o). This illustrates two corrections compared to the sharp-needle model from
Ref. [36]: (i) the solute field around the needle is affected by the shape and thickness of the needle (deviation
between o and +), and (ii) the integrated flux accounts for the Laplacian field in a moving frame, through

the velocity-dependent surface integral in Eq. (29) (deviation from + to x).

4.2. Steady-state growth in 3D

We run similar simulations of the steady growth of one needle in three dimensions, in order to test the
dependence of the results upon the finite difference grid spacing Az. Hence, we compare in Fig. 5a the
results with the 3D Ivantsov solution Ivsp(P), i.e. Eq. (57). The Ivantsov relation in 2D, Ivap(P), i.e.
Eq. (56), also appears in Fig. 5a for comparison.

The significant difference between the 2D and 3D relations for Q4(P) has an important implication in
terms of appropriate computational parameters. Since the DNN approach is built on the assumption that
p < D/V, the finite difference grid spacing, typically of the same order as the tip radius, must also be
small enough compared to the steady-state diffusion length I, = D/V;. As seen in Fig. 5a, in 2D, the ratio
p/(D/V) ~ P following Ivap (P) is comparatively small at any given 2, making the condition Az ~ p; < Ip
easier to fulfill. In order to reach quantitative predictions in 3D, the choice of grid spacing Az ~ ps is more
severely bounded by Az < [p than in 2D. While this is not an extremely stringent condition, we for instance
cannot afford to use Az as high as 10p; for any supersaturation as we can in 2D.

The difference between solute redistribution dynamics in 2D and 3D also yields significant differences in
terms of the time needed to reach a steady growth regime, as discussed later in the context of directional
solidification experiments in Section 6.2.

First, we test different values of Ip/Az, namely 40, 20, 15, 10, and 5, for solute supersaturations
Q = 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, and 0.25. For each (2, we simulate the steady growth of
a single needle and measure the resulting tip Péclet number P, within a cubic domain of side 15/p. The
single needle is aligned along the (y,z) = (0,0) line, with its tip fixed at x = 5lp. The integration box I'
for the calculation of F is with A = B = 2 and C = 1 following Fig. 3 notations. We do not bound the
thickness of the needle, letting r,,4, = co. Simulated times are at least 50D/V2 to ensure that the steady-
state is reached. The results, in Fig. 5a, show that the predictions remain accurate as long as Ip/Az > 10.

Fig. 5b-d also illustrates that steady-state composition profiles remain close for [p/Az > 10. For a larger
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Az, the steady-state growth velocity starts exhibiting important oscillations as the tip grows between two
successive grid points. Hence, values of P reported in Fig. 5a correspond to time averaged values of the
velocity in the steady-state. For Axz/lp = 5, the Péclet number starts deviating from the well-converged
solution, particularly showing strong oscillations at low supersaturation, and the composition profile also
starts to differ noticeably in Fig. 5e compared to finer grids in Fig. 5b-d. In conclusion, keeping Ax about an
order of magnitude smaller than [p yields a reasonable accuracy on steady-state conditions. Moreover, while
the converged predictions of the model follow the analytical Ivantsov solution, the current implementation
appears to slightly underestimate P at {2 > 0.01 and to slightly overestimate P at lower ).

Next, we test the effect of bounding the thickness of a needle to a given 7,,,;, as presented in the
last paragraph of Section 3.2 (see Fig. 3). While the simulations reported in Fig. 5 were achieved without
restricting the thickness of the needle, i.e. 7,4 = 00, we performed similar simulations for = 0.02, 0.05,
and 0.1, with {p/Axz = 40 using different values of the maximum needle radius 7,4, /ps = 1, 1.5, 2, 2.5, 3, 4,
5, 6, 8, 10, 15, and 20. The integration box I" is set to A = 3, B = C' = 2. Additionally, in order to estimate
the effect of truncating the needle thickness for coarser finite difference meshes, we also carry out similar
simulations for Q = 0.05 and Ip/Az = 10. Figure 6a shows the predicted steady-state Péclet number P as a
function of the truncating radius 7,4, /ps, and Fig. 6b-f illustrate the needle shape and composition profile
in the vicinity of the tip for Q = 0.05, Ip/Axz = 40, and different values of 7,44

As shown previously (Fig. 5a), for 7,4, — 00, the current implementation slightly underestimates P for
Q > 0.01 (by about 10%). When reducing 7,4z, the absence of thickness of the needle tail at u = 0 shrinks
the the solute profile towards the needle, which in turn leads to higher gradients in the vicinity of the tip,
as shown in Fig. 6b-f. Thus, the incoming flux at the tip, the resulting F, the steady-state velocity, and
ultimately the Péclet number P increase when 7,,,, decreases up to about 1.5p5 for Q = 0.1. For lower
values of 7,4z, the truncating of the needle thickness occurs closer to the tip, i.e. within the integration
domain I'. The overlapping of the truncated domain with the integration box I' induces a decrease of F and
of the steady P as 7,4, decreases. Note that, for lower  values, Ip is higher, then Ax/p; is also higher for
a given Ip/Ax, and the maximum of P in Fig. 6a occurs at a higher 7,4,/ ps-

This general behavior is common to all three supersaturations and also holds for a coarser mesh with
Ip/Az = 10. In conclusion, the variation in F with r,,,. is limited as long as 7,4, is chosen larger or equal

to a few Ax such that truncation of the needle thickness does not occur within the integration box I'.

4.3. Early transient growth in 3D

We have shown in Ref. [36] that, for Q < 1 the sharp needle model in 2D reproduces the analytical
solution for an equiaxed four-branch crystal with the branch length following the power law L ~ 3/ [54].
In 3D, dimensional analysis and phase field calculations have shown that the isothermal growth of an

equivalent idealized six-branch crystal yields L ~ ¢2/3 [49]. Thus, we use the 3D DNN model to calculate
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the isothermal growth of an equiaxed six-branch cross for P ~ 0.00125, i.e. 2 ~ 0.00634.

Figure 7a shows that the DNN model predicts this L ~ ¢2/3 behavior over three orders of magnitude in
time. Due to the complexity of simulating three orders of magnitude in time with a single calculation, Fig. 7a
is build by continuity from three simulations with Az/p, = 0.05 (for tVi/ps < 2), 0.1 (for 2 < tV,/ps < 10),
and 0.5 (for tV,/ps > 10). The simulations were achieved on a domain of 9043 grid points, with a integration
surface I with A =3, B = C = 2 (see Fig. 3), and no bounding of the needle thickness (i.e. 7qe = 00).

These results show that, while a good prediction of steady state growth conditions can be achieved
using a numerical grid size of the same order or slightly higher than a dendrite tip radius (see Sec. 4.1-4.2),
DNN simulations also yield accurate predictions on transient stage at a much smaller time scale if spatial

discretization is also made finer.

5. Growth of sidebranches

5.1. Theory and experimental measurements

The incorporation of anisotropic surface tension has been shown theoretically [48, 58] and by phase-
field simulations [56] to cause the steady-state dendrite shape to deviate from Ivantsov’s paraboloid of
revolution [52]. With increasing distance behind the tip, the shape becomes progressively nonaxisymmetric
and develops four fins with a shape predicted to follow the scaling law Iy ~ #°6 [55] where T = | — 24| /p
and lo = Iy /p where [y is the width of the fin measured from the central dendrite growth axis. This
scaling law was derived based on the assumption that the cross-section of a 3D steady-state dendrite evolves
with distance from the tip similarly to a 2D equiaxed grain in time and has been found to be in good
agreement with both experiments [57] and phase-field simulations [56]. This scaling law is expected to lose
validity once sidebranches emerge from the fins and grow competitively behind the tip, screening each other
via the solutal diffusion field, until a branch ultimately becomes long enough to grow as a free dendrite.
Experimental measurements on succinonitrile-acetone alloys by Beckermann and co-workers have shown that
the envelope of actively growing secondary branches, i.e. the length l5 of those sidebranches follows a power
law Iy ~ 0.84z%-% until about 200 tip radii behind the primary tip, which was found to be independent
of undercooling or alloy concentration in a low Péclet number regime (i.e. for about £ ~ 0.041 to 0.24
in Fig. 14b of Ref. [39]). This scaling law has remained challenging to test computationally owing to the
daunting task of simulating the evolution of secondary branches in 3D in a low Péclet number regime on
a scale comparable to the diffusion length. While it can be reproduced using a grain envelope tracking
model [13], the latter does not reproduce the dynamics branch competition with elimination and overgrowth
of secondary branches. This task is also beyond the scope of phase-field modeling, but well within the scope
of the 3D DNN approach that we use here to characterize the scaling behavior of the competitive growth of

well-developed sidebranches in 3D.
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5.2. Comparison to DNN results

To characterize the sidebranch dynamics, we perform a DNN simulation of isothermal solidification for
Q= 0.1, with Az = 0.5p, (i.e. Ip/Ax ~ 23) on 800 grid points over a time 2500p;/V;. The boundaries of
the domain are symmetric (i.e. no-flux conditions). The initial needle is located along the line (y, z) = (0, 0).
The simulation domain is shifted to keep the primary tip location at 60% of the domain in x (i.e. z; &~ 240py).
The thickness of the needles is bounded by 7,42 = 4ps. The integration box I' spans 2Ax behind and ahead
of the tip along x and is one Az wider than the needle thickness at its intersection with I', i.e. with
A =B =2, and C = 1. Sidebranching events are set to occur at a distance behind the tip in the range of
5p to 9p, i.e. N =7 and AN =4 (see Section 2.6).

By the time ¢t = 250p,/V;, the primary dendrite tip reaches a steady-state growth regime, marked with
a full yellow circle on Fig. 5a. We allow the system to stabilize to a steady sidebranching regime, reached
once the first few generations of secondary branches have left the domain due to the primary tip location
being fixed at x; &~ 240ps. At t > 1000p;/ Vs, the primary tip has grown by more than twice its length in
the simulation domain and the dendrite has reached a steady sidebranching regime, illustrated in the inset
of Fig. 8 for tV,/ps ~ 1700.

We track the tip position of active secondary sidebranches in both y and z directions. Active sidebranches
are defined as branches longer than other sidebranches that have their root closer to the primary tip. We
output the active tip positions l5(z) for 1000 < tV,/ps < 2500 with time steps of 50, and fit the resulting
cloud of points to a power law for < 100. The corresponding points from ¢V /ps = 1000 to 2500 with step
of 250 appear as symbols in Fig. 8, together with the fitted power law Iy = 0.63 2°-%7 (solid line). Up to
Z < 100, the simulated dendrite exhibits a good agreement with the experimentally assessed power law [39]
(dashed line) with a very close exponent and a slightly lower prefactor. After Z = 100, a few secondary
sidebranches deviate from this power law as they start penetrating the diffusion field and transitioning

toward a free dendrite growth regime.

6. Application to experiments

6.1. Simulations

We apply the 3D DNN model to simulate the three-dimensional directional solidification experiment
of an aluminum-silicon alloy in reduced gravity conditions, achieved in the framework of the CETSOL
project [45, 46, 47]. In this experiment, cylindrical ingots of diameter 7.8 mm are solidified over a length
of several tens of centimeters onboard the International Space Station, hence yielding a purely diffusive
transport regime and homogeneous growth conditions. The specific experiment simulated here was performed
on an Al-Twt%Si alloy with a temperature gradient G = 9 K/cm and a pulling velocity V, = 10 um/s (i.e.
Stage I for FM3 and FM4 in Refs [46, 47]).
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The considered alloy parameters are summarized in Table 1. The value of o = 0.058 was chosen to
match the atomistic simulations prediction of ¢4 = 0.012 for aluminum [60] and linear solvability theory in
3D [43]. The simulation domain is made of 736 x 576 x 288 grid points, with Az = 2p, and ps &~ 7 pm, i.e.
a domain of about 10.3 x 8.0 x 4.0 mm?, over an experimental time of 90 minutes. Within that domain, we
impose no-flux, i.e. symmetric, boundary conditions along all boundaries and along the side of a cylinder
of diameter 7.8 mm with its axis within the (z = 0) plane and centered in the y direction, hence simulating
one half of the cylindrical mold. The cylindrical shape of the mold is approximated with steps along y or
z, hence combining no-flux conditions solely on y and solely on z (see e.g. schematics in the Supplementary
Material of Ref. [61]). The integration box I' for the calculation of F(t) is set to A =B =3, and C =1
(see Fig. 3). The thickness of the needles is bounded to 7,4 = 3ps. The domain is shifted to keep the
primary dendrite tips at &~ 8.32 mm. Branching events are set to occur every 10 to 20p, i.e. with N =15
and AN = 10. The initial network is a grid of 390 needles oriented in the x direction and evenly spaced
in y and z with steps of 18Ax. The needle tips are initially aligned at the liquidus temperature, so as to
mimic a planar front, with a small random fluctuation of amplitude 0.001p, on their initial length in order

to disturb the initial symmetry of the problem [36].

6.2. Results

The resulting simulation is widely multiscale, with a steady-state capillarity length dj ~ 4.75 nm, a
steady primary tip radius ps =~ 7.0 pm, a diffusion length {p = 300 pum, and a thermal length I ~ 33.8 cm.
The simulation runs in about 28 hours on a single Nvidia GTX680® GPU.

The results of the simulation are illustrated in Fig. 9. The planar front reaches a maximum dimensionless
undercooling of about 0.016, i.e. a tip supersaturation {2 ~ 0.11, at ¢ ~ 630 s before destabilizing, acceler-
ating, and finally stabilizing at an undercooling of 0.0072, i.e. 2 &~ 0.053, with a steady Péclet number of
approximately 0.0116, marked in Fig. 5a with an open yellow circle. The total number of needles in the sim-
ulation peaks slightly above 25000 as the interface accelerates shortly after the planar front destabilization,
then stabilizing around 12000 needles in the steady-state. The maximum memory (RAM) required during
the simulation remains below 2 GB, which makes the simulation accessible to almost any commercial GPU
released in the past few years. The snapshots in Fig. 9 show the initial array of needles at t = 0, the dendritic
array shortly after the planar front destabilization at ¢ = 18 min, and the subsequent elimination/coarsening
of the array at ¢ = 30 min until the steady-state shown at ¢ = 90 min.

We compare these results with the corresponding 2D simulation from Ref. [36]. Fig. 10 shows the time
evolution of the supersaturation of the most advanced primary tip in the dendritic array in 2D (dashed) and
3D (solid) simulations. The longer transient in 2D is primarily due to the difference in solute redistribution
and to the resulting difference in Q4 between 2D and 3D, as illustrated with the two steady-states marked

with yellow symbols in Fig. 5a. The smaller effect of the tip selection parameter o (0.083 in 2D and 0.058 in
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3D) also appears in Fig. 5a as the difference in the steady Péclet number that scales as P ~ 1/4/0, if other
parameters remain the same. The significant difference in time scale to reach a steady growth highlights
the importance of three-dimensional simulations to predict reasonable transient dynamics. The difference in
solute profiles ahead of the dendritic front may also yield significant differences in selected primary spacings,

as shown elsewhere for a directionally solidified Al-Cu alloy compared to x-ray radiography imaging [62].

6.3. Comparison to experiments

We compare the resulting steady-state microstructures to experimental microstructures observed in a
CETSOL experiment in Fig. 11. A count of primary dendritic trunks within the cross section (a,b) and across
the longitudinal section of the sample (c,d) shows a good agreement between simulations and experiments.
Note that the diagonal lines through Fig. 11d are geometrical artifacts due to the cutting and polishing
plane not exactly parallel to the dendrite growth direction, while the latter is actually only a few degrees
tilted with respect to the vertical temperature gradient direction.

This first direct comparison of simulations with experiments on a crucial microstructural feature such as
primary dendritic spacing is a very encouraging example of the potential of the DNN approach in predicting
quantitatively fully three-dimensional microstructures at the scale of cubic centimeters and hours with

reasonably sized computations.

7. Summary and outlook

We presented a three-dimensional formulation of the Dendritic Needle Network (DNN) model for den-
dritic growth for isothermal and directional solidification. We have shown that this approach describes
quantitatively analytical solutions for both steady-state and early stage growth regimes, using a spatial dis-
cretization of the same order or larger than a dendrite tip radius. The model also reproduces quantitatively
the experimentally observed scaling law relating the growth of the length of active secondary branches to
the distance behind the tip, which determines the envelope shape of the dendritic grain. We applied DNN
simulations to three-dimensional directional solidification of an Al-7wt%$Si alloy in a purely diffusive regime
in a microgravity experiment performed in the framework of the CETSOL project. These results, as well
as first applications of the model to other Al-Si and Al-Cu alloys in thin sample experiments published
elsewhere [61, 62], show a good agreement between primary spacings experimentally measured and those
predicted by the DNN model.

The present modeling approach reliably bridges the length-scale gap between detailed solid-liquid in-
terface pattern formation models, e.g. phase-field, and macroscopic average models of grain growth, e.g.
cellular automata. The ability to model and explore both intragrain and intergrain dynamical phenomena

in complex dendritic microstructures should pave the way for a deeper understanding of microstructure
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selection mechanisms, such as for dendrite arm spacings, grain texture, and casting defects, crucial to the
properties of industrial materials.

The outlooks of this work are manyfold. The new formulation involving thicker parabolic needles instead
of sharp needles makes it easier to build a numerical implementation where the branches are not aligned
along the computational grid. This opens the way to polycrystalline implementations of the model that
account for different grain orientations, as well as modeling the growth of crystals with hexagonal symmetry.
Additionally, in order to model solidification under realistic casting conditions, the DNN approach needs
to be extended to treat thermo-solutal transport, multicomponent alloys, and fluid flow. Furthermore,
even though the DNN model is not designed to model coarsening and latter stage solidification at high solid
fraction, introducing a simplified description of solidification in the mushy zone would be a valuable addition
to the model in order to predict fully solid dendritic microstructures.

We expect the DNN model and its extensions to yield deeper insight into microstructure selection,
exploring for instance the mechanisms of polycrystalline grain growth competition [35], the influence of
convective transport at the scale of extended dendritic arrays [63], or the columnar-to-equiaxed transition [45,

46, 47).
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11

Transient evolution of dendritic front supersaturation for a 2D simulation from Ref. [36]
(dashed line) and the present 3D simulation in a cylinder (solid). The slight difference in
initial slope is due to the 2D simulation using G = 10 K/cm (while here G = 9 K/cm).

Microstructure cross-sections (a,b) and longitudinal sections (c,d) from a microgravity direc-
tional experiment of an Al-7wt.%Si alloy at V' = 10 ym/s and G = 9 K/cm in the CETSOL
project (b,d), adapted from Ref [46], and from a 3D DNN simulation (a,c). Each panel shows
a count of primary dendrites.
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Figures

Figure 1: The Dendritic Needle Network model represents a dendritic grain, like the ammonium-bromide crystal from Ref. [38]
in (a), as a hierarchical network of needle-like branches interacting through the long range diffusion field, as illustrated in (b).
The instantaneous tip radius p(t) and velocity V (¢) of each branch is established by combining two conditions at distinct length
scales: (c) a solute conservation condition at an intermediate scale larger than the tip radius p, but smaller than the diffusion
length D/V (indicated with the > p and < D/V scale bar labels, respectively), and (d) a solvability condition at the scale of
the tip radius p.
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Figure 2: Schematics of a dendritic tip at an intermediate scale between the tip radius p and the much larger diffusion length
D/V (indicated with the > p and < D/V scale bar labels, respectively) for (a) a sharp and (b) a parabolic needle crystal.
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Figure 3: Illustration of a needle tip region. The integration contour (surface in 3D) I' and its inner surface (volume in 3D)
Y spans A grid points behind the tip location (itip,jtip), B grid points ahead of the tip, and is C' grid points wider than the
needle at its intersection with I"' — here illustrated for A =3, B = 2, and C = 1. The needle width (radius in 3D) is bounded

to a maximum 7,4, — here equal to 3Az.
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Figure 4: Steady-state Péclet number for different solute supersaturations €2 in two dimensions, compared to the exact Ivantsov
solution, and its sharp-needle approximation 2 &~ /7P, for three different DNN model formulations for the estimation of the
flux intensity factor F: (x) using the Rice integral, Eq. (16), as in Ref. [36]; (+) using the flux integral, Eq. (25), for a sharp
needle; and (o) using a thick parabolic needle tip with Egs. (25) and (29).
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(# = 0) plane with steps of 0.005 and the interface position, i.e. w =0, in thicker blue line, for [p/Az = 40 (b), 15 (c), 10 (d),
and 5 (e). Yellow symbols in (a) show the steady-state for a simulation with sidebranches (Fig. 8) and directional solidification

simulations (Figs 9-11).

20
15
10

5

(Y —ve)/ps

o< >OoO

e

wn
(=}



0.04

a, 0.02

Q =0.05

Nl o1
=

001

Tmaz/ Ps
(b> Tmau;/ps = 20, Q =0.05

(y = ye)/ps

(C) Tmaz/ﬁs =8
I

(y—u)/ps

(y —u)/ps

(y = ye)/ps

(y — ye)/ps
NI B

[553
(=]
&
(=}

(x—20)/ps

Figure 6: Predicted steady-state Péclet number P as a function of the needle thickness bounding radius rmaee (a), and
corresponding composition profiles in the (z = 0) plane, with contour steps of 0.005, for Q = 0.05, [p/Az = 40 and Tmaz/ps =
20 (b), 8 (¢), 5 (d), 3 (e), and 1 (f).
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Figure 7: Early growth of a six-branch equiaxed crystal predicted by 3D DNN simulations for 2 &~ 0.00634, i.e. P ~ 0.00125.
In panel (a) the evolution of the branches length L is compared in a log-log plot to a line of slope 2/3, corresponding to the
analytical law L ~ ¢2/3 [49]. The plot is built by continuity from simulations with Az = 0.05ps (for tVs/ps < 2), Az = 0.1ps
(for 2 < tVi/ps < 10), and Az = 0.5p5 (for tVs/ps > 10). Panels (b) through (g) show snapshots of the isovalues of u with
steps of 0.0005, at times marked with circles in (a).
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Figure 8: Sidebranches growth competition and resulting dendrite envelope for 2 = 0.1. Symbols mark the location of the active
secondary sidebranches in the y (red circles) and z (blue diamonds) directions for tV;/ps = 1000 to 2500 (shown with time
steps of 250ps/Vs). The power law fit of these locations (fitted with time steps of 50ps/Vs) yields Iz = 0.63z°-87 (solid line),
as compared to measurements by Melendez and Beckermann [39] (dashed line). The inset shows the dendrite at tVs/ps = 1700
with contour lines for u = 0.005 to 0.095 with steps of 0.005 along the (x = 0), (y = 0), and (z = 0) planes.

35



E

= o |

(©) £3 £

& inrmmy £

’f—:m 3l g

- 5 E

i 3 /3
5 i e T (£

. - i

o mﬁh/'\#j/“ %

e A L3 33 3

iy il e £

— . £

()

Figure 9: Snapshots of the dendrite array evolution during directional solidification of an Al-7wt.%Si alloy at V = 10 pm/s
and G =9 K/cm in a cylinder of diameter 7.8 mm. Contour lines in (a) and (b) show isovalues of the u field along the side of
the cylindrical mold, with steps of 0.01. The needle network is shown in (c) for z < 1121 pm with isovalues of the u field along
the (z = 1121 pm) plane, and in (d) for x > 4205 pm with contour lines on the (z = 4205 um) plane. [Both planes are drawn
on the rightmost images in (c) and (d)]
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Figure 10: Transient evolution of dendritic front supersaturation for a 2D simulation from Ref. [36] (dashed line) and the
present 3D simulation in a cylinder (solid). The slight difference in initial slope is due to the 2D simulation using G = 10 K/cm
(while here G = 9 K/cm).
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Figure 11: Microstructure cross-sections (a,b) and longitudinal sections (c,d) from a microgravity directional experiment of an
Al-7wt.%Si alloy at V =10 um/s and G = 9 K/cm in the CETSOL project (b,d), adapted from Ref [46], and from a 3D DNN
simulation (a,c). Each panel shows a count of primary dendrites.
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Tables

Table 1: Parameters for Al-7wt%Si alloy simulations.

Symbol Value Unit Ref.
Coo 7 wt%Si [46, 47]
m -6.5 K/wt%Si [59]

k 0.13 [59]
T, 1.96 10~7  Km [59]

D 3107° m?/s (3]

o 0.058
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