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ABSTRACT CCS CONCEPTS

Developing a file system is a challenging task, especially a kernel-
level file system. User-level file systems alleviate the burden and
development complexity associated with kernel-level implemen-
tations. The Filesystem in Userspace (FUSE) is a widely used tool
that allows non-privileged users to develop file systems in user
space. When a FUSE file system is mounted, it runs as a user-level
process. Application programs and FUSE file system processes are
bridged through FUSE kernel module. However, as the FUSE kernel
module transfers requests between an application program and a
file system process, the overheads in a FUSE file system call from
crossing the user-kernel boundary is non-trivial. The overheads
contain user-kernel mode switches, context switches, and addi-
tional memory copies. In this paper, we describe our Direct-FUSE
framework that supports multiple FUSE file systems as well as
other, custom user-level file systems in user space without the need
to cross the user/kernel boundary into the FUSE kernel module.
All layers of Direct-FUSE are in user space, and applications can
directly use pre-defined unified file system calls to interact with
different user-defined file systems. Our performance results show
that Direct-FUSE can outperform some native FUSE file systems
by 11.9% on average and does not add significant overhead over
backend file systems.
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1 INTRODUCTION

An efficient file system is important for high-performance comput-
ing (HPC) systems ([1, 3, 4, 7]) in supporting large-scale scientific
applications. In general, kernel-level file systems are generalized
for addressing the broader Linux market, while user-level file sys-
tems are designed with special-purpose features for particular I/O
workloads. The lack of specialization in kernel-level file systems is
due to the complexities of development at the kernel level and the
risk of interacting with the kernel including kernel code security,
maintainability (people change), and coding style.

The Filesystem in Userspace (FUSE) [25] is a software framework
for Unix-like file systems, which allows non-privileged users to
create their file systems without kernel-based file system imple-
mentations. A FUSE file system is usually achieved as a standalone
application linked with the libfuse library. The libfuse library pro-
vides a reference implementation for communicating with the FUSE
kernel module and mounting/unmounting file systems [25]. The
file system functions are implemented in the libfuse library as call-
backs. A FUSE file system runs as a user process, and its file system
calls to the mount point are forwarded to the process via the FUSE
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kernel module. SSHFS [24], GmailFS [12], FusionFS [32], and clients
of GlusterFS [9] are well-known FUSE file systems. There are also
other user-level file systems that do not use the FUSE framework,
such as CRUISE [18], BurstFS [29], and DeltaFS [33]. They intercept
the application I/O via a set of wrapper functions around the POSIX
I/O calls or by defining their own file system APL

Most user-level file systems are designed to support particular
I/0 workloads. When needed, multiple different file systems can be
used for different kinds of data in a single job. For example, there
could be an in-memory file system for checkpoints (e.g. CRUISE),
a file system for efficiently managing metadata (e.g. TableFS [21],
MetaKV [30]), and a file system for shared files across burst buffers
(e.g. BurstFS). However, interacting with multiple user-level file
systems is a challenging task. Since FUSE file systems run as pro-
cesses in user space, the communication round trip between an
application program and file system processes could raise non-
trivial overheads affecting application performance. To mitigate the
overheads, some FUSE file systems circumvent the involvement
of the FUSE kernel [9, 14, 21, 27, 32]. However, not all FUSE file
systems enable the FUSE kernel circumvention, and it is arduous
for users to bypass the FUSE kernel for the file systems and also
collaborate with others. In addition, root permission is required to
mount FUSE file systems, or system administrators have to give
non-privileged users the ability to mount FUSE file systems. On
HPC systems, users do not typically have superuser privileges and
cannot easily mount the desired FUSE file systems without the help
from system administrators.

In this paper, we describe Direct-FUSE, a framework to support
user-level file systems without crossing the kernel boundary. Direct-
FUSE is built on top of libsysio [5], which is developed by Sandia
Scalable I/O team and provides a POSIX-like interface which redi-
rects I/O function calls to targeted remote file systems. Direct-FUSE
is designed to support various user-level file systems in one job
with a unified POSIX-like interface, numerous backends, and fewer
overheads. In this work, we make the following contributions:

(1) We evaluate the overheads introduced by the round trips in
FUSE file system calls and give a detailed cost breakdown
analysis.

(2) We describe the design of Direct-FUSE, which facilitates
the capability of using multiple user-level file systems as
backends for different I/O workloads.

(3) We evaluate Direct-FUSE performance with other FUSE local
or distributed file systems. We also carry out a cost analysis
for Direct-FUSE and compare it with native file systems and
FUSE file systems.

The paper is organized as follows. In Section 2, we present an
overview of FUSE file systems and libsysio, conduct a cost analysis
for FUSE file systems, and introduce current methods for reducing
FUSE overheads. In Section 3, we describe the design of Direct-FUSE
and the implementation details in incorporating a new user-level
file system. After presenting our experimental results and cost
analysis in Section 4, we summarize related work in Section 5. We
end the paper by drawing our conclusion in Section 6.
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Figure 1: Path of a FUSE file system call.

2 BACKGROUND & MOTIVATIONS

In this section, we present the background of FUSE in Section 2.1.1,
the introduction of libsysio [5] in Section 2.1.2, two FUSE overhead
analyses in Section 2.2 and Section 2.3, and some current methods
of reducing the overheads in Section 2.4.

2.1 Background

2.1.1 FUSE - Filesystem in Userspace. Normally, a FUSE file
system run as a user-level process referred to as userfs for con-
venience. userfs communicates with application program through
FUSE kernel module which is located in the kernel space. Once
a userfs is mounted by users, the FUSE kernel module registers
the file system with the Virtual File System (VFS) and also a block
device named /dev/fuse. Any file system calls issued to the mount
point are forwarded to the userfs through VFS, FUSE module, and
/dev/fuse.

Fig. 1 shows the data flow of a file system call in FUSE. We use
read() as an example for illustration. After a read call is issued to
the mount point from an application program, it is passed to the
FUSE kernel module via VFS. If the requested data is in the page
cache, the data will be returned immediately. If not, the read call
will be forwarded to userfs through /dev/fuse, then a user-defined
read function will be invoked. Moreover, if the user-defined file
system overlays any native file systems, such as Ext4, the read call
is continually forwarded to the native file system from userfs. The
native file system will read data from the storage device and send
them to userfs. The userfs then sends requests to the application
program via /dev/fuse block device, FUSE kernel, and VES [28].

2.1.2  libsysio. Our Direct-FUSE is designed to provide multi-
ple backend services for one application without crossing kernel
boundary. We build our work on top of libsysio.

The critical metadata structures in libsysio are mount, pnode,
pnode_base, and inode. mount contains information for the mount
point, including the pnode of the mount point. pnode is an entry
in a directory, which has the pointer to pnode_base, the pointer to
the parent, the pointer to the mount information, etc. pnode_base
contains the name for the entry in the directory, the inode pointer,
etc. An inode record is maintained for each file object in the system,
which has the pointer to file system operations. Thus, pnode, pn-
ode_base, and inode are chained together; mount is chained with



Direct-FUSE: Removing the Middleman for High-Performance FUSE File System Support

Table 1: FUSE-tmpfs vs. tmpfs

# Context Switches | Write Bandwidth

Block Size FUSE-tmpfs | tmpfs
(KB) FUSE-tmpfs | tmpfs (MB /s)p ( Glg/s)
4 1012 7 163 1.3
16 1012 7 372 1.6
64 1012 7 519 1.7
128 1012 7 549 2.0
256 2012 7 469 2.4

pnode if the pnode is referred to the pnode of mount point. There-
fore, libsysio can walk an absolute path, look up each component
related to the path and return the pnode information.

2.2 The Overheads of FUSE File Systems

Although FUSE can alleviate the headache of developing a kernel-
based file system, it introduces a lot of overheads for any type of
file system calls [19] because of the additional round trips between
application programs and userfs.

To gain more understanding about the overheads, we carry out
a cost analysis for FUSE file system calls. These costs include user-
kernel mode switches, context switches, and memory copies. For a
typical native file system, such as Ext4, there are only 2 user-kernel
mode switches (to and from the kernel), no context switch, and 1
memory copy (kernel page cache < application). However, a file
system call in FUSE involves 4 user-kernel mode switches (appli-
cation < FUSE kernel, FUSE kernel < userfs), 2 context switches
(scheduler switching between two processes), and possibly more
than 2 memory copies (application — page cache — userfs, and
userfs — underlying file system if the FUSE file system is built on
top of others). These overheads are the cause of the performance
difference between FUSE file systems and native file systems. Espe-
cially, the two unavoidable context switches can significantly affect
the performance of FUSE file systems. Because when switching
between an application process and userfs, the OS kernel scheduler
is needed, and processor registers, TLB, and cache have to be saved
and restored [13].

Table 1 shows an example comparison on both the write perfor-
mance and the number of context switches of a FUSE file system
(FUSE-tmpfs) and a native file system (tmpfs [22]). FUSE-tmpfs is
a FUSE file system overlying tmpfs, which is a file system storing
data on volatile memory. We use dd micro-benchmark and perf [8]
system performance profiling tool for these tests. In specific, we
use dd to write 1000 data segments to the file system and vary the
transfer sizes from 4 KB to 1 MB, respectively. We use perf to trace
the context switches events happening on the test program side.
In addition, because the default data size of FUSE request is 4 KB,
when the data size to write exceeds 4 KB, additional FUSE requests
have to be sent to userfs. To give a better performance of FUSE-
tmpfs, we enable max_write with 128 KB write size per request to
reduce the number of FUSE requests exchanged between the test
process and userfs. As max_write sets the maximum write size of
one FUSE request to 128 KB, for the size of FUSE write requests
lower than 128 KB, these write requests are sent independently; for
the write requests’ size greater than 128 KB, they have to be split to
multiple data chunks. This operation leads to better performance
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Figure 2: Time expense in metadata operations.
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Figure 3: Time expense in data operations (write).

due to less number of mode switches and context switches for large
writes. As we only profile the number of context switches on the
test program side, other context switches on the FUSE file system
process side are not reflected in Table 1.

Therefore, as shown in Table 1, when the transfer size is less than
128 KB, there are 1012 context switches in FUSE-tmpfs, including
1000 context switches for 1000 writes, 5 context switches for 5 file
system calls (i.e. open(), close(), release() and two flush()), and 7
context switches for kernel scheduling for writing to tmpfs. When
the transfer size is greater than 128 KB, additional context switches
are added, which is shown on the last row of Table 1. Since a
tmpfs file system call does not involve any round trips, there are no
additional context switches besides the 7 constant context switches
for kernel scheduling. As the result shows, the write bandwidth
of FUSE-tmpfs is greatly lower than that of tmpfs, caused by the
additional context switches and memory copies during the write
calls.

2.3 Dissection of FUSE File System Calls

Furthermore, we also investigate a breakdown of time in FUSE
metadata and data operations such as create(), close(), and write().
Similarly, we measure the time spent on user-defined operations and
file system calls on FUSE-tmpfs, and compare the results with file
system calls on tmpfs. The Data Movement and the Overhead in Fig. 2
and Fig. 3 indicate the time spent on user-defined operations and
the time besides user-defined operations, respectively. As shown
in these two figures, the time spent on user-defined operations
counts for only a small portion of the total time for a file system
call of FUSE-tmpfs. For example, in Fig. 2, the time of user-defined
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Figure 4: Direct-FUSE file system architecture.

create is only 11.18% of a complete FUSE-tmpfs create(), and the
user-defined close time only takes 2.17% of the total time for FUSE-
tmpfs close(). In Fig. 3, we can see that for any transfer sizes, the
time of user-defined write() is a small portion of the total execution
time. Moreover, when the transfer size is greater than 128 KB, as
more FUSE requests are sent through /dev/fuse, the actual write
time (Data Movement) of FUSE-tmpfs is higher than the write time
of tmpfs.

2.4 Reduce The Overhead from FUSE Kernel

To avoid the overheads from crossing FUSE kernel boundary, some
FUSE file systems are allowed to be leveraged as independent user-
level libraries, such as TableFS [21] and FusionFS [32]. They have
to expose file system operations defined in fuse_operations struc-
ture of FUSE project to a user-level library, referred to as FUSE
user-level library. The fuse_operations structure is exposed to de-
velopers to customize file system operations for FUSE high-level
APIL The difference between the FUSE high-level and low-level API
is discussed in Section 3.3. However, as different FUSE file systems
may be needed to handle different tasks (e.g., checkpoint, metadata
management) in a single job, this approach may not directly support
using multiple FUSE user-level libraries in a single job, since there is
no distinct boundary to differentiate files for specific libraries while
using. More specifically, since multiple FUSE user-level libraries
are integrated individually for different purposes, two different
FUSE libraries may return same file descriptors for two unique file
paths. In this way, users have to pay special attention to handle the
potential conflict from incorporating multiple libraries in a job.

In order to bypass the FUSE overheads and ease the development
complexity, Direct-FUSE is designed to provide multiple backend
services for one application without crossing kernel boundary. It is
built on top of libsysio, which is discussed in Section 2.1.2.

3 DESIGN AND IMPLEMENTATION

Our Direct-FUSE offers a unified API and is designed to provide
multiple backend services for a single job while bypassing the FUSE
kernel.

Y. Zhu et al.

3.1 The Software Architecture of Direct-FUSE

Direct-FUSE mainly consists of three layers, i.e., adapted-libsysio,
lightweight-libfuse, and backend services, shown in Fig. 4.

The adapted-libsysio is adapted from the original libsysio to
support multiple distinct FUSE file system operations. We enable a
differentiation method in adapted-libsysio to identify various back-
end services for applications and intercept its inode operations to
underlay lightweight-libfuse. To better improve the performance,
we allow a new I/O routine for data related operations. The original
libsysio maintains complicated procedures for data operations. If
the input parameters are not related to iovec structures, it first con-
structs an I/O context by the input parameters, then reads or writes
data by the newly created I/O vectors. However, as most of FUSE file
systems are built on top of FUSE high-level API, whose input param-
eters are similar to the general read() and write() of POSIX library,
constructing I/O vectors and reversing them back to the original
input parameters can largely degrade the I/O performance. Thus,
we bypass the redundant steps in the original libsysio to further
enhance the performance. But we still keep the permission check-
ing in I/O path, which determines if a file is readable or writable in
Direct-FUSE. For other operations maintained in Direct-FUSE, like
metadata operations, they still go through the original libsysio code
path with only a few modifications for backends differentiation.

Unlike the original libfuse that has both file system and block
devices registrations, our lightweight-libfuse exposes unified file
system call interfaces to distinguish underlying backend services.
To support FUSE high-level API and work with adapted-libsysio,
our lightweight-libfuse manipulates the inode_op from the orig-
inal libsysio. Inode_op is similar to the fuse_operations of FUSE
implementation, which contains a few file system and inode related
operations. We re-define these operations to better fit our purpose
and offer an abstract interface to file system operations.

The backend services are operations of multiple user-level file
systems, serving different kinds of data. For example, we can enable
both direct access to remote volumes through SSHFS and the direct
communication from application to GlusterFS daemons. All backend
services are built with customized file system operations defined
with FUSE high-level APIL The customized operations (file system
operations defined via FUSE high-level API) in fuse_operations of
each backend service are indicated during the backend initialization.

Different from the original FUSE file system shown in Fig. 1, all
three layers are kept in user space, which helps Direct-FUSE to
avoid the inter-process communication of the original FUSE file
system resulted from the use of FUSE kernel module.

3.2 Differentiation of Multiple Backend
Services

As mentioned, to avoid the kernel overheads of FUSE, some FUSE
file systems provide libraries to allow the operations of user-defined
file systems to be directly accessed by applications. Because differ-
ent kinds of data are handled by different file systems, users have
to manage multiple file paths and file descriptors of various file
systems with special cares. To mitigate the difficulty and amount
of work when accessing various backend file systems in one job, a
differentiation method is needed. Direct-FUSE handles the file path
and file descriptor operations differently.
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3.2.1 File Path Operations. For file path operations, Direct-FUSE
appends the file path after the desired file system prefix and passes
them as a single parameter. When Direct-FUSE intercepts any file
path operations, it checks the existence of the prefix and the path
in mount list, which records information of mounted backends. If
both the path and the prefix are found, Direct-FUSE returns the
mount point information including a pointer to the underlying
backend service’s operations via lightweight-libfuse. The reason
for incorporating both file path and file system prefix is that the
same file system may be mounted on two different mount points.
Simply applying file path may not be sufficient when this problem
occurs.

We take open() as an example. When an open() is issued from a
program, Direct-FUSE first verifies the indicated path and prefix,
then dispatches a request to the corresponding backend. During the
path and the prefix verification, Direct-FUSE compares the input
argument with mounted backends’ paths and prefixes. Once the
matched path and prefix are found, a pnode that contains a chain of
pointers to that backend is retrieved or created based on need. After
that, the open() is directed to the user-defined open operation by
chained pointers of pnode which goes through adapted-libsysio and
lightweight-libfuse to reach backend services. Once the operation
is completed, an open file record is created or initialized, and a free
file descriptor is also assigned to the file record and returned back
to the application program.

3.2.2  File Descriptor Operations. When managing file descrip-
tors, we don’t simply apply ranges to file descriptors of different
backends (i.e., file descriptors from different incorporated backends
are assigned to different ranges). When a file is opened, a record
has to be carried through to trace the status of the file. However, if
the range policy is applied, an additional mapping is also needed
to map file descriptors to opened file records.

Direct-FUSE returns the index of file records in open file table
as the file descriptor. File records not only trace file status, such
as current stream position of a file, but also coordinate open files
with corresponding backends by storing pnode inside records. Once
a file record is retrieved through its file descriptor, any backend
services can be easily reached to invoke any related file system
calls.

We also use an example here, i.e. write(), for illustration. A file
descriptor is associated with an open file record. Similar to the
open(), once a file record is retrieved from a given file descriptor,
the corresponding backend services are found through the pnode
in file record, and the correct write() function can be issued by the
indicated backend service. When the write() function is completed,
we update the file size and current stream position in the file record
accordingly.

3.3 Implementation Issues

Although adding more backends to Direct-FUSE can further im-
prove the flexibility for users to handle data, there are several re-
quirements in achieving so: 1) the user-defined file system calls are
implemented with FUSE high-level APIs, 2) we need an independent
file system library, and 3) the backend is implemented in C/C++ or
has to be binary compatible with C/C++. We will elaborate on each
requirement next.
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Firstly, similar to Direct-FUSE which interacts with backend ser-
vices through FUSE high-level API, a new backend needs to do the
same. FUSE file systems leverage either low-level (e.g. MooseFS)
or high-level (e.g. SSHFS) FUSE API to complete user-defined file
system calls. Both low-level and high-level API transfer incoming
requests from the kernel to the main program through callbacks.
When using low-level AP, callbacks work with inodes. Thus, de-
velopers have to take care of path-to-inode mapping and also any
associated cache for translation. In addition, several inode related
operations (e.g., forget an inode, file lookup) also have to be spec-
ified by developers. However, these inode related operations will
incur more user-kernel switches on metadata operations, leading
to more performance lose. For example, when an open() is called in
an application for an existing file, besides open(), a developer imple-
mented lookup() is also triggered in FUSE file system process which
requires crossing the kernel boundary. As mentioned in Section 2.3,
often crossing the kernel boundary results in performance loss.
Unlike the low-level API, callbacks in the high-level API directly
interact with file names and paths instead of inodes. There is no
additional development need on path-to-inode mapping, and no
extra kernel boundary crossing in file system calls. Therefore, we
choose to leverage FUSE high-level API in our Direct-FUSE.

Secondly, because all backend services are used as user-level
libraries, for the FUSE file systems without independent libraries
to bypass the FUSE kernel, users have to isolate the libraries by
themselves. Such isolation involves modifying the original initial-
ization function of FUSE file system clients, and defining globalized
FUSE operations and unmount function. In detail, users have to
modify the initialization function (main() of FUSE file system client)
to preclude the fuse_mount() function as the fuse_mount() builds
the communication channel between user-level processes and the
FUSE kernel module, which is avoided in Direct-FUSE. However,
since fuse_mount() is omitted in the new initialization function,
it eliminates the ability to pass the special purpose data to FUSE
backends. Although not every FUSE backend needs the transited
data, if passing data is inevitable, the data has to be globalized in
Direct-FUSE when creating the library.

Finally, because Direct-FUSE is utilized as a user-level library,
backend file systems have to be implemented in the same language
with Direct-FUSE or be binary compatible with the implementation
language (C/C++ in our case). For instance, with Rust’s Foreign
Function Interface [2], using the mixture of C/C++ with Rust is not
a problem.

4 EXPERIMENTAL EVALUATION

In this section, we present I/O bandwidth of Direct-FUSE for local
and distributed file systems, and also an overhead analysis for
Direct-FUSE.

4.1 Experimentation Environment

Our experiments are conducted on an in-house cluster, called In-
novation. Each machine is equipped with 10 dual-socket Intel
Xeon(R) CPU E5-2650 cores, 64 GB memory, and a 1 TB Seagate
ST91000640NS SATA disk.
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Figure 6: Sequential read bandwidth measured via Iozone.

4.2 The I/0 Bandwidth of Direct-FUSE on Local
File System

In this section, we compare the I/O performance of a FUSE file sys-
tem, our Direct-FUSE, and a native file system on different storage
media. Ext4 and tmpfs are used as the underlying file system on
disk and memory, correspondingly. As shown in Fig. 5, Ext4-fuse is
a FUSE file system on top of the native Ext4 file system. Ext4-direct
is our Direct-FUSE on top of Ext4. Ext4-native is the original Ext4.
Similarly, tmpfs-fuse, tmpfs-direct, and tmpfs-native denote a FUSE
file system on tmpfs, Direct-FUSE on tmpfs and the original tmpfs,
respectively.

The sequential read/write bandwidth in this section is measured
by Iozone benchmark [17]. In all tests, the size of the read/write
file is 1 GB, and the transfer sizes range from 4 KB to 1 MB. All
experiments were repeated at least five times until results became
stable. The reported numbers are the average of all runs. To get
better performance from the FUSE file system, we enable big_write,
max_read, direct_io, and max_readahead to reduce the number of
exchanged FUSE requests between the test process and the file
system process.

4.2.1 Sequential Read & Write. Fig. 5 shows that, when the
transfer size is small, the bandwidth of Ext4-fuse is lower than the
Ext4-direct, e.g. 35.6% for 4 KB. Although we enable max_write
to shrink I/O requests between the FUSE kernel module and the
process, incoming 4 KB data segments do not benefit from larger
data chunk size, since every issued write only sends 4 KB data. On
average, Ext4-direct outperforms Ext4-fuse by 11.9%. In addition, our
design only loses at most 2.5% of I/O bandwidth when compared
with Ext4-native. We also see a similar trend of write bandwidth on
tmpfs tests, but with a more obvious performance enhancement.
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Figure 8: Random read bandwidth measured via Iozone.

Because tmpfs utilizes a portion of the memory as storage media
which has lower latency, it is more sensitive to the FUSE overhead.
As a result, the overhead (at most 5.7%) of Direct-FUSE on memory
is slightly higher than the overhead on disk. The detailed overhead
analysis of Direct-FUSE will be discussed in Section 4.4.

In addition, Fig. 6 shows the read performance. We can see
that the sequential read bandwidth of Ext4-fuse, Ext4-direct, and
Ext4-native are very close. This is mainly due to the read related
mount options as mentioned earlier, which enables the prefetching
(max_readahead), fewer FUSE requests (max_read), and direct data
transfer (direct_io) between the test process and the file system pro-
cess in reading. Similar to the write performance shown in Fig. 5,
the read performance of tmpfs-fuse is lower than tmpfs-direct and
tmpfs-native by at least 226% and 243%, and up to 334% and 355%,
respectively.

Overall, our Direct-FUSE delivers higher I/O bandwidth com-
pared to the FUSE-native file systems on both disk and memory.
It also demonstrates that our Direct-FUSE only introduce trivial
overheads.

4.2.2 Random Read & Write. The bandwidths of random write,
shown in Fig. 7, of the native file system, FUSE file system, and
Direct-FUSE on disk and memory have a similar trend shown in
Fig. 5. Ext4-direct exceeds Ext4-fuse by at least 16.73% when the
transfer size equals to 4 MB, and up to 3.04x when transfer size is 4
KB. The bandwidth of tmpfs-direct outperforms tmpfs-fuse at least
5.7x and upto 25.2x. Ext4-direct and tmpfs-direct import less than 2%
of additional overhead compared with Ext4-native and tmpfs-native.

In Fig, 8, the random read bandwidths of all tests are similar
to Fig. 6. The overall trend of the read bandwidth of different file
systems on the two storage media is also similar to Fig. 6. Ext4-fuse
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Figure 9: I/0 bandwidth of FusionFS and Direct-FUSE.

and Ext4-direct have almost the same bandwidth, and tmpfs-direct
delivers at least 68.95% higher performance than tmpfs-fuse. And
the additional overheads in both Ext4-direct and tmpfs-disk occupy
less than 3% of raw bandwidth.

4.3 The I/0 Bandwidth of Direct-FUSE on
Distributed File System

To test I/O performance on distributed FUSE file systems, we en-
able FusionFS user-level library as one of our distributed backends
(Direct-FusionFS) and also compare with the FUSE-based FusionFS
(FusionFS). We write 1 GB file on each node with 1 MB transfer size.
As we can see from Fig. 9(a) and Fig. 9(b), doubling the number of
nodes yields doubled throughput for both read and write, which
demonstrates the linear scalability of Direct-FusionFS.

Similar to the results in Section 4.2, the write bandwidth ben-
efits more on the FUSE kernel bypassing, and the read delivers
almost the same performance trend as the original FusionFS. As we
mount original FusionFS with tuned performance, the read favors
from max_read, max_readahead, and direct_io. On average, Direct-
FusionFS outperforms FusionFS by 38.35% on write and 6.3% on
read. In addition, if further increasing the transfer size, the simi-
lar performance trend can still be observed since the performance
benefits come from the FUSE kernel bypassing in Direct-FUSE.

4.4 The Overheads in Direct-FUSE

Considering that memory is more sensitive to the overheads, we
conduct the overheads analysis on tmpfs.
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Figure 10: Breakdown analysis of W/R in Direct-FUSE.

4.4.1 Cost of I/O Processing in Direct-FUSE. To demonstrate the
performance improvement mentioned in Section 4.2 and Section 4.3,
we use dummy read/write operations of Direct-FUSE in our experi-
ments. The dummy operations go through the entire code path of
the functions but return immediately to the front end once reaching
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Table 2: Number of context switches for I/O in tmpfs-fuse
and tmpfs-direct.

tmpfs-fuse tmpfs-direct
Transfer Size (KB) | Write | Read | Write | Read
4 1000 | 1000 0 0
16 1000 | 1000 0 0
64 1000 | 1000 0 0
128 1000 | 1000 0 0
256 2000 | 2000 0 0
1024 8000 | 8000 0 0

underlying file systems. Therefore, no data is actually written or
read by backends. The latency of dummy operations represents the
overhead introduced by Direct-FUSE since our Direct-FUSE also
maintains a few metadata operations for backends differentiation.

As shown in Fig. 10(a) and Fig. 10(b), the dummy read/write only
takes about 38 ns, which is less than 3% of a complete read/write
function time in Direct-FUSE. This indicates that, in spite of mem-
ory being sensitive to the overheads, the extra latency caused by
Direct-FUSE is still negligible.

4.4.2  Number of Context Switches for Direct-FUSE. For the con-
text switches analysis, we use the Linux perf event library to mon-
itor context switch events of particular Direct-FUSE APIs on the
application side.

We use the same FUSE mount setting as in Section 4.2. 1000
1/O requests are issued to the tmpfs-fuse and tmpfs-direct in the
tests. As shown in Table. 2, when the transfer size is less or equal
to 128 KB, only one FUSE request is sent to the user-level file
system process by the kernel module for each write; when the
transfer size is greater than 128 KB, the large I/O data chunk is
split into multiple 128 KB data chunks to be sent to the process.
Conversely, as no context switch is generated in Direct-FUSE, there
is no such problem when issuing read and write requests. Therefore,
the expensive FUSE overheads have been reduced. These results
demonstrate the performance improvements in Section 4.2 and 4.3.

5 RELATED WORK

The FUSE overheads are a notable concern for lots of system de-
velopers and researchers. Some researches are completed on ana-
lyzing FUSE-based file system performance. Rajgarhia et al. [20]
implemented a JAVA-based FUSE API, which uses the Java Native
Interface (JNI) to communicate between the C and Java layers. They
showed the performance difference the JAVA-based and original
C-based implementations. However, they only provided limited
FUSE overheads analysis. Tarasov et al. [26] also utilized a FUSE
file system overlaying Ext4 (FUSE-Ext4). Although they presented
lots of file access patterns with FUSE-Ext4 on different storage
devices, they didn’t show cost breakdown for metadata and data
operations in FUSE file system. Vangoor et al. [28] developed a
FUSE-based stackable passthrough file system to investigate FUSE
overheads. They mainly focused on instrumenting FUSE to extract
useful statistics and traces to analyze performance bottlenecks.
Some methods in [9, 10, 14, 16, 21, 23, 32] are applied to im-
prove the FUSE performance. File systems such as TableFS [21],
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FusionFS [32], OrangeFS [14], GlusterFS [9], and Gfarm [27] enables
a distinct library to avoid crossing kernel boundary. However, when
multiple file systems are needed for special purpose data, simply
utilizing them in a job may improve the program complexity as an
additional distinguishing method is necessary. Narayan et al. [16]
proposed to marry in kernel-stackable file system [31] with FUSE.
They combined ATTEST [15] with their design to provide a filter
to files so that only specific extended attributes are exported to the
user-space FUSE file system process. Shun et al. [10] allowed direct
I/O access to local storage without routing requests through FUSE
file system process in FUSE-based distributed file systems. As the
design is mainly built for Gfarm, non-trivial efforts may be needed
to integrate this method with other FUSE-based distributed file
systems. Although some non-FUSE user-level file systems leverage
LD_PRELOAD and linker-assisted wrapper functions to intercept
file system calls, such as CRUISE [18] and BurstFS [29], some file
system calls cannot be well covered by the dynamic link. However,
this can be easily addressed in Direct-FUSE.

There are also some I/O forwarding infrastructures [5, 6, 11].
Iskra et al. [11] leveraged their design as I/O daemon implemented
for compute node as file system clients. However, the /O daemon
leads to additional context switches between the application process
and itself. And as Ali et al. [6] built their work over [11], their design
also suffers the cost of context switches. libsysio [5] is introduced
as a library, but it is limited to lustre file system.

6 CONCLUSION

Due to the complexities associated with developing kernel-level file
systems, special-purpose file systems for particular I/O workloads
are developed as user-level file systems, commonly using the FUSE
framework. In this paper, we analyzed the FUSE overheads in FUSE
file system calls, showed how I/O bandwidth was affected by the
overheads, and broke down the cost of both metadata and data
operations. To address the overheads associated with FUSE, we de-
veloped Direct-FUSE, a framework that supports multiple FUSE or
other special-purpose user-level file systems in a single job. Because
Direct-FUSE removes the need to cross the boundary between user
and kernel space for I/O calls, it can significantly improve the I/O
performance of FUSE file systems. Our experiments show that com-
pared with original FUSE file system over some native file systems
(e.g, Ext4, tmpfs), our Direct-FUSE can improve performance by
11.9% on average.
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