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Abstract

The Method of Manufactured Solutions (MMS) is used to evaluate the Material Point Method
(MPM) implemented in CTH, i.e. Markers. MMS is a verification approach in which a desired
deformation field is prescribed and the required forcing function to achieve the prescribed defor-
mation is determined analytically. The calculated forcing function is applied within CTH markers
determine if the correct displacement field is recovered. For the cases examined in this study, a
ring is subjected to a finite, angular-independent, spatially varying body force, superposed with a
rigid-body rotation. This test will assess the solid mechanics response of the MPM within CTH
for large deformation problems.
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Chapter 1

Introduction

The Material Point Method (MPM), as discussed below is implemented in the CTH hydroxide
[8]. Within CTH it is commonly referred to as CTH Markers [9]. The Method of Manufactured
Solutions (MMS) will subject the MPM to a prescribed load to determine if its response matches
the original prescribed deformation. A very brief summary of the MPM and MMS are given below.

Material Point Method

There are two distinct frames of reference when referring to fields that vary in space and time.
The Lagrangian frame is defined a reference frame which follows a specific mass of material
through space and time. In contrast, the Eulerian frame describes a volume element which is fixed
in space and material flows through the volume. Each approach has advantages and disadvan-
tages when implemented in a numerical framework. Lagrangian based approaches are typically
employed in finite element based methods, and are able to track material deformation and prop-
erties with minimal diffusion. Eulerian approaches, such as those typically used in computational
fluid dynamics methods, excel at solving large deformation problems where a Lagrangian method
would potentially fail due to mesh tangling. The MPM attempts to combine the advantages of each
approach in a particle based method typically used to solve solid mechanics problems.

The MPM utilizes the fixed, Eulerian grid, and the deformed, Lagrangian grid. The Lagrangian
grid points are called ‘markers’ and are free to move within the domain. The Eulerian grid points
are fixed in their position throughout time. To map properties between markers and grid points,
i.e. velocity, acceleration etc., the MPM utilizes linear shape functions typically used in Finite
Elements. The discretized conservation equations are then solved on the grid points. The markers
represent the integration points and integration over the materials domain is accomplished by a
summation over markers. Steffen et. al. compare the MPM to a typical Finite Element formulation
and present analysis of quadrature errors for the MPM applied to solid mechanics problems in
[7]. More information on the MPM can be found in [4, 5], and information on its implementation
within CTH can be found in [9].

Since the original MPM formulation only used local linear shape functions, the mass on the
background grid would exhibit discrete jumps as a marker crossed a cell boundary. These discrete
jumps were found to lead to spurious oscillations in the solution, and in some cases instabilities.
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The linear shape functions also limited the markers to nearest neighbor communication on the
background grid, which was found to result in numerical fracture for large deformation problems
if the markers became separated by more than a cell width. To alleviate these issues, the Convected
Particle Domain Interpolation (CPDI) method was recently devised [1]. The CPDI method intro-
duces the concept of a particle/marker domain, uses the deformation gradient tensor (F) to evolve
the domain as a function of time to smoothly map the marker properties to the background grid.

Method of Manufactured Solutions

The Method of Manufactured Solutions (MMS) is used to help verify the implementation of
the MPM. The MMS first takes a prescribed deformation field and to determine, analytically, what
loading is required to achieve such a deformation. That loading is then applied to a numerical
method, such as the MPM, in an effort to recover the original prescribed deformation and evaluate
the fidelity of the method.

As given in [3, 6], the problem geometry chosen consists of a 2D ring. The deformation was
chosen such that it is independent of the polar coordinate, ®, and the only ‘external’ load is a body
force.

The deformation combines a finite, shear deformation with a rigid body rotation. Therefore,
this problem is a good test for the MPM in large deformation problems. Additional details on the
problem are in the following chapter. Further information can be found in [3, 6].
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Chapter 2

Problem Description

As stated above, the MMS takes a prescribed deformation and analytically determines the
forcing function required to produce that deformation. The case below, as taken from [3, 6],
requires a spatially varying body force to deform the model per it’s prescribed deformation. Below
we describe the geometry of the problem as well as provide some details on how the body force
was derived.

Geometry

The problem consists of a ring with an inner radius of 0.75 m and an outer radius of 1.25 m.
The deformation we want to recover is in the form of:

a(R,1) = g(t)h(R) 2.1)

where o((R,?) is the angular displacement, i.e. 6(R,t) = a(R,t) + ® where 6(R,¢) is the angular
deformed coordinate and ® is the undeformed angular coordinate. Note that the deformation,
o(R,t) is independent of the angular coordinate, ©.

In [6] the deformation is taken as:

ot) = %‘(1 _ cos(2t))
h(R) = (1—32(R—1)*+256(R—1)*) = (16R* — 32R+ 15)*

where A is the amplitude of deformation. For example, if we wanted a maximum angular dis-
placement of 0.75 radians, we would chose A = 0.75. At the inner radius and outer radius of the
ring, h(R) was selected such that 4(R) and /'(R) would both equal zero. As a result, as we will
see below, the boundary conditions at the inner radius and outer radius are traction-free. Time
varies from O to 1.0 seconds. Details on the derivation of the body force required to reproduce the
deformation is given below.

A Neo-Hookean material model is used which is given as,
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ALY T
—I F-F —1 2.2
T+ [ ] 2.2)
where the Cauchy stress is denoted by &, Lamé material constants are A and u, the deformation
gradient is F and its determinant is J. A and u are taken to be 577 Pa and 385 Pa respectively. The
initial density of the material is 1000 kg /m>.

Body Force Derivation

References [3, 6] provide the details on deriving an expression for the body force. However, it
seems that there may be typos in their final expression. As a result, beginning from an intermediate
step, the derivation is reproduced below, hopefully without errors. If it is suspected that there are
typos, there should be enough detail below to help guide the reader through the derivation process.

The deformation o(R,?) is a function of the radial coordinate, R and time, z. Both references
agree with the form of the body forces which is given as,

b= RO - | (£ R R ) o)+ e —m)|
bo =R(£"ONR) ~ - | (SR +HRm ) g+ glmate)| )

where €(R,1) = g(¢)&(R), 2E (R) = RN (R) and 7 is the first PK stress in the reference configuration.
As stated above, a Neo-Hookean constitutive relationship was used which is repeated here for

convenience,

_An@), g

; ; (F-F' —1) (2.5)

where 0 is Cauchy Stress. The original derivation is not very clear on the relationship between
Cauchy Stress and 7 used in equations 2.3 and 2.4. Therefore, with the help of [2], the relationship
between the two parameters are derived as follows.

From [3, 6], the first PK stress (deformed coordinate system) is given as,

P:r.f.qT (2.6)
where r and q are orthogonal (rotation) tensors. From [2] the first PK stress is given by,
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P=Jo-F 7 (2.7)

Equating equations 2.6 and 2.7 and solving for 7 results in,

t=Jsr'.c.FT.q"T=n"-6-FT.q (2.8)

Also given in the paper is a relationship between F and &#. Where F is the deformation gradi-
ent associated with P and % is the deformation gradient associated with T (different coordinate
systems).

F=r-Z-q (2.9)

Using equation 2.9 and substituting equation 2.5 into 2.8 yields,

T=AlnWN)F T+u(F-F7") (2.10)

From [3, 6], we note that # =1+ 2¢(R,t)ese; and F T =1—2¢(R,t)eje;. This information
allows us to write,

T= lln(]) (I — 28(R,t)e1e2) +2[.L8(R,I) (e2e1 +e1e2) (2.11)

With the above relationship we can finally substitute back into our expressions for the body force
but we should first determine,

dt
P Ty =2UE(R,t) T — T
dt
e "M T =Aln(J) T2+ 1 =4ue(R,1) —2A€(R,1)In(J)

Now substituting the above expressions into equations 2.3 and 2.4,

by = R (g (O)h(R))* + 2 e(R, 1) (R)g(1) 2.12)

o

bo = R (" (OH(R)) - | 2RE'(R) + AT (R)) 1) + 25"

S Qu—2AIn()| (2.13)
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In order to get an expression in terms of g(7) and h(R) we substitute the expressions for & (R)
and (R, 1), and note that 2&’(R) = h'(R) + Ri" (R),

by = —R (g (h(R))* + pﬂR (H(R)g(r))? (2.14)
bo =R (" (Oh(R)) — £ [30/ (R) + RI'(R)) g (1) (2.15)

Po

Bear in mind, the above relationships are independent of the material parameter A. Substituting
the given expressions for g(¢) and &(¢), and realizing that,

W (R) = —64(R—1)+1024(R—1)°
H'(R) = —64+3072(R— 1)*

results in:

2
b, = —R(Amsin(27))*(16R* —32R+15)* + Z? R(1—cos(27t))> (—64(R — 1) + 1024(R— 1))
’ (2.16)
»  32pA

(—45+ 188R — 240R* +96R?) (1 — cos(27t))
(2.17)

bg = 2RAT? cos (27t ) (16R> — 32R 4 15)

o

Equations 2.16 and 2.17 are our final expressions for the components of body force. It should
be noted that Reference [3] uses a different g(7). The spatially varying body force, as derived here,
is incorporated into the MPM via the MRK_MMS_F file which is provided in Appendix B.

Please note that in order to convert from polar to cartesian coordinates, [3, 6] suggest we use
the following relationships:

by =b,cos(0) — bgsin(0)
by = b,sin(6) +bgcos(0)

However, since CTH uses an Eulerian grid, the deformed coordinates are directly input into the
MRK_MMS F file and additional steps as suggested in [3, 6] are not needed.
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Material Model

The CTH MPM currently supports the Mooney-Rivlin hyper-elastic material model, which is
given by,

1 2 _ 2 2, . - -
o= ,7 ln(J)m(Cl +11C2)B — WCZB -B— g(Clll +2C2]2)I (2.18)

where I} =J -2/ Shand b =J —4/ 31, and I, and I, are the first and second invariants, respectively,
of the deformation gradient F. User inputs are denoted by C; and C;. B is the left Cauchy-Green
Deformation tensor and it is related to the deformation gradient by B =F - F”.

Since the Mooney-Rivlin model contains expressions for J, and B it can be easily modified to
accommodate the Neo-Hookean Model cited above.

The modified Mooney-Rivlin code, MOONR.F, see Appendix C, now interprets the first user
input, Cy, as A and the second user input, Cy, as i for the cases examined in this report.

15
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Chapter 3

Results

Inputs

While the outer diameter of the ring is 2.5 m, the problem domain was chosen to be 3 m wide
and 3 m tall to avoid the possibility of any boundary effects influencing the solution due to radial
expansion. A symmetric boundary condition was chosen for the four boundaries since it is not
expected to influence the solution. The 2D domain was discretized with varying mesh densities
and varying marker densities to determine the effects on the accuracy of the solution in this study.

The MMP4 (multiple material pressures) option was selected which mixes the cell pressure,
sound speed and partition of PdV work. See [9] for details on the various MMP options imple-
mented into CTH. The SPATB card, which was added to CTH for this study, was used to turn on
the implementation of the spatially varying body force. For the marker options, the strength card
(MSTREN) was set to 3, which is currently the only supported option and gives the standard MPM
formulation. All failure logic was disabled by setting the FAIL card to 10. The MPMONLY card
was set to 1 so that the acceleration field was found by using the full stress tensor. Unless explicitly
stated otherwise, the MPCDI card was set to 2 for all cases which use the CPDI shape functions.

The Mie-Gruneisen equation-of-state (EOS) model was selected. In order to match the proper-
ties in [3], the EOS values were chosen as shown in Table 3.1. The Gruneisen coefficient was set
to 0 in order to disable any energy dependence of the EOS.

Table 3.1. Mie-Gruneisen EOS Properties

Parameter Value
po (RO) 1.0 g/cm?®
Ty 0.02578 eV

Cs 116 cm/s
S 0
A\Y) 0
A (GO) 0
G 1

17



Table 3.2. End Time of Simulation for Linear MPM cases

Simulation end time (sec)

Mesh Density Markers

A=1.0 A=05
300x300 2 0.47 0.77
300x300 4 0.43 0.711
300x300 8 0.46 1.0
600x600 2 0.34 0.48
600x600 4 0.34 0.52
600x600 8 0.38 1.0
1200x1200 2 0.27 0.39
1200x1200 4 0.29 0.43
1200x1200 8 0.33 0.47

An example input deck using the above specified options is provided in Appendix A. The
coding for computing the spatially varying body force, MRK_MMS.F, is provided in Appendix B
and the modified material model file, MOONRUF, is provided in Appendix C.

Results

The maximum amplitude of angular deformation was initially chosen to be 1 radian, A = 1.0.
While this is considered to be a very large deformation, the methods implemented in references
[3, 6] were capable of supporting such a deformation, although the linear MPM produced clearly
unphysical results. A total of nine runs were examined for this study. Three different mesh densi-
ties (300x300, 600x600 and 1200x1200) and three different marker per linear direction (2, 4 and
8) were selected.

Due to the large magnitude of deformation, none of the simulations were able to reach the
termination time, 1.0 second. As seen in Table 3.2, only two simulations, the 300x300 mesh with
2 and 8 markers per linear direction cases, were able to run beyond 0.45 seconds. The ‘negative
residual volume’ error eventually caused all of the simulations to fail. CTH Markers is considered
to be a maturing capability and this error is a known issue that the CTH developers are investigat-
ing. The general trend from the end time of simulation seems to be that as the number of markers
per linear direction is increased, the simulations run slightly longer, but this trend doesn’t hold for
the 300x300 mesh cases. No cases were run with 1 marker per cell because that configuration was
found to be unstable for all cases.

Figure 3.1 shows the response for each of the nine runs at 0.25 seconds. The values on the
markers, and not the background grid are shown. It should be noted that edges between the red,
green and blue areas are very smooth for the 300x300 mesh with 2 and 4 markers. The other
mesh/marker densities show some roughness between the red/green and green/blue interfaces. This
is due to aliasing due to the post-processing which occurs when there are several data points per

18
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Figure 3.1. Response at 0.25 seconds, A = 1
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pixel in the images. The rough edges are not real. Other than the aliasing, there is very little
discernible difference between the responses.
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(a) Mesh: 300x300, Markers: 2
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Figure 3.2. Response at 0.45 seconds, A = 1

(b) Mesh: 300x300, Markers: 8

Figure 3.2 shows the marker response at 0.45 seconds of the only two runs that were able to
make it that far, a mesh resolution of 300x300 with 2 and 8 markers. Between the two cases,
there is a significant difference in the number of high velocity anomalies near the outer edge of
the ring. All the cases which failed showed these anomalies before the ‘negative residual volume’
error terminated the simulations. Another concern is that the figures are not axisymmetric with
respect to the angular polar coordinate as they are expected to be. Both figures show significant
asymmetries at the bottom-right and bottom-left areas of the ring. This is an issue that should be
investigated further as the implementation is matured.
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Figure 3.3. Response Profile at 0.25 seconds and ® =0, A =1

Figure 3.3 shows the deformation at ® = 0 at one snapshot in time compared to the prescribed
deformation, o(R, T). From this figure, there is very little discernible difference between the exact

20



Angular Displacement (Radians)

Initial Radius 1.000 meters, © = 0.000 radians

—=—CTH, 300x300, mrk=2

—»#—CTH, 300x300, mrk=4
CTH, 300x300, mrk=8

—s—Theoretical

Angular Displacement (Radians)

Initial Radius 1.000 meters, © = 0.000 radians

——CTH, 600x600, mrk=2
08| ——CTH, 600x600, mrk=4
CTH, 600x600, mrk=8
['| —#=Theoretical

Initial Radius 1.000 meters, © = 0.000 radians

——CTH, 1200x1200, mrk=2
07} | ——CTH, 1200x1200, mrk=4
CTH, 1200x1200, mrk=8
o6 || —#—Theoretical

Angular Displacement (Radians)

solution and the CTH MPM result. Figure 3.4 shows the deformation of one point over time.
Again, we see very little difference between runs. Therefore, to better quantify the differences
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Figure 3.4. Response Profile at ® = 0,R = 1.0 over time, A = 1

between the runs, a L; error was calculated for all the cases. The L error is defined as,

where the vertical bars denote absolute value, N is the number of points, Xg;uiarion 1S @ parameter
output by the simulation and x,, is the value of the parameter we expect using the previous
section’s (R, ). Figure 3.3 shows the profiles used and Figure 3.5 is the corresponding L plot.

|

N
Ei:l |xsimulati0n — Xexact |

N

Figure 3.4 shows the profiles used and Figure 3.6 is the corresponding L; plot.
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From Figure 3.5(a), the error decreases with a slope of about 1.25 as the mesh is refined. We
see no convergence in the solution as we increase the number of markers per linear direction, as
shown in Figure 3.6(b). However, from Table 3.2, we see that the number of markers does provide
some stability as the simulations generally run for longer periods of time if there are more markers.
The lack of additional convergence as the marker density is increased implies that the additional
marker density does not provide any additional sub-cell resolution of the conservation equations.

Since the simulations were not able to complete a full run, a lower maximum amplitude of
0.5 radians, A = 0.5, was evaluated in order to get most of the cases to run the full simulation
time. Table 3.2 shows the time at which simulations terminated for the lower amplitude case.
Two simulations were able to reach the final time, both with 8 markers, the 300x300 and 600x600
meshes. Surprisingly, the 1200x1200 mesh with 8 markers was not able to run the entire 1.0
seconds.

Figure 3.7 shows the velocity magnitude over time of the 300x300 and 600x600 meshes with 8
markers per linear direction. At 0.3 seconds, Figures 3.7(a) and 3.7(b), show that there is very little
difference between the two runs. Figures 3.7(c) and 3.7(d) show the response at about 0.5 seconds.
This time step is when the deformation is at the maximum amplitude and we expect a uniform
zero velocity. However, the figures do not reflect that. There is a significant asymmetric nonzero
velocity at the bottom-right of the figure for the 300x300 mesh. It seems that the magnitude of
the velocity decreases as we refine the mesh to 600x600. At 0.7 seconds, Figures 3.7(e) and 3.7(f)
show that there is a significant difference in the same bottom-right region of the ring. Finally at
the end time of the simulation, 1.0 seconds, we expect a nonzero velocity throughout the ring, but
Figures3.7(g) and 3.7(h) show that there is a significant non zero velocity around the ring for the
300x300 mesh which seems to be reduced for the 600x600 mesh.
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Figure 3.8 shows the L; error calculated for a cross section deformation, at three different
angles, for the 300x300 and 600x600 mesh with 8 markers as a function of time. The figure clearly
shows that the refinement of the mesh reduces the error. Also, the error is different at ®@ = 0,45°
and —45°. This asymmetry may be due to an error in the CTH Markers source code or an error in

L; as a function of time

—06 = 0°, 300x300 mesh
01611 — — © = 0°, 600x600 mesh
——0 = 45°, 300x300 mesh
0141~ — © = 45°, 600x600 mesh
O = —45°, 300x300 mesh
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Figure 3.8. L, over time, comparing mesh densities, A = 1/2

the implementation of the MMS methodology. Further investigation is required.
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Since two runs were able to complete the entire 1.0 second requirement, it makes it a good
candidate to test the MCPDI card to examine the effects of the CPDI shape functions. Figure 3.9
shows the L error calculated for a cross section deformation as a function of time comparing the
MCPDI switch on and off. The figure shows that with the switch on or off the error values are
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Figure 3.9. L, over time, testing mpcdi card, A = 1/2
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indistinguishable. However, with the MCPDI switch on, the simulations were not able to reach the
1.0 second mark. For 300x300 mesh with 8 markers, it was only able to reach 0.66 seconds and
the 600x600 mesh was able to reach only 0.49 seconds. Figure 3.10 shows the final timestep of
the 600x600 mesh with 8 markers with MCPDI off compared with MCPDI on. There is a stark
contrast between the two figures. While the MCPDI on figure is much smoother, the MCPDI off
figure shows significant velocity anomalies.
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Figure 3.10. Comparing MCPDI card, Velocity Magnitude for
600x600 mesh, 8 markers, A = 1/2
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Chapter 4

Conclusion

In this study, the MMS was used to help in the verification process of the MPM implementation
in CTH. In general, CTH Markers was able to reproduce the given deformation well. But, due to
stability and robustness issues within CTH Markers, most of the simulations were unable to run to
completion which made a rigorous verification impossible.

There was significant change in the calculated error as the mesh was refined, as expected.
The L; error converged with an order of approximately 1.25. In contrast, there was no observed
convergence as the marker density was increased. In most cases the increased marker density did
seem to have a stabilizing effect on the simulations, allowing them to run for a longer period of
time until the instability ended them. Regardless of the number of markers, the simulations fail
due to a ‘negative residual volume’ error. The developers of CTH are aware of this issue and are
investigating.

In order to better evaluate the system, the maximum amplitude was decreased. Two simulations
were able to complete the entire 1.0 second with this decreased amplitude. Unfortunately, we
expected an axisymmetric solution but CTH did not produce such a result. There are many potential
sources of error as to the cause of the asymmetry. They include, but are not limited to an error in
body force, an error in material model or an error in the CTH marker implementation.

In the future as the MPM capability in CTH is matured, this verification should be revisited to
asses the fidelity of new methods/options as they are added to the implementation. The robustness
and stability issues, along with the asymmetry should be further examined to determine the source
of the issues.

It should also be noted that this report only examined the solid mechanics response of the MPM
in CTH. The shock response, or the fracture behavior of the method were not assessed in anyway
and extrapolation of the results presented in this report to those regimes is not valid. The use of
the MPM for shock driven behavior is an ongoing area of research for the community and poses
several challenges beyond just the solid mechanics response of the method.
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Appendix A

CTH Input Deck

The input deck used for a 600x600 mesh with 8 markers per linear direction and mpcdi on is
given below.

A.1 disk bodyforce.in

*CTHid SPYPLT SPYHIS
*eor*cthin

*

2D MMS Problem *

*
khkkhkkhkhkkhkkhkhkhkrhkhhkk kK Khkkk Kk Control block R R I A A b I b b b I b b b e A b b I S b b b I 4
control
tstop = 1.0e0
tbad 1E30
print
mmp 4
spatb=1 *turn on space-vary body force
qfl 1
rdumpf 1e30
endcontrol
*
mesh
block geometry=2dr
x0=-150
x1 n=600 w=300 rat=1
endx
y0=-150
vyl n=600 w=300 rat=1
endy
xact = -150 150
yact = -150 150
endb
endmesh
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Spy

Save ("ALL");
SaveTime (0, 1.0e-2);
PlotTime (0, 1.0e-2);
ImageFormat (1600,1200);

define main ()

{
pprintf (" PLOT: Cycle=%d, Time=%e\n",CYCLE, TIME);
MatColors (GREEN) ;
MatNames ("Tungsten");

XLimits (-150,150);
YLimits (-150,150);

Image ("mrks",WHITE, BLACK) ;

Window (0.,0.,0.85,1.);

Label (sprintf ("V'mag' at %6.2e seconds",TIME));
HotMap;

ColorMapRange (0., 2E2);
PaintMarkers (0, "VMAG",5,0);

DrawColorMap ("V'MAG" (cm/s)",0.85,0.1,1.,1.);
EndImage;

Image ("mrksVX",WHITE, BLACK);

Window (0.,0.,0.85,1.);

Label (sprintf ("V'X' at %6.2e seconds",TIME));
HotMap;

ColorMapRange (-5.0E1,5.0E1);

PaintMarkers (0,"VX",5,0);

DrawColorMap ("V'X' (cm/s)",0.85,0.1,1.,1.);
EndImage;

Image ("mrksVY",WHITE, BLACK) ;
Window (0. ,0.,0.85,1.);
Label (sprintf ("V'Y' at %6.2e seconds",TIME));
HotMap;
ColorMapRange (-5.0E1,5.0E1);
PaintMarkers (0,"VvY",5,0);
DrawColorMap ("V'Y' (cm/s)",0.85,0.1,1.,1.);
EndImage;

Image ("mrksDENS",WHITE, BLACK) ;

Window (0.,0.,0.85,1.);
Label (sprintf ("Density at %6.2e seconds",TIME));
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HotMap;

ColorMapRange (0.9,1.1);
PaintMarkers (0, "DENS",4,0);

DrawColorMap ("Density (g/cm”3)",0.85,0.1,1.,1.);
EndImage;

Image ("mrks_domains",WHITE, BLACK) ;

Window (0.,0.,1.,1.);

XLimits (115,125);

YLimits (0,10);

Label (sprintf ("CPDI Domains at %6.2e seconds",TIME));
DrawMarkerDomains (1) ;

EndImage;

HisCycle (0,1);
SaveHis ("POSITION, VX, VY");
SaveTracer (ALL) ;

define spyhis_main ()

{
$HisLoad (1,"hscth");
$HisImageName ("profile");

diatom
*
package 'impactor’
material 1
dens=1.0
insert circle
center 0. 0.
radius 125.0
rinner 75.0
endinsert
endpackage
enddiatom
*
mark * Marker section
mmat 1 8 * Mat 1 is Marker mat, 8 Markers per lin dir
mcpdi 2
esmth 0
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vsmth 0

ssmth 0

stren 3 * Controls strength options, 3 is standard MPM
fail 10 * turns off failure

mpmonly 1
endm
*
eos
matl mgr user RO=1 T0=0.02578 CS=116 S1=0 S2=0 GO=0 CV=1l
endeos
*
epdata
vpsave
mix=3
matep=1 moonr user MR1=577.0D1 MR2=385.0D1 MRU=0 MRG=0 MRT=0 MRF=0
endep
*
tracer

add 75,0 to 125,0 num=51
add 106.066,-106.066 to 176.777, -176.777 num=51
add 106.066, 106.066 to 176.777, 176.777 num=51

endtracer
*

convct
convect=1
interface=smyra
endc
*
edit
*
exact
shortt
tim=0. dt=1.0e30
ends
longt
tim=0. dt=1.0e30
endl
plott
time=0. dtfreg=10.0e30
endp
histc
cycle=0
dc=1000
htracer all
endh
*
endedit
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*

restt
time =

endrestt

fracts

endf

*

boundary

bhydro
bxbot 0
bxtop 0
bybot 0
bytop 0

endh
endb

0. dtfreg=1.0e30

stress
pfracl=-13e9
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Appendix B

Spatial Body Force Input

Below is the MRK_MMS.F file. This file applied the spatially varying body force within CTH
Markers. The version below is for a maximum angular displacement of 1.0 radian, A = 1.

B.1 MRK MMS.F

SUBROUTINE MRK_MMS (KPLANE , SBF)

C
use blank_module
use kpoint_module
use dbcxyz_module
C

tinclude "impdoubl.h"

tinclude "dbcsdm.h"

#include "dbcxyz.h"

tinclude "comint.h"

tinclude "parpie.h"

C parpie.h defines the pi, the mathematical constant
#include "comrel.h"

C comrel.h imports time

C Following Section 6.1 of Kamojjala, K., et. al.,
C "Verification_ Tests_,in _,solid, mechanics",

C Engineering with Computers, (2015) 31:193-213,

C DOI 10.1007/s00366-013-0342-x

C

DIMENSION SBF (IMAX, JMAX, 3)

PARAMETER (PONE=1.0D0, PTWO=2.0D0, PIPI=PPIE**2,
1 PFOUR=4.0D0, PHALF=0.5D0)

IJMAX = IMAX*JMAX

@]

RHO0=1000 KG/M"3
XMU = 385 Pa
g(t) = (A/2)*(l-cos (2*pi*t))

aQ O
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Q QO QO 0 QO

(@]

h(R) = (1 - 32*(R-1)"2 + 256*(R-1)"4)
\alpha (R, t)=g(t)*h(R)
I CONVERTED ALL OF THE CTH UNITS INTO
METERS AND Pa, AND PERFORMED THE CALCULATION
THEN I CONVERTED THE FINAL BODY FORCE (ACCELERATION)
RESULT BACK TO CTH UNITS
RHOO = 1000.0DO
XMU = 385.0D0
AA = PONE
DO J=1, JMAX
DO I=1, IMAX
XLOC=(X(I)+X(I+1))/(PTWO*100D0)
YLOC=(Y(J)+Y(J+1))/ (PTWO*100DO)
Divide XLOC by 100 in order to get units right
Units: Paper - meters, CTH - cm, here - meter

XRR = ((XLOC)**2 + (YLOC)**2)**0.5D0
IF (XRR.LT. (1.25D0) .AND. XRR.GT. (0.75D0))THEN
THETA_CAP = DATAN2 (YLOC, XLOC)

TEMPORARY VARIABLES
BR1 = -PONE* ((AA*PPIE*DSIN (PTWO*PPIE*TIME) ) **2)

*XRR* ((15D0 - 32.0D0*XRR
+ 16.0D0*XRR**2) **4)

BR2 = ((AA* (PONE-DCOS (PTWO*PPIE*TIME))/PTWO) **2)
* (XMU/RHOO) *XRR* (-64.0D0* (XRR-PONE)
+ 1024.0D0* (XRR-PONE) **3) **2
BTHETAL = XRR*((15.0D0-32.0D0*XRR+16.0D0*XRR**2)**2)
1 * (PTWO*AA*PIPI*DCOS (PTWO*PPIE*TIME))
BTHETA2 = -64.0D0* (XMU/RHOO)* (-45.0D0 + 188.0D0*XRR

- 240.0D0O*XRR**2 + 96.0D0*XRR**3)
* (AA/PTWO)* (PONE-DCOS (PTWO*PPIE*TIME))

CALCULATING POLAR BODY FORCES

B_RADIAL = BRIl + BR2
B_THETA = (BTHETAl + BTHETAZ2)

ALPHA = (AA/PTWO)* (PONE-DCOS (PTWO*PPIE*TIME))
* ( PONE- 32.0D0* (XRR-PONE) **2
+ 256.0D0* (XRR-PONE) **4)

THETA = THETA_CAP + ALPHA
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(@]

CALCULATING CARTESIAN BODY FORCES

BX
BY

B_RADIAL*DCOS (THETA) - B_THETA*DSIN(THETA)
B_RADIAL*DSIN(THETA) + B_THETA*DCOS (THETA)

CALCULATING CARESTIAN BODY FORCES IN UNDEFORMED
COORDINATE SYSTEM

BX
BY

B_RADIAL*DCOS (THETA_CAP) - B_THETA*DSIN (THETA_CAP)
B_RADIAL*DSIN (THETA_CAP) + B_THETA*DCOS (THETA_CAP)

Multiply by 100 below in order to convert units
Units: paper - meters/sec”2, CTH - cm/sec”2, above - meters/sec”2
BX2 = 100.0D0*BX
BY2 = 100.0D0*BY
ELSE
BX2=0.0D0
BY2=0.0D0
ENDIF
SBF (I,J,1)=BX2
SBF (I,J,2)=BY2
ENDDO
ENDDO

RETURN
END
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Appendix C

Modified Material Model Input

Below is the modified material file used to model the Neo-Hookean Material. Changes are
identified by ‘VVN’.

C.1 MOONR.F

C $Id: moonr.F,v 1.14 2014/11/06 16:08:13 scschum Exp $
€
SUBROUTINE MOONR_INIT (IMAT,RNUSET,UI,VI)

C***********************************************************************

C

C Initializes and checks validity of user inputs for Mooney-Rivlin
& model. Calculates and stores derived material constants.
€

C************************ abc mm/yy R A e S S S S e S S S S S i S S B i i S S S S 4

C

C written: mm/dd/yy
C author: Shane Schumacher
C
C who mm/dd/yy modification
C —
C
use eosmig
use marker
C

#include "impdoubl.h"
tinclude "iofils.h"
tinclude "maxmat.h"
tinclude "comint.h"
#include "elunep.h"
#include "elunvp.h"
#include "elunfr.h"
tinclude "elunav.h"
#include "psr.h"
tinclude "rotate.h"
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tinclude "strain.h"
tinclude "enbdbc.h"
#include "matcona.h"
tinclude "elunfm.h"
#include "mclass.h"
#include "epeos.h"
#include "unitz.h"
tinclude "eldbsl.h"
tinclude "datpath.h"
tinclude "vpfile.h"
#include "migpar.h"
tinclude "mig.h"
#include "isvdat.h"
#include "adatf.h"
tinclude "sccchr.h"
#include "mpcthl.h"
tinclude "parpie.h"
C

DIMENSION UI (*)
DIMENSION VI (10)

&
LOGICAL RNUSET (MAXMAT)

C
PARAMETER ( PZERO = 0.0D0 )
PARAMETER ( PHALF = 1.0D0/2.0DO0 )
PARAMETER ( PONE = 1.0D0 )
PARAMETER ( PTWO = 2.0D0 )
PARAMETER ( PTHREE = 3.0D0 )

C

CCCCCCCCcCcceeeeeecececececececeeeeecececeeceeeecececececceceecececcececcecccececcceccccccececcceccce
C

IF (MARK_ON.EQ.(0.OR.MARK_STREN.NE. 3) THEN

CALL FATERR (" MOON_INIT',’Marker_and_MPM_,only model’)

ENDIF
€
YLDVM (IMAT) = PONE
€
RNUSET (IMAT) = .TRUE.
C
MARKMAT (IMAT) $MARK_FINT=1
C
C Get initial density and bulk sound speed values from 1 data
C to define an effective Poisson’s_,ratio_for ,timestep
CLoouocontrol  (see_coding _,and_comments_in FBCHK):
C

IF (NEQ (IMAT, 1) .EQ.2) THEN
ILOCATE=LCFW (IMAT, 1)

[ T T

[ T I [ |
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RHO=UIEQ (3, IMAT, 1)

,CSB=DCEQ (ILOCATE +3)

ELSEIF (NEQ (IMAT,1).EQ.1) THEN

RHO=MAX (UIEQ (1, IMAT,1),UIEQ (15, IMAT,1))

L CSB=UIEQ (3, IMAT, 1)

s ELSE

CLLLUWRITE (KPT6, 4330)

4330, , ,FORMAT (’ INVALID EOS SELECTION FOR MOONR MODEL’)
CALL_FATERR (' MOONR_INIT’,’ INVALID EOS SELECTION FOR MOONR MODEL')

[ T T Y I T |

[T TR TR T |

[T T Y T |

[ T T T

win e g BNEELE

C

C........ RSHEAR=PTWO* (UI (1)+UI (2))
C RBULK=RHO*CSB**PTWO

[ T TR TR Y|

C_VVN_-_NEO-HOOKEAN_MODEL_AS_GIVEN_IN,_PAPER
C_VVN_UI(1l)_=_lambda, UI(2)_=_mu_(lambda_,and_mu
C_VVN _are  lame ,parameters)

RSHEAR_=_UI (2)

RBULK_=_UI (1) -+ (PTWO/PTHREE) *UI (2)

C_VVN
C
s RNUZRO (IMAT) = (PTHREE *RBULK -PTWO *RSHEAR) /

AR o (PTWO* (PTHREE *RBULK+RSHEAR) )

IF (RNUZRO (IMAT) .GT.PHALF.OR.RNUZRO (IMAT) .LT.-PONE) THEN
CALL_FATERR (' MOONR_INIT’,

(I TR TRTHNT]

[T T TR YR T |

[ T T [

s & GGG T EOS & Strength parameters incompatible’)
U ELSE

s, IF (LPARNT)  WRITE (KPT6,4321) ,IMAT, RNUZRO (IMAT)
4321, FORMAT ("Poissons Ratio for MOONR Mat’,I2,

s e, 1S T, EL3.6)

LU ENDIF

VI (1)=RNUZRO (IMAT)

C

LU RETURN

CoLLLGEND

¢

L SUBROUTINE, MOONR_MAIN (MSF, NGS, MAT, UI, ICYCLE, DT,
L * MGSMAP, DAM, ,SENRG, _SCR)

C

LR b b b S S I b b S S b b b b S 4 MOONEY RIVLIN MAT PACKAGE Ak Xk k kKA KA kkkkkkkk kK
C
C This _,program ,determines_the_new_stress  for material_  (modlep=31)

[T T i)

C

IR AR A R b S S S b b A S A S b b b S S 4 SCS 08/06 LI AR b b b S SR I b b b b S S A b 2 b b S A R b b b b S S b 4
— — —
C

[ T T

C

use_marker
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#include_,"impdoubl.h"

C

C_***** parameter arrays_ ****x*

€

o, DIMENSION UI (*)

. DIMENSION,_DAM (MSF)

oL, DIMENSION  SENRG (MSF)

.. DIMENSION,SCR (MSF,9)

o, DIMENSION MGSMAP (MSF)

C

L, DIMENSION, F (3, 3)

L, DIMENSION FT (3, 3)

oo, DIMENSION, FB (3, 3)
LuLDIMENSION, FBT (3, 3)

L DIMENSION, B (3, 3)

b DIMENSION_BB (3, 3)

C

s, CHARACTER *10_,IAM

s CHARACTER ,STRN*80

&

Coadefine parameters

s PARAMETER_ (_PZERO_ =_.0.0D0___)
G PARAMETER | (_PHALF_ =..,0.5D0__..)
s PARAMETER_, (_PONE__ =_.,1.0D0__.)
CLLLGLLPARAMETER,, (L PTWO_, . ,=..2.0D0__.,)
i PARAMETER  (_PFOUR_, =.,.,4.0D0__.))
LU PARAMETER | (L, PSIXHH“ LL6.0D0_. )
e PARAMETER | (_PTHREE_=_,.,3.0D0__..)
oL PARAMETER | (_PFIFTY = uuS0.0DO)
L PARAMETER, , (,BOLTZ =_,1.602180E-12)
oo PARAMETER, (L AVAG,, =.,6.0221367D23)
o PARAMETER  (,TOU_, , = ul 0D-13_))
L PARAMETER_ (_POFE_ . ..=.1.58D+0__)
oL PARAMETER | (,LIMIT_=_50.0D+0)
oo PARAMETER, (DFAIL_ =_,0.9999D0)

G

s DATA TIAM/’MOONR_MAIN'/

C

CECCELecereceerecececerececereccereereceeaeceececeeceecegerecececeece
€

e OVRFLWFLAG=PZERO

C

DO_IGS=1, NGS

M=MGSMAP (IGS)

[ I T YR |

[ T T |

F(1,1)=MARKMAT (MAT)S%F (M, 1,1)
F(1,2)=MARKMAT (MAT)$%
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o (1, 3) =MARKMAT (MAT) $F (M, 1, 3)

e (2,1)=MARKMAT (MAT)%F (M, 2,1)

o (2, 2) =MARKMAT (MAT) $F (M, 2, 2)

o E (2, 3) =MARKMAT (MAT) %F (M, 2, 3)

e (3, 1) =MARKMAT (MAT) %F (M, 3,1)

o F (3, 2)=MARKMAT (MAT) 5F (M, 3, 2)

oo E (3, 3)=MARKMAT (MAT) %F (M, 3, 3)

ConDet (F)=g

oW RI=E (1, 1) *F (2,2)*F (3, 3) +

& e F (L, 2)*F (2,3)*F (3, 1) +

s & e F (L, 3)FF(2,1)*F (3, 2) -

& e F (L, 1) *F(2,3)*F (3, 2) -

& Ll F (L, 2)*F(2,1)*F (3, 3) -

s e F (L, 3)*F(2,2) *F (3, 1)

C

ool FT (1, 1)=F (1,1)

o EFT (1, 2)=F (2,1)

oo EFT (1, 3)=F(3,1)

o EFT (2, 1)=F (1, 2)

o FT(2,2)=F (2,2)

o FT (2,3)=F (3, 2)

o FT(3,1)=F (1, 3)

oo FT (3,2)=F (2, 3)

o FT (3,3)=F (3, 3)

C

e B(L,1)=F (1,1)*FT(1,1)+F(1,2)*FT(2,1)+F (1,3)*FT(3,1)
e B (L, 2)=F (1,1)*FT (1, F(1,2)*FT(2,2)+F(1,3)*FT (3,2)
B (1, 3)=F(1,1)*FT(1,3)+F (1,2)*FT(2,3)+F (1,3)*FT (3, 3)
LB (2,1)=B (1, 2)

wes iseas® b2 2§ =F (2, 1) *FT(1l,2) (2,2)*FT (2,2)+F (2,3)*FT (3,2)
B (2,3)=F (2,1)*FT (1,3 2,2)*FT(2,3)+F(2,3)*FT (3,3)
ooeLuB (3,1)=B(1,3)

B (3,2)=B (2, 3)

o B 43, 3)¥=F (3, 1)*FT(1,3)+E(3,2)*ET (2,3})+F(3,8)*FT (3, 3)
c

C_Overwrite_old_RBULK

€ RBULK=MARKMAT (MAT) $DENS (M) * MARKMAT (MAT) %$CS (M) **PTWO

oGGURSHEAR = _UI (2)
RBULK_=_UI (1) _+_(PTWO/PTHREE) *UI (2)

LU RP=RBULK *LOG (RJ)

C_VVN_-_ADDED_VARIABLE_RLOGJ

RLOGJ_=_L0G (RJ)

[T T Y [ |

[ T Y T T

. RC1=UI(1)
L RC2=UI(2)

¢

cainana,BB (1, 1)=B(1,1)*B(1,1) (1,2)*B(2,1) (1,3)*B(3,1)
esnana,BB(1,2)=B(1,1)*B(1,2) (1,2)*B(2,2) ,3)*B (3,

45



BB (1,3)=B(1,1)*B(1,3)+B(1,2)*B(2,3)+B(1,3)*B(3,3)
s BB (2,1)=BB (1,2)

BB (2,2)=B(2,1)*B(1,2)+B(2,2)*B(2,2) (2,3)*B (372)
e BB (2,3)=B(2,1)*B(1,3)+B(2,2)*B (2, (2,3)*B(3,3)
L BB (3,1)=BB (1, 3)

e BB (3,2)=BB (2, 3)

BB (3,3)=B(3,1)*B(1,3)+B(3,2)*B(2,3)+B(3,3)*B(3,3)

C

C--->Nearly,_incompressible ,invariants

L RIT=(PONE/ (RJ** (PTWO/PTHREE) ) ) *(B(1,1)+B(2,2)+B(3,3))
CobLLLLRI2=(PONE/ (RJ** (PFOUR/PTHREE) ) ) *

i T sesuisou o (L, L) *B {2, 2) +B (2,2) *B (3, 3)+B(3,3) *B(1, 1)
o ® oL —B (1, 2)*B(2,1)-B(2,3)*B(3,2)-B(1,3)*B(3,1))
C_VVN

Coliiis  MARKMAT (MAT)%STRESS (M, 1) =PONE/RJ* (

Clinsd . RP+PTWO/ (RJ** (PTWO/PTHREE) ) * (RC1+RI1*RC2)*B(1,1) -
Coliisss& ., ,PTWO/(RJ** (PFOUR/PTHREE) ) *RC2*BB (1,1) -PTWO/PTHREE *
Cins& W, (RC1*RI1T+PTWO*RC2*RI2))

Coiiis s MARKMAT (MAT)%$STRESS (M, 2) =PONE /RJ * (

Clnsd . RP+PTWO/ (RJ** (PTWO/PTHREE) ) * (RC1+RI1*RC2)*B(2,2) -
Clnsd ., PTWO/ (RJ** (PFOUR/PTHREE) ) *RC2*BB (2,2) —-PTWO/PTHREE *
Clisss W, ,(RCI*RI1+PTWO*RC2*RI2))
CluMARKMAT (MAT) $STRESS (M, 3) =PONE /RJ* (

Conuuut uuuRP+PTWO/(RJ**(PTWO/PTHREE))*(RC1+R11*RC2)*B(3,3)—
Clinsd . PTWO/ (RJ** (PFOUR/PTHREE) ) *RC2*BB (3,3) ~PTWO/PTHREE *
Clinnsd  ,(RC1*RI1+PTWO*RC2*RI2))

Coliiis s, MARKMAT (MAT)%STRESS (M, 4) =PONE/RJ* (

Coliisss& . ,PTWO/ (RJ** (PTWO/PTHREE) ) * (RC1+RI1*RC2)*B(1,2) -
Clnsd \ PTWO/ (RJ** (PFOUR/PTHREE) ) *RC2*BB (1,2))

Coiiiis s, MARKMAT (MAT)%$STRESS (M, 5) =PONE /RJ * (

Clins& L, PTWO/ (RJ** (PTWO/PTHREE) ) * (RC1+RI1*RC2)*B(1,3) -
Coliisss& . ,PTWO/ (RJ** (PFOUR/PTHREE) ) *RC2*BB (1, 3))
CuuuuuuuMARKMAT(MAT)/STRESS(M,6)=PONE/RJ*(

Clins& . PTWO/ (RJ** (PTWO/PTHREE) ) * (RC1+RI1*RC2)*B (2, 3) -
Connult uuuPTWO/(RJ**(PFOUR/PTHREE))*RCZ*BB(2,3))

C_VVN_-_NEO-HOOKEAN_MODEL_AS _GIVEN_IN_PAPER
C_VVN_UI(1l)_=_lambda,_UI(2)_=_mu,(lambda and_mu
C_VVN_,are ,lame parameters)

XLAMBDA _=_UI (1)

Y T T [ A | T

e XMU_=_UI (2)

GG UMARKMAT (MAT) $STRESS (M, 1) =, (XLAMBDA_*_RLOGJ/RJ)
e L G GGG T L (XMU /RT) * (B (1, 1) -PONE)
GG MARKMAT (MAT) $STRESS (M, 2) =, (XLAMBDA_*_RLOGJ/RJ)
e L GGG T L (XMU /RT) * (B (2, 2) -PONE)

MARKMAT (MAT)%$STRESS (M, 3) =, (XLAMBDA * ,RLOGJ/RJ)
(XMU/RJ) * (B (3,3) -PONE)

[ Y [

[T TR Y |_u_u_||_n_u_n_||_n_u_u_u_u_||_u_n_u_n_u_u_u_u_n_u_u_u_n_u_| —
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G UMARKMAT (MAT ) $STRESS (M, 4) =, (XMU/RJ) * (B (1,2))
GG MARKMAT (MAT) $STRESS (M, 5) =, (XMU/RJ) * (B(1,3))
GO MARKMAT (MAT ) $STRESS (M, 6) =, (XMU/RJ) * (B (2,3))
C_VVN_- END, NEO-HOOKEAN, MODEL
C
s SENRG (IGS)=RC1* (RI1-PTHREE)+RC2* (RI2-PTHREE)
o
L ENDDO
o
swuIF (INT (UI (6)) .EQ.1) THEN
s CALL KINETIC_FRACTURE_ISO_MAIN (MSF,NGS,MAT,UI,6,2,DT, MGSMAP , DAM)
s ELSEIF (INT (UI(6)) .EQ.2) THEN
i, D0 ,IGS=1, NGS
L M=MGSMAP (IGS)
i RMAG=SQRT (MARKMAT (MAT)%STRAIN (M, 1) **2+
& MARKMAT (MAT)%STRAIN (M, 2) **2+MARKMAT (MAT) $STRAIN (M, 3) **2+
& PTWO* (MARKMAT (MAT)$STRAIN (M, 4) *x*2+
& MARKMAT (MAT)$STRAIN (M, 5) **2+
& MARKMAT (MAT)$STRAIN (M, 6)**2))
s DAM (IGS ) =MIN (RMAG/UI (3), PONE)
L ENDDO
L ENDIF
¢
LU RETURN

END

[ T T YR T |
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