

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-738072

The influence of hydraulic fracturing in carbon storage performance

P. Fu, R. R. Settgast, Y. Hao, J. P. Morris, F. J. Ryerson

September 6, 2017

Journal of Geophysical Research

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

The influence of hydraulic fracturing on carbon storage performance

Pengcheng Fu¹, Randolph R. Settgast, Yue Hao, Joseph P. Morris, and Frederick J. Ryerson

¹Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory, USA.

Corresponding author: Pengcheng Fu (fu4@llnl.gov)

Key Points:

- The enabling condition, processes, and mechanisms of caprock hydraulic fracturing during CO₂ injection are investigated.
- Vertically-contained hydraulic fractures provide an effective means to access reservoir volume far from the injection well.
- Geomechanically contained caprock fracture could improve storage performance in lower-perm. reservoirs while maintaining GCS integrity.

Fu, P., Settgast, R. R., Hao, Y., Morris, J. P., & Ryerson, F. J. (2017). The influence of hydraulic fracturing on carbon storage performance. *Journal of Geophysical Research: Solid Earth*, 122. DOI: 10.1002/2017JB014942

18 Abstract

19 Conventional principles of the design and operation of geologic carbon storage (GCS) require
20 injecting CO₂ below the caprock fracturing pressure to ensure the integrity of the storage com-
21 plex. In non-ideal storage reservoirs with relatively low permeability, modest injection rates can
22 lead to pressure buildup and hydraulic fracturing of the reservoir and caprock. While the GCS
23 community has generally viewed hydraulic fractures as a key risk to storage integrity, a
24 carefully-designed stimulation treatment under appropriate geologic conditions could provide
25 improved injectivity while maintaining overall seal integrity. A vertically-contained hydraulic
26 fracture, either in the reservoir rock or extending a limited height into the caprock, provides an
27 effective means to access reservoir volume far from the injection well. Employing a fully-
28 coupled numerical model of hydraulic fracturing, solid deformation, and matrix fluid flow, we
29 study the enabling conditions, processes, and mechanisms of hydraulic fracturing during CO₂
30 injection. A hydraulic fracture's pressure-limiting behavior dictates that the near-well fluid
31 pressure is only slightly higher than the fracturing pressure of the rock and is insensitive to
32 injection rate and mechanical properties of the formation. Although a fracture contained solely
33 within the reservoir rock, with no caprock penetration, would be an ideal scenario, poroelastic
34 principles dictate that sustaining such a fracture could lead to continuously increasing pressure
35 until the caprock is fractured. We also investigate the propagation behavior and injection
36 pressure responses of a hydraulic fracture propagating in a caprock subjected to heterogeneous *in*
37 *situ* stress. The results have important implications for the use of hydraulic fracturing as a tool
38 for managing storage performance.

39 1 Introduction

40 Geologic carbon sequestration (GCS) requires injecting large volumes of carbon dioxide (CO₂) in
41 deep geologic formations to prevent its release to the atmosphere [Orr, 2009; Haszeldine, 2009]. The
42 deployment of GCS at a massive scale (billions of tonnes of CO₂ annually) is considered a critical means
43 of greenhouse gas control over the next few decades [Pacala & Socolow, 2004; IEA 2010]. CO₂ storage
44 targets are typically saline aquifers or depleted oil/gas reservoirs overlain by low permeability caprocks.
45 Deep saline aquifers are expected to have the largest storage potential [McGrail et al., 2006; Celia et al.,
46 2015]. An essential consideration in the design and operation of a CO₂ storage complex is to secure the
47 integrity of the caprock to prevent CO₂ leakage from the storage reservoir. It is well known that hydraulic
48 fractures may initiate and propagate in the caprock when fluid pressure exceeds the minimum *in situ*
49 principal stress (S_{hmin}) of the caprock [Hubbert & Willis, 1957]. To avoid compromising seal integrity, a
50 typical strategy is to strictly limit the downhole injection pressure below the estimated fracturing pressure
51 of the caprock. However, high injection pressure could be necessary or desirable given practical and
52 economic considerations. There is thus an inherent tension between maximizing injection efficiency and
53 minimizing leakage risk. This is particularly true for reservoirs with relatively low permeabilities and
54 consequently low injectivities. To date, high permeability reservoirs that provide favorable injection and
55 storage conditions have been favored for use in CO₂ sequestration projects, such as the Sleipner and
56 Snøhvit sites [Boait et al., 2012; Eiken et al., 2011; Verdon et al., 2013; Chiaramonte et al., 2015].
57 However, significant reduction in global greenhouse gas emission requires extremely large volumes of
58 CO₂ injection [Pacala & Socolow, 2004; Ehlig-Economides & Economides, 2010; Zoback & Gorelick,
59 2012], and therefore saline aquifers with a wide spectrum of permeabilities, including relatively low
60 permeabilities, will have to be considered. Existing CO₂ sequestration projects have encountered reservoir

61 permeabilities as low as one millidarcy [Verdon et al. 2013] creating challenging storage conditions. An
62 important case study in this context is the In Salah project [Ringrose et al. 2013]. Comprehensive
63 analyses of monitoring data---including injection pressure, surface deformation, tracers, microseismic,
64 and 4D seismic---suggest that one or more hydraulic fractures may have been created in the reservoir and
65 lower caprock system during injection operations [Bissell et al. 2011, Oye et al. 2013, White et al. 2014,
66 Bohloli et al. 2017]. An alternative hypothesis is that a pre-existing fracture zone (or fault) was re-
67 activated [Iding & Ringrose 2010; Morris et al., 2011; Shi et al., 2012]. In either case, it is evident that the
68 resulting conductive feature had a limited vertical extent within the lower portion of caprock and did not
69 cause detectable leakage of CO₂ out of the storage complex.

70 Although conventional wisdom calls for strict prevention of caprock hydraulic fracturing, it is of
71 great importance to understand 1) the conditions that lead to caprock hydraulic fracturing, 2) the effects of
72 geologic characteristics and operational parameters on the propagation of caprock fractures, and 3) the
73 role of hydraulic fractures in CO₂ storage reservoir's responses to injection and reservoir management
74 measures. There are clearly reservoir configurations where hydraulic fracturing would be an
75 unacceptable risk to storage integrity, and others where it could be a useful tool to maximize injection
76 efficiency and stored volumes.

77 A growing hydraulic fracture is an intricate mechanical system consisting of deforming rock,
78 flowing fluid in both the fracture and rock matrix, and a propagating discontinuity. The body of literature
79 describing the complex nature (complex even in idealized settings) of hydraulic fractures [e.g., Perkins &
80 Kern, 1961; Nordgren, 1972; Renshaw & Harvey, 1994; Detournay 2004; Zhang & Jefferey, 2012;
81 Lecampion et al., 2017] testifies the challenge of studying subsurface processes involving these features.
82 However, past research in CO₂ sequestration has largely overlooked many characteristics of hydraulic
83 fractures and their potential effect on the CO₂ storage system.

84 Most work in GCS to date has treated hydraulic fractures in a simplified manner as a fixed-size,
85 "equivalent" porous zone---essentially treating it as a vertical wing of the reservoir [e.g., Morris et al.,
86 2011; Durcan et al., 2011; Pan et al., 2013; Rinaldi & Rutqvist, 2013]. Here, we employ a more realistic
87 numerical model to investigate the fundamental behavior of caprock hydraulic fracturing and its impact
88 on a reservoir's response to CO₂ injection. The model captures dynamic interactions between a
89 propagating fracture, solid rock deformation, fluid flow along the fracture, and leak-off of fluids into the
90 surrounding formations. Our model still contains significant simplifications, however, especially with
91 respect to the multiphase and non-isothermal behavior of CO₂-brine systems. Nevertheless, the model
92 provides physical insights into the hydro-mechanical behavior of a fractured storage system, and is
93 intended to prompt a more robust analysis in the GCS community of the advantages and disadvantages of
94 hydraulic fracturing as an engineering tool.

95 The modeling and analysis in this work is based on the assumption of vertical containment of the
96 hydraulic fracture at a finite distance above the reservoir, as we intend to study the influence of such
97 vertically contained hydraulic fractures. The mechanisms of vertical containment of hydraulic fracture are
98 complex and a subject of active research in its own right. Generally, vertical propagation of a hydraulic
99 fracture can be halted by geologic discontinuities and/or stress contrast between adjacent formations
100 [Fisher&Warpinski, 2012; Warpinski et al., 1982; Warpinski&Teufel, 1987].

101 The structure of the paper is as follows. Sections 2 and 3 describe the numerical simulation
 102 methodology and the setup of a baseline case study. Section 4 analyzes the conditions that lead to caprock
 103 hydraulic fracturing. Section 5 presents results for a propagating caprock hydraulic fracture (using the
 104 baseline model) and its interaction with the reservoir. Section 6 analyzes the key physical controls on the
 105 hydraulic fracture/reservoir interactions to inform an analytical equation predicting the growth of the
 106 caprock hydraulic fracture. The effects of the distribution of *in situ* stress in the caprock on hydraulic
 107 fracturing propagation are studied in section 7. A summary of this work and discussions of its
 108 implications are offered in section 8.

109 **2 Simulation methodology**

110 A simulation of hydraulic fracturing, including interaction with a high-permeability porous
 111 reservoir, must capture a number of coupled processes: 1) solid deformation of the rock layers, 2) fluid
 112 flow in the porous media, 3) fluid flow along the fracture, and 4) the deformation and propagation of the
 113 fracture. Here, we model the rock as a linear elastic medium deforming quasi-statically. From the start,
 114 we make a significant simplification and model fluid flow in the CO₂-brine system with a quasi-single-
 115 phase model. We recognize that this approach ignores important multiphase interactions occurring as
 116 supercritical CO₂ floods a brine-saturated reservoir, such as buoyancy-driven flow [Bryant et al., 2008;
 117 Okwen et al., 2011]. Nevertheless, such processes are not necessarily important for the conditions
 118 considered in this work (i.e. low permeability, thin reservoir) and this simplified approach still provides
 119 valuable insight into the hydro-mechanical behavior of such a system. We note that tools to model the
 120 complete physics of a fracturing CO₂ storage system do not yet exist and are the subject of current
 121 development.

122 Here, we briefly review the governing equations and discretization strategy. The model consists
 123 of a porous domain, m , penetrated by a discrete surface, f , representing a growing fracture (Figure 1). The
 124 primary unknowns are the solid displacement \mathbf{u} , fluid pressure in the porous matrix p_m , and fluid
 125 pressure in the fracture p_f . The fracture aperture w is related to the displacement field as

126 $w = [\![\mathbf{u}]\!] \cdot \mathbf{n} \quad (1)$

127 where $[\![\mathbf{u}]\!] = (\mathbf{u}^+ - \mathbf{u}^-)$ is the jump in the displacement field across the fracture surface, and \mathbf{n} is the
 128 normal vector to the fracture surface. The unknown fields must satisfy

129 $\nabla \cdot \boldsymbol{\sigma} + \rho \mathbf{g} = \mathbf{0} \quad (2, \text{ momentum balance in the matrix})$

130 $\frac{d}{dt}(\rho_m \phi) + \nabla \cdot (\rho_m \mathbf{w}_m) = 0 \quad (3, \text{ mass balance in the matrix})$

131 $\frac{d}{dt}(\rho_f w) + \nabla_f \cdot (\rho_f \mathbf{w}_f) = q_i - q_{fm} \quad (4, \text{ mass balance in the fracture})$

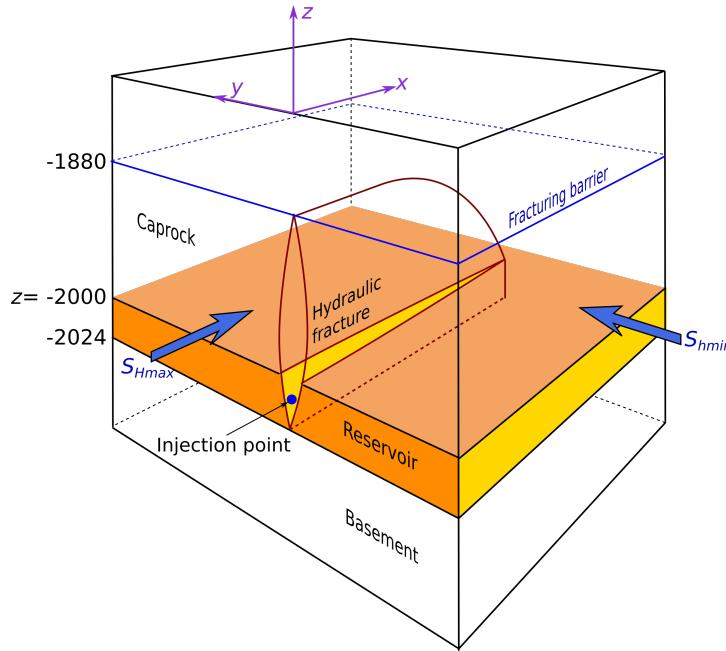
132 $\boldsymbol{\sigma} \cdot \mathbf{n} = -p_f \cdot \mathbf{n} \quad (5, \text{ traction balance across the fracture})$

133 $[\![\rho_m \mathbf{w}_m]\!] \cdot \mathbf{n} = q_{fm} \quad (6, \text{ flux balance across the fracture})$

134 Here, $\boldsymbol{\sigma}$ is the total stress, ρ is the mixture density, ρ_m is the matrix fluid density, ϕ is the matrix porosity,
 135 \mathbf{w}_m is the superficial (Darcy) flux in the matrix, ρ_f is the fracture fluid density, \mathbf{w}_f is the fluid flux in the
 136 fracture, q_i is a fluid source due to injection, q_{fm} is a fluid sink due to leak-off from fracture to matrix,

137 and ∇_f is the fracture surface gradient operator. The primary unknowns and secondary variables are
 138 related through the additional relationships, including linear elasticity for solid deformation, the principle
 139 of effective stress, Darcy's law for flow in matrix, and the "cubic-law" for fracture flow. Note that the
 140 sink term q_{fm} in equation (4) represents fluid mass vanishing from the fracture flow system but entering
 141 the porous medium flow through equation (6). As the fracture flow equations and porous medium flow
 142 equations are solved together, linked through this fluid exchange term q_{fm} , system-wide fluid mass
 143 conservation is satisfied.

144 We use a rock compressibility term in the porous medium flow model [Zimmerman, 2002] as a simplified
 145 version of poroelasticity, in which the volumetric strain's impact on the solid porosity is not directly
 146 calculated from the displacement field, but is instead estimated using the pressure change. It is an
 147 appropriate treatment in this context because the total stress in the system does not change significantly.
 148 Therefore, the change of the mean effective stress happens to be the pore pressure change. This leads to a
 149 one-way coupling in which the matrix mass balance equation only depends on pressures, while the
 150 momentum balance depends on both displacements and pressures. The generation of excess pore pressure
 151 when rock experiences fast compression is not handled by the model. However, this phenomenon is not
 152 particularly important for the present application because such excess pore pressure in reservoir rock
 153 dissipates faster than the loading duration representative of GSC while it is sufficient to treat the loading
 154 on the largely impermeable caprock to be "undrained". The model is supplemented with appropriate
 155 initial and boundary conditions. The simulations assume isothermal conditions, although we note that heat
 156 transport could play a significant role under certain conditions [Han et al., 2010].


157 The present study uses GEOS, a fully coupled hydraulic fracturing simulator to discretize and
 158 solve the model equations above [Settgast et al., 2016; Fu et al., 2013]. We use the Virtual crack closure
 159 technique (VCCT) [Krueger 2004], in a modified formulation that handles confining stress [Settgast et al.,
 160 2016], to calculate energy release rate G at fracture tips. When G is greater than the critical value G_c ,
 161 mostly as a result of sufficiently high fluid pressure in the fracture, the fracture extends from the tip. New
 162 fracture area is generated by duplicate the "face element" connecting two adjacent solid elements in the
 163 original continuum body. New face flow elements are thereby added to the fracture flow system, and fluid
 164 pressure from the flow element is applied to on the exposed surfaces of the solid mesh as traction
 165 boundary conditions. Momentum balance is satisfied at each time step on the current updated mesh
 166 topology whereas fluid mass conservation is satisfied across the fracture flow and porous medium flow
 167 systems. Considering the relatively long time-scales involved in the fracturing process, we adopt an
 168 implicit time-integration strategy.

169 As mentioned earlier, a quasi-single-phase flow model is used for simplicity. The fracture
 170 contains a surrogate fluid with properties (density, viscosity, and compressibility) representing those of
 171 CO_2 at typical reservoir conditions. In the matrix, fluid properties representing brine are adopted.
 172 Obviously, this is a substantial simplification of the multiphase behavior of a CO_2 flood. Nevertheless,
 173 the model still captures the basic interaction between a the caprock hydraulic fracture and the reservoir.

174 Due to the inherent complexities of this problem despite the simplified treatment of poroelasticity
 175 and multi-phase flow, the simulations are computationally expensive. The models included in the current
 176 paper range from 900,000 to 1.7 million solid elements and cost 1,000 to 7,000 core-hours to complete.

177 **3 Model setup**

178 The configuration of the baseline model is shown in Figure 1. The injection reservoir is 24 m
179 thick with its top surface located at 2,000 m depth. We establish a coordinate system with the x-axis
180 parallel to the maximum *in situ* horizontal principal stress (S_{hmax}) direction, y-axis parallel to the
181 minimum horizontal principal stress (S_{hmin}) direction, z-axis pointing upwards, and the origin at ground
182 surface above the injection point (i.e. the injection point is at $x=0, y=0, z=-2012$ m). For simplicity, we
183 assume the vertical gradient of S_{hmin} is the same as the hydrostatic gradient corresponding to supercritical
184 CO₂ density in the vertical fracture. As the two gradients then cancel each other, we use a uniform S_{hmin} of
185 30 MPa within the fracturable portion of the caprock formation and omit gravitational terms in flow
186 simulation. The other two *in situ* principal stress components do not play a significant role in the analysis
187 as long as the vertical stress is greater than S_{hmin} . In the model, we place two fracturing barriers, 120 m
188 above the reservoir top surface and at the lower boundary of the reservoir, respectively. S_{hmin} abruptly
189 increases by 5 MPa across the barriers. Therefore, the vertical extent of the hydraulic fracture is limited
190 within $z = -2024$ m to -1880 m. The hydraulic fracture, once initiated, is expected to propagate within the
191 x-z plane (perpendicular to the S_{hmin} direction). Considering the symmetry of the problem, we only need a
192 half model extending from 0 to 2000 m in the x-direction, from -2000 m to 2000 m in the y-direction, and
193 from -2400 to -1400 m in the z-direction. The model boundaries are assumed impermeable to reflect the
194 notion that a reservoir always has bounded extents (Ehlig-Economides and Economides, 2010). The
195 mesh resolution is relatively high (6 m to 10 m) near the expected fracture trajectory, whereas element
196 sizes progressively increase in the far field. The model contains approximately 900,000 solid elements
197 while several hundred face elements are generated adaptively to represent the evolving fracture face.

198

199 Figure 1 Configuration of the baseline model qualitatively showing the geometrical relationships between
 200 the storage reservoir, the caprock, the basement, a potential hydraulic fracture, and the orientations of the
 201 *in situ* stress. Only a half of the model ($x>0$) is shown due to symmetry.

202

203 Parameters used in the simulations are summarized in Table 1. All rock layers, at least in the
 204 region that is affected by the injection, are assumed to have the same mechanical properties to simplify
 205 the analysis of the baseline case. Properties of the surrogate fluid are based on the equation of state in
 206 Span and Wagner [1996] for the expected condition (supercritical state at 62°C between 20 MPa and 30
 207 MPa) in the reservoir and in the hydraulic fracture. The simulator allows different fluid properties in the
 208 fracture flow equations and matrix flow formulation. We use a higher viscosity in the latter as the main
 209 role of pressure gradient in the reservoir is to displace brine, which is more viscous than supercritical
 210 CO₂. Table 2 is a list of the analytical and numerical models employed in this work.

211 Table 1 Parameters for the baseline simulation.

Property	Value
Rock Young's modulus, all formations, E	10 GPa
Poisson's ratio, all formations, ν	0.25
Critical energy release rate, all formations, G_C	94 J/m ²
Porosity, reservoir, ϕ_r	0.15
Porosity, caprock and basement, ϕ_c	0.05
Permeability, reservoir, k_r	15 mD
Permeability, caprock and basement, k_c	0.01 μ D
Temperature, all formations, T	62 °C
Viscosity, surrogate fluid in fracture flow, μ_f	0.1 cP
Viscosity, surrogate fluid, in porous medium flow, μ_r	0.5 cP

Total compressibility, c_t	1.25×10^{-8} Pa
Fluid density ρ_f	700 kg/m ³
Initial reservoir pore pressure, P_{ri}	20 MPa
Injection rate, q_i	0.024 m ³ /s
Reservoir thickness, H_r	24 m

212

213 Table 2 A list of quantitative analyses and numerical simulations employed

Model	Section	Type	Representation of poroelasticity	Relation to baseline model
I	4	Axisymmetric, analytical	Through pore compressibility	Calculate pre-fracture pressure development based on porous medium flow theory
II	4	2D numerical	Through pore compressibility and effective stress	Poroelastic analysis of reservoir fracture re-closure
III	5	3D numerical	Through pore compressibility and fracture closure in reservoir due to poroelasticity, based on findings from Model II	Baseline model
IV	6			Greater fracture height
V	6			Shorter fracture height
VI	7			Heterogeneous <i>in situ</i> stress

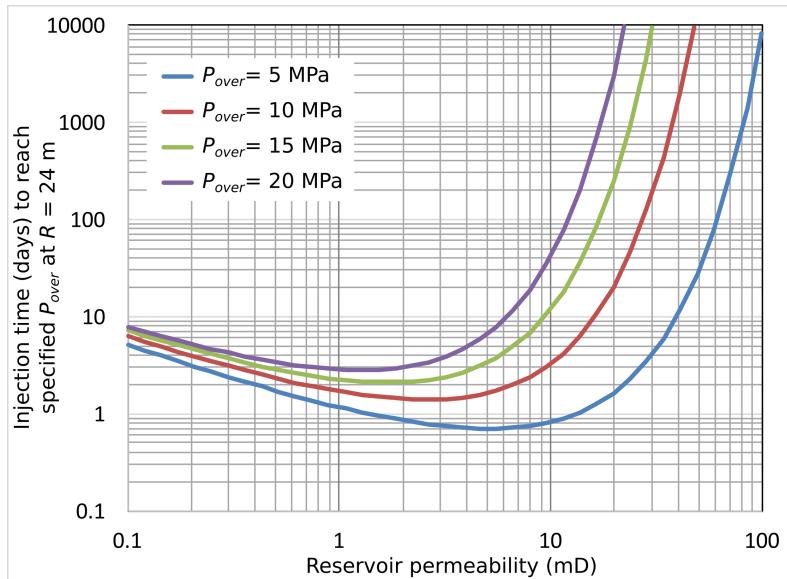
214

215 **4 Processes leading to caprock fracturing**

216 A necessary condition for hydraulic fracturing in caprock is that fluid pressure exceeds S_{hmin} in
 217 the caprock in response to the reservoir condition and injection rate. For the flow of a single-phase,
 218 slightly compressible fluid from a vertical well (represented as a line source) into an infinite reservoir, a
 219 solution is given by Zimmerman [2002] in terms of dimensionless time and dimensionless overpressure
 220 as

$$221 \quad \bar{t} = \frac{k_r t}{\phi_r \mu_r c_f R^2} \quad (7)$$

222 and

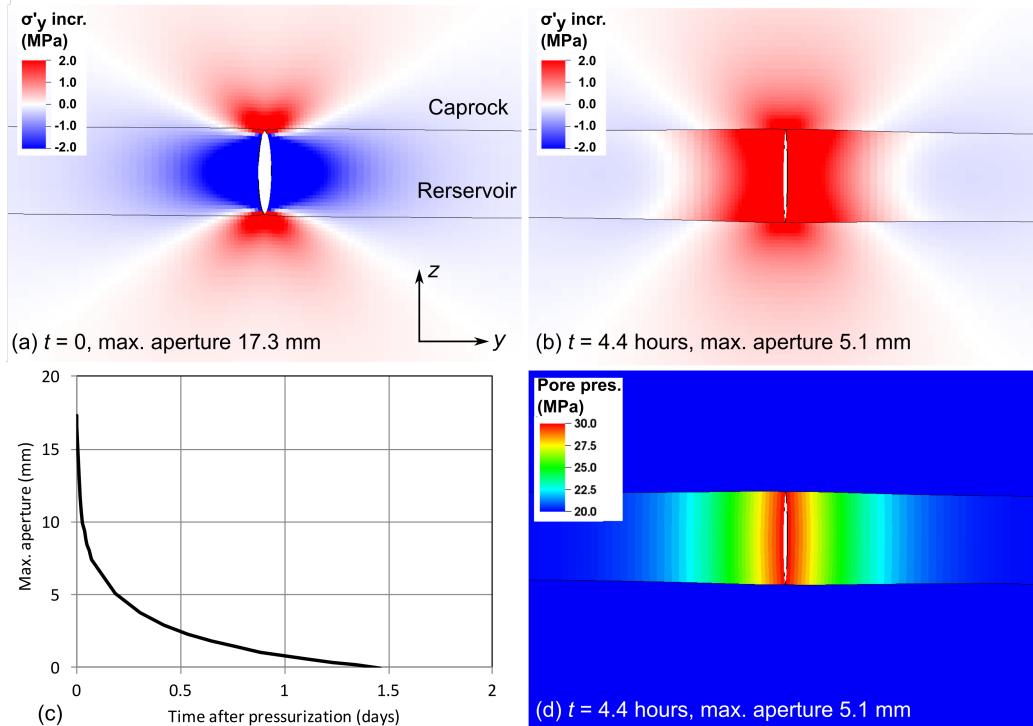

$$223 \quad \bar{P}_{over} = \frac{2\pi k_r H_r (P - P_{ri})}{\mu_r q_i} \quad (8)$$

224 where P is the pore fluid pressure at distance R from the line source at time t after the injection has
 225 commenced. These two dimensionless quantities are connected by

$$226 \quad \bar{P}_{over} = -\frac{1}{2} E_i \left(-\frac{1}{4\bar{t}} \right) \quad (9)$$

227 where $E_i(x)$ is the so-called exponential integral. By assuming an injection rate of 24 liters per second or
 228 530,000 tonnes per year and using the parameters provided in Table 1, we calculate (Model I in Table 2)
 229 the injection time required to attain various levels of overpressure at $R = 24$ m (choosing the formation
 230 thickness as a characteristic length scale) from the injection line source as a function of reservoir rock
 231 permeability, as plotted in Figure 2. For a reservoir with sufficiently high permeability (e.g., $k_r > 100$ mD),
 232 the injection pressure will not reach the fracturing pressure within the time span meaningful for CO₂

233 injection. The results also show that lower permeability results in longer time to reach a given
 234 overpressure when the reservoir permeability is below 1 mD. This is because, although lower
 235 permeability causes higher injection pressure at the wellbore, it takes a longer time for the overpressure to
 236 propagate to the reference point at $R = 24$ m due to the lower hydraulic diffusivity. For the baseline model
 237 considered, the fracturing pressure of the caprock corresponds to an overpressure of 10 MPa ($S_{hmin} - P_{ri}$).
 238 The results show that even for a reservoir with permeability up to 30 mD, the fluid pressure at a
 239 considerable distance from the well can still attain the caprock fracturing pressure in less than half a year.
 240 For the baseline reservoir permeability assumed (15 mD), the pore fluid pressure at 24 m from the well
 241 can be more than 25 MPa ($P_{over} = 5$ MPa) greater than the caprock fracturing pressure within 100 days of
 242 injection.


243
 244 Figure 2 Under an injection rate of 24 liters per second or 530,000 tonnes per year, the required injection
 245 time to attain various levels of overpressure at $R = 24$ m from the injection line source as a function of
 246 reservoir rock permeability.

247
 248 The above analysis assumes the condition of porous medium flow without fracturing. It is
 249 possible that hydraulic fracturing takes place in the reservoir rock formation. If the reservoir hydraulic
 250 fracturing can be sustained by a fluid pressure below S_{hmin} of the caprock, it will prevent caprock
 251 hydraulic fracturing from taking place. To understand the sustainability of a hydraulic fracture in the
 252 reservoir rock, careful consideration must be given to the poroelastic effect [Biot, 1941]. From a solid
 253 mechanics perspective, the opening of a hydraulic fracture aperture is the direct result of the compression
 254 of the rock body surrounding the fracture where higher stress (higher than the original *in situ* stress)
 255 results from the fluid pressure compressing the walls of the fracture. In the reservoir rock, the pore
 256 pressure in the compressed rock increases as the fluid flows into the rock body. Terzaghi's principle of
 257 effective stress dictates that the effective stress (which drives rock deformation) in the rock decreases in
 258 response to the pore pressure change, thereby causing relaxation of the rock compression and re-closure
 259 of the fracture aperture. It is well known that due to this poroelastic effect, pumping pressure needs to be
 260 continuously increased and significantly higher than the original S_{hmin} in the formation to sustain a

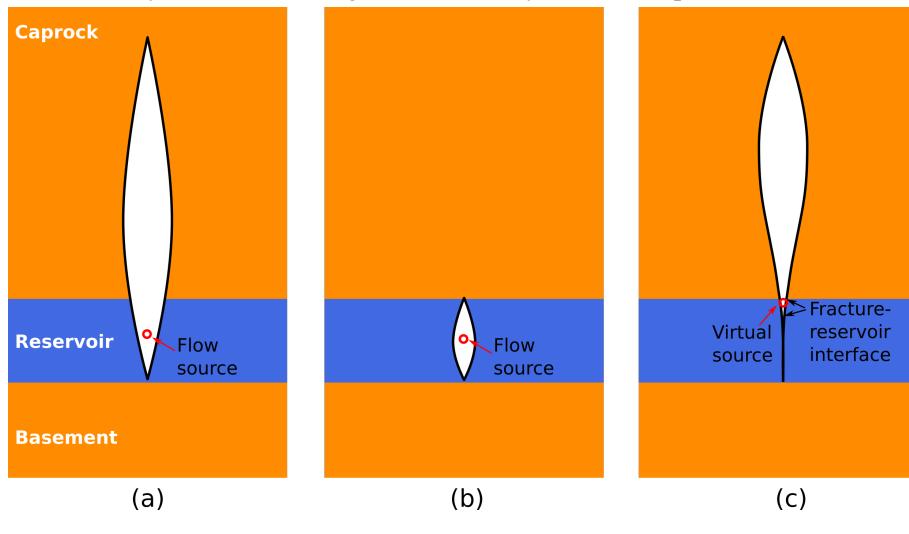
261 hydraulic fracture in relatively permeable rocks (Detournay & Cheng, 1991; Salimzadeh et al., 2017). The
262 poroelastic effect usually does not play a substantial role in most unconventional reservoir stimulation
263 applications because of the low permeability of these rocks, the very reason that necessitates hydraulic
264 fracturing stimulation. Moreover, the use of “wall-building” fluids and high-viscosity fluids reduces the
265 distance from the fracture that is affected by pore pressure increase. However, CO₂ storage reservoirs are
266 likely to have relatively high permeability and the fluid has low viscosity, so the poroelastic effect cannot
267 be ignored or easily mitigated. Subsequently, we demonstrate the likely unsustainability of hydraulic
268 fracture in the reservoir formation for the baseline parameters.

269 To quantitatively illustrate how the poroelastic effect affects the sustainability of a hydraulic
270 fracture in the reservoir rock (as opposed to caprock), we simulate (Model II) the aforementioned process
271 in the baseline model setting with some minor adjustments. We assume $S_{hmin} = 30$ MPa in the caprock and
272 basement while $S_{hmin} = 26$ MPa in the 24 m thick reservoir. The Biot parameter is 0.8 for all rock layers.
273 The geometry and other parameters of the system remain the same as those described in section 3.
274 Following the analysis methodology of Detournay and Cheng [1991] we only consider a cross-section (in
275 y-z plane) of the model shown in Figure 1. Instead of simulating the creation and relaxation of a hydraulic
276 fracture, we assume that a fracture throughout the height of the reservoir formation already exists (Figure
277 4(b).) and we pressurize it with a fluid pressure of 30 MPa (approximately the pressure required to
278 fracture the caprock or basement) at $t=0$. The simplifications represent the “best case scenario” for
279 sustaining a hydraulic fracture in the reservoir rock: a fracture already exists and a higher pressure will
280 trigger fracturing in the caprock and/or basement. Subsequently, we observe how the fracture responds to
281 the pore pressure propagation in the reservoir.

282 Figure 3 (a) shows the effective stress increment perpendicular to the fracture plane (y-
283 component) near the pressurized fracture at $t=0$. The blue color shows the extent of the so-called stress
284 shadow where the rock is compressed, resulting in opening of the fracture. As the fluid pressure front
285 propagates into the reservoir layer (Figure 3(d)), the compressive effective stress is neutralized (Figure
286 3(b)) and the aperture relaxes accordingly. In fact, after 4.4 hours of pressurization, the net increment of
287 σ'_y (compared with the original state) near the fracture is tensile, meaning that the rock skeleton near the
288 fracture has become less compressed compared with the original *in situ* state. Based on the aperture re-
289 closure curve in Figure 3 (c), the aperture completely closes after 1.5 days of pressurization.

290

291 Figure 3 The aperture relaxation/reclosure of a hydraulically pressurized fracture in the reservoir
 292 formation. Only a cross-section in the y - z plane is simulated. The deformation is exaggerated by 200
 293 times to visualize the fracture opening. (a) The increment of σ'_y (effective stress, compared with the
 294 original *in situ* stress) near the fracture at $t = 0$. Note that tensile stress is positive. (b) The σ'_y increment
 295 (still compared with the original) after 4.4 hours of pressurization. (c) The evolution of the maximum
 296 aperture with time. (d) The pore pressure distribution in the reservoir layer after 4.4 hours of
 297 pressurization. Due to the very low permeability of the caprock and basement, the Young's moduli in
 298 these layers should be seen as "undrained" modulus for the time scale considered. Poroelastic effects in
 299 these layers do not affect the results discussed here and are therefore not considered.

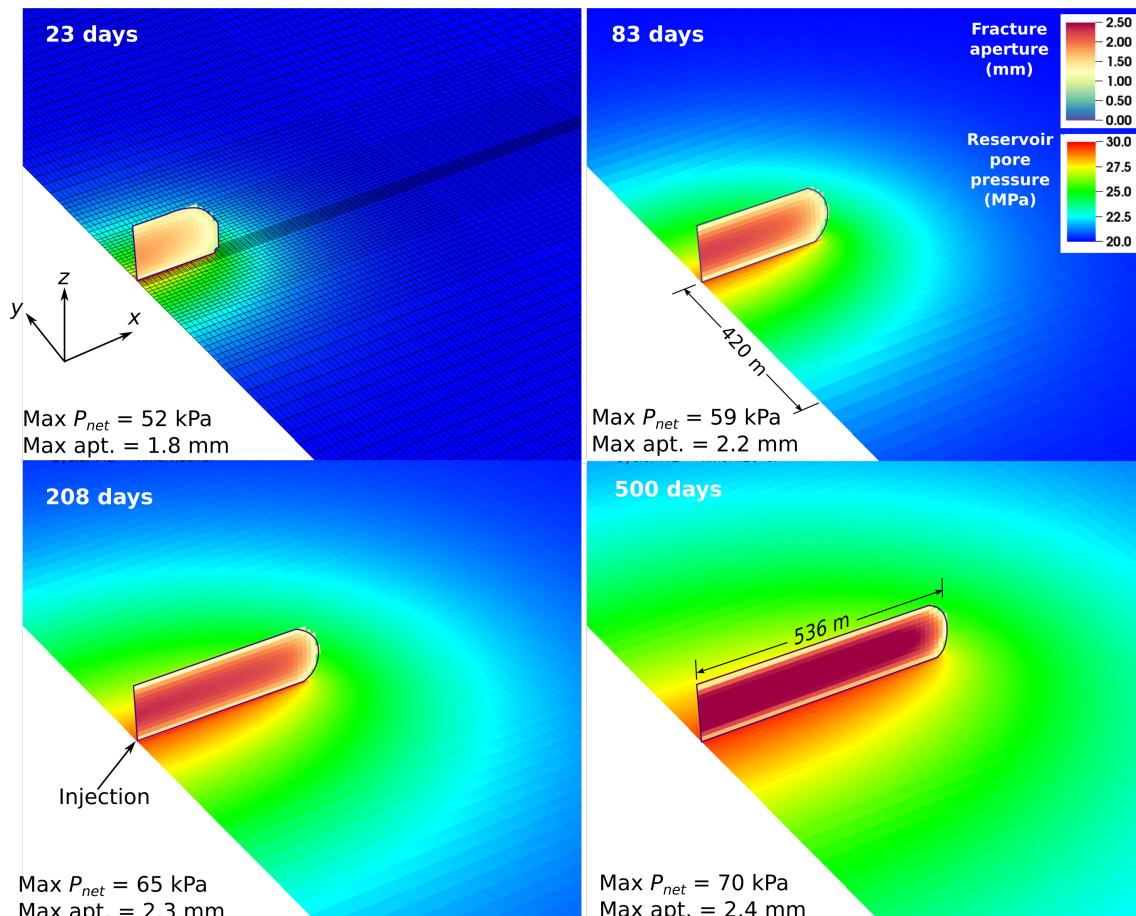

300

301 The above analysis assumes a constant injection pressure along a pre-existing fracture. In reality,
 302 the hydraulic fracture initiates when the injection pressure is moderately higher than S_{hmin} (26 MPa in the
 303 example), but the pressure needs to keep increasing to maintain the open fracture due to the poroelastic
 304 effect. The example shows even at a pressure of 30 MPa, the fracture can remain open only for a few
 305 days. Beyond that, the fluid pressure will soon be sufficient to fracture the caprock. Due to the caprock's
 306 low permeability, it is sufficient to consider caprock deforms in the "undrained" condition and a largely
 307 constant pressure would be sufficient to sustain the hydraulic fracture. The flow near the injection point
 308 within the reservoir will remain in the porous medium flow regime (as opposed to fracture flow) under
 309 the condition that the fluid pressure near the reservoir-caprock interface is slightly higher than S_{hmin} in the
 310 caprock.

311

312 To embody these findings in a computationally tractable yet reasonable manner in 3D, all
 313 subsequent models assume that a hydraulic fracture is not present throughout the reservoir layer (i.e. it
 314 would have been re-closed) but the caprock fracture connects to the reservoir through a 2-m high interface
 315 zone at the top of the reservoir as shown in Figure 4(c). The corresponding cross section geometries for
 316 the conceptual model in Figure 1 and Model II are shown in Figure 4(a) and (b) for comparison.
 317 Instead of explicitly modeling the porous medium flow from the injection point to the fracture-reservoir
 318 interface, we place a “virtual source” at the interface zone above the injection point. Note that the height
 319 of the interface zone (2 m) in the model is limited by practical mesh resolutions. The selection of the
 320 interface height could have a minor effect on the simulation results through its influence on overall
 321 hydraulic impedance between the fracture and the reservoir, but is unlikely to alter how the hydraulic
 322 fracture and the reservoir communicate. The actual flow regime and mechanical response around the fluid
 323 exit from the wellbore in the reservoir formation and where fluid enters the fracture are expected to be
 324 rather complex and is beyond the scope of the current work.

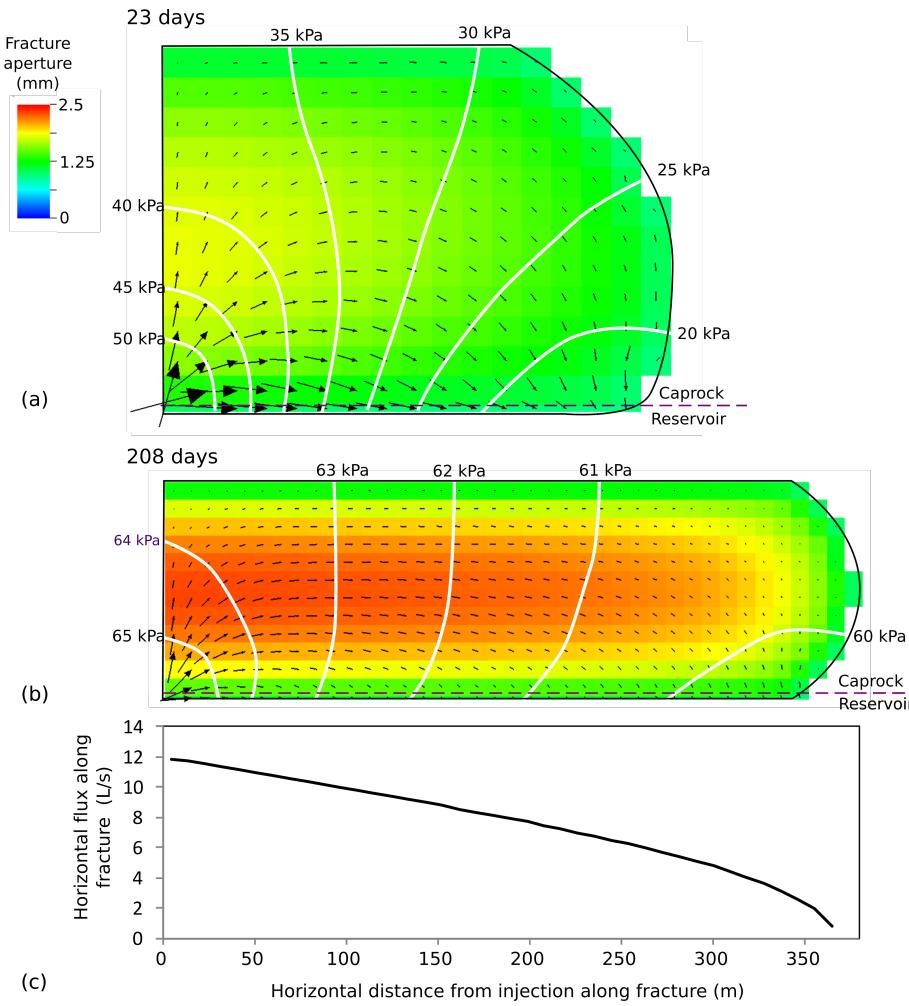
325 Note that we only analyzed how the poroelastic effects influence the closure of the hydraulic
 326 fracture for a specific set of parameters. It is still possible that certain combination of parameters, for
 327 instance, a lower Biot’s parameter and greater difference between S_{hmin} in the reservoir and the original
 328 reservoir pore pressure, can allow a sustained hydraulic fracture within the reservoir rock. This topic
 329 deserves a systematic investigation but is beyond the scope of the current work.


330 (a) (b) (c)
 331 Figure 4 Various geometrical relationships between the hydraulic fracture and the storage reservoir. (a)
 332 Baseline case, fracture is open in both the reservoir and the caprock, corresponding to the imagined
 333 geometry in Figure 1. (b) The hydraulic fracture is in the reservoir rock only, corresponding to Model II.
 334 (c) The fracture has vertically propagated into the caprock but it recloses in the reservoir rock due to
 335 poroelastic effects, corresponding to Models III to VI. The fracture and the reservoir hydraulically
 336 communicate via an open interface at the top of the reservoir rock.

337

338 **5 Baseline caprock hydraulic fracturing model results**

339 This section presents the simulation results for the baseline scenario specified in section 3 (Model
 340 III in Table 2). The aperture distribution across the growing hydraulic fracture and the reservoir pore


341 pressure distribution after 23 days, 104 days, 208 days, and 500 days of injection are shown in Figure 5.
 342 The hydraulic fracture grows continuously with the injection, and the pressure plume in the reservoir
 343 appears to expand into the reservoir from the intersection (the 2 m high interface zone) between the
 344 hydraulic fracture and the reservoir layer. The maximum aperture and maximum fracture net pressure of
 345 the fracture modestly increase with the growth of the fracture, reaching approximately 2.4 mm and 70
 346 kPa, respectively, after 500 days.

347
 348 Figure 5 Aperture distribution across the growing hydraulic fracture and reservoir pore pressure at
 349 selected times into injection. Pore pressure is shown on a horizontal slice at the top of the reservoir.
 350 Element sizes can be seen on the results on day 23. At each time, the maximum fracture net pressure and
 351 the maximum aperture across the fracture are annotated. Fracture net pressure is the difference between
 352 the fluid pressure in the fracture and the original in situ normal stress on the fracture plane.

353

354 Figure 6 depicts in detail the flow fields along the hydraulic fracture at 23 days and 208 days. A
 355 few observations can be made:

356
 357 Figure 6 Detailed flow fields along the hydraulic fracture (a) 23 days and (b) 208 days into the injection.
 358 At each time, the aperture, net pressure, and flux are depicted by color, contour lines, and vectors,
 359 respectively. The fracture net pressure is defined as the difference between the fluid pressure and S_{hmin}
 360 (30 MPa). Note that the scales and aperture color maps are different between 23 days and 208 days. Also
 361 shown in (c) for 208 days is the total flux crossing the vertical cross-section of the fracture as a function
 362 of the horizontal distance from the injection point.

363
 364 1) Most of the injected fluid first flows into the hydraulic fracture. As fluid flows along the
 365 fracture, it gradually leaks into the reservoir at the bottom of the fracture. The integration of the fracture
 366 flow flux across a vertical cross-section is rather close to the injection rate (12 liter/s into one wing) near
 367 the injection point. The leak-off (from fracture to reservoir) rate, on a per-fracture-length basis, increases
 368 as the distance to the injection increases. At 208 days, only about 1/3 of the fluid leaks into the reservoir
 369 in the first half of the fracture length while the other 2/3 leaks in the second half.

370 2) The fracture does not provide a significant storage volume for the fluid. The total storage
 371 volume of the fracture is only 95 m^3 at 208 days, less than 1/2000 of the total injected volume.

372 3) The net pressure along the fracture is only tens of kPa. Under the plane-strain condition, the
 373 compliance (i.e. the ratio between aperture increment and net pressure increment) of a fixed-height ($H_f =$
 374 122 m in the baseline case), static fracture in is approximately $2H_f/E'$, where E' is the plane-strain
 375 modulus of elasticity. It only takes tens of kPa of net pressure to result in an aperture of several mm.
 376 According to the cubic law for fracture flow, a fracture with a 2 mm aperture has a transmissivity
 377 equivalent to $44,444 \text{ m} (0.002^3/12/15 \times 10^{-15})$ thick of the porous medium constituting the reservoir.
 378 Therefore, the fluid pressure only needs to slightly greater than S_{hmin} , barely opening the fracture, to attain
 379 very small hydraulic impedance along the fracture. A couple mm of aperture would provide sufficient
 380 transmissivity to allow the fluid to access the reservoir far from the injection with minimal pressure loss.

381 6 Propagation speed of the hydraulic fracture

382 The above analysis provides important insight into the role of a hydraulic fracture in the flow
 383 system. Principally, a hydraulic fracture (in reservoir or caprock or both) provides a means for the
 384 injected fluid to access the reservoir through the fracture-reservoir interface that grows with the hydraulic
 385 fracture. Across the entire fracture including the fracture-reservoir interface, the fluid pressure is
 386 approximately the same value as S_{hmin} . Due to the extreme sensitivity of a fracture's transmissivity to
 387 fracture net pressure, the fracture fluid pressure is only marginally greater than S_{hmin} for the idealized
 388 system considered so far regardless of the injection rate and rock properties. In other words, it is the
 389 difference between S_{hmin} and original reservoir pressure P_{ri} that drives the fluid into the reservoir.

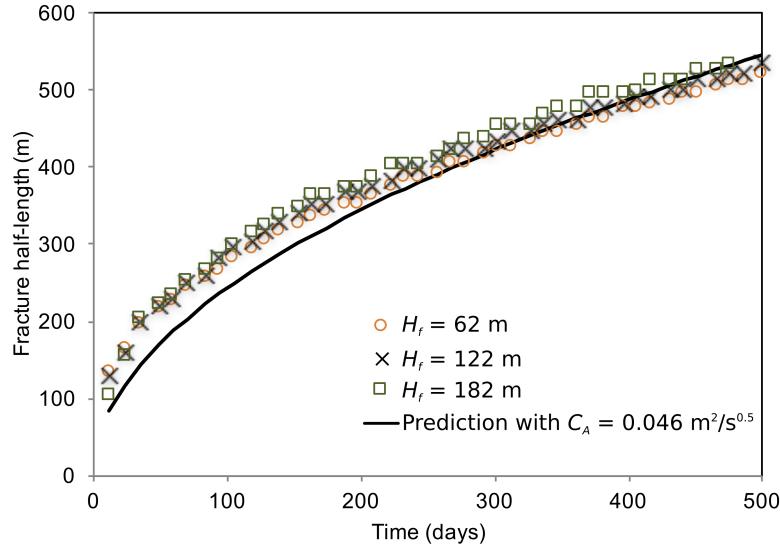
390

391 Through the aforementioned mechanism, the hydraulic fracture applies a (nearly) constant-fluid
 392 pressure boundary condition along the fracture-reservoir interface area for the flow into the reservoir. It is
 393 well known that if the area over which such a constant-pressure boundary condition is applied remains
 394 constant, the flow rate into the porous medium (reservoir) decreases with time. To maintain a constant
 395 total injection rate, the interface area has to increase. Therefore, **the hydraulic fracture extends at such**
 396 **a rate that the associated increase of the fracture-reservoir interface area can accommodate the**
 397 **constant (or any) injection rate.** This is a close analogue to the PKN (Perkins-Kern-Nordgren) hydraulic
 398 fracture model in the leak-off-dominated regime [Perkins & Kern, 1961; Nordgren, 1972]. The PKN
 399 model addresses the propagation of a vertical, constant-height (H_f) hydraulic fracture, and the high-leak-
 400 off approximation of the half-length of the fracture as a function of injection time (Nordgren [1972]) is

$$401 \quad L(t) = \frac{q_i t^{0.5}}{2\pi C_L H_f} \quad (10)$$

402 where q_i is the total injection rate (two wings combined), and C_L is the so-called Carter's leak-off
 403 coefficient of the reservoir. According to Carter [1957], the leak-off velocity at a point on the fracture into
 404 the rock matrix is

$$405 \quad u_L(t) = \frac{C_L}{\sqrt{t-t_0}} \quad (11)$$


406 where $t-t_0$ is the elapsed time since the exposure of the fracture surface to the fluid. Note that the
 407 numerical models in this study use fully coupled fracture-matrix flow solution and does not use Carter's
 408 leak-off model.

409 The chief difference between our baseline model and the high-leak-off PKN model is that the
 410 former only allows fluid to leak through a relatively small segment of the fracture height (2 m interface
 411 out of the 122 m total height) whereas the latter assumes the entire height of the fracture constitutes the
 412 leak-off interface. Therefore, the $C_L H_f$ term in equation (16) should be replaced with an aggregate leak-off
 413 coefficient C_A of the fracture-reservoir interface, which is expected to be a function of reservoir
 414 characteristics and characteristics of the interface. The new form of the equation is

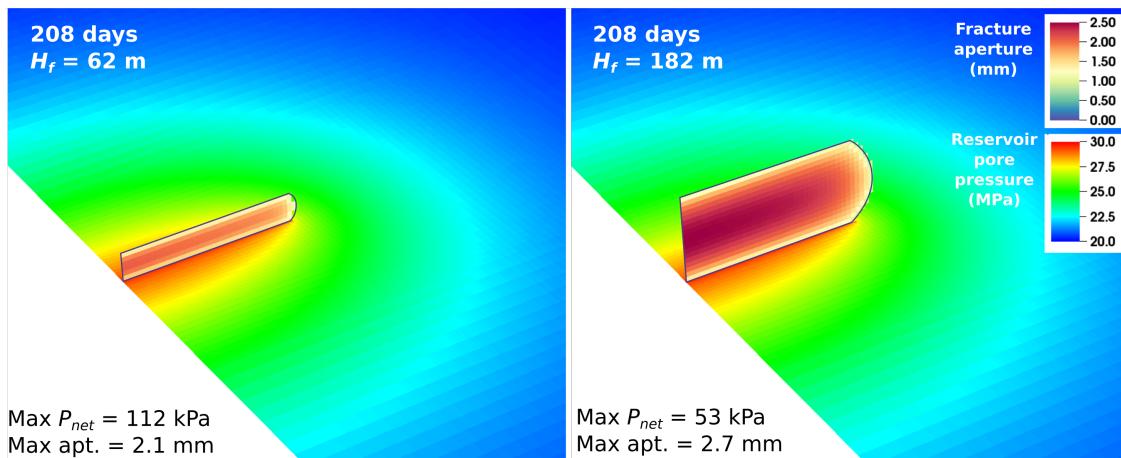
$$415 \quad L(t) = \frac{q_i t^{0.5}}{2\pi C_A} \quad (12)$$

416 which suggests that the **fracture growth speed is largely independent of most caprock characteristics**,
 417 including mechanical properties (e.g. stiffness) and features determining the total fracture height. As
 418 discussed in the previous section, an open hydraulic fracture's transmissivity is tremendously high
 419 compared with the overall transmissivity of the reservoir. The effect of a reduction of fracture height on
 420 fracture transmissivity can be easily compensated by a minimal increase of the net pressure (e.g. 10's of
 421 kPa). This would only have a very small effect on the reservoir overpressure (reservoir overpressure
 422 being approximately 10 MPa at the fracture-reservoir interface for the baseline simulation), so the
 423 interaction between the fracture and the reservoir is only minimally affected by the fracture height. Note
 424 that S_{hmin} in the caprock does affect the fracture growth rate through its effects on the leak-off coefficient:
 425 a greater difference between S_{hmin} and P_{ri} causes faster leak-off.

426 The evolution of the length in the baseline simulation is shown in Figure 7 (denoted by black
 427 crosses), where the length is computed as the fracture area divided by the fracture height. Equation (12)
 428 fits the baseline simulation results very well with $C_A=0.046 \text{ m}^2/\text{s}^{0.5}$, especially when the fracture length is
 429 significantly greater than the height. The discrepancy between the simulation results and the analytical
 430 prediction in the early stage of the fracturing is likely caused by the PKN model's assumption of a
 431 rectangular fracture shape with a fixed height. In the early stage of the injection, the hydraulic fracture is
 432 radial in shape (a half-penny-shaped fracture) so the equivalent length calculation and the direct length
 433 comparison are not strictly appropriate.

434

435 Figure 7 The propagation rate of the hydraulic fracture for various fracturable heights in the caprock.
 436 Fitting equation (12) to the baseline ($H_f = 122$ m) simulation results yields the solid line. The fracture
 437 height H_f is the summation of the caprock fracturable height (60, 120, and 240 m) and the thickness of the
 438 fracture-reservoir interface (2 m).


439

440 To enable quantitative interpretation of the C_A coefficient, we consider the following comparison
 441 with the Carter's leak-off coefficient C_L . C_L is usually determined experimentally in the field or in a
 442 laboratory environment. Under the assumption of one-dimensional diffusion, it can be analytically
 443 deduced as

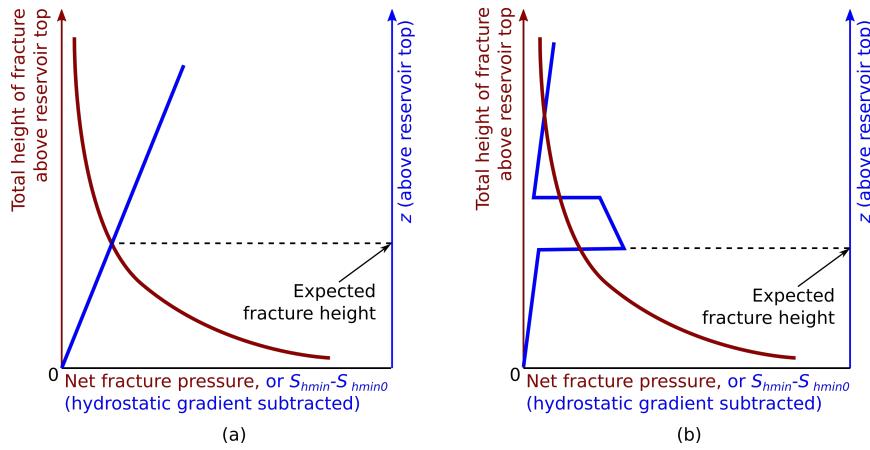
$$444 \quad C_{Lr} = \Delta P \left(\frac{k_r \phi_r c_t}{\pi \mu_r} \right)^{0.5} \quad (13)$$

445 where ΔP is the difference between the fluid pressure acting on the fracture wall and the original reservoir
 446 pressure which is assumed to be constant; k_r is the permeability of the reservoir; ϕ_r is the reservoir
 447 porosity; c_t is the total (fluid and pore) compressibility; and μ_r is the dynamic viscosity of the fluid.
 448 Plugging in the relevant parameters associated with the numerical models, namely $\Delta P = 10$ MPa, $k_r = 15$
 449 mD, $n_r = 0.15$, $c_t = 1.25 \times 10^{-8}$ Pa⁻¹ and $\mu_r = 0.5$ cP, we obtain $C_{Lr} = 1.34$ mm/s^{0.5}. Integrating the leak-off
 450 coefficient over the thickness (24 m) of the reservoir, we get $C_{Lr} H_r = 0.032$ m²/s^{0.5}, which is 30% smaller
 451 than the C_A value fitted to the simulation results. This discrepancy reflects the fact that the fluid diffusion
 452 into the reservoir is not one-dimensional as assumed in equation (13). The pore pressure plumes in both
 453 Figure 5 and Figure 8 show clear 2D diffusion patterns, so the 1D diffusion assumption has yielded an
 454 underestimate of the actual leak-off coefficient. Similar phenomena have been reported in Carrier and
 455 Granet [2012]. Another discrepancy between the modeling scenario and the 1D leak-off formula is that
 456 the interface area is only a small fraction of the reservoir thickness. This factor would result in a smaller
 457 leak-off coefficient than the predicted value, but the results indicate that it is not a very significant factor.
 458 Nevertheless, equation (13) provides a useful approximation of the leak-off coefficient to be used in
 459 equation (12).

460 To test the hypothesis that the fracture growth rate is independent of fracture height, we run two
 461 additional simulations with the fracturing barrier 60 m (model IV) and 180 m (model V) above the
 462 reservoir ($H_f = 62$ m and 182 m), respectively and otherwise identical parameters to those of the baseline
 463 case. The growth rate of the hydraulic fractures for these two scenarios is also plotted in Figure 7. The
 464 results show that the fracture growth rate is indeed insensitive to the fracture height. The fracture aperture
 465 distribution and reservoir pore pressure distribution for two different fracture heights after 208 days are
 466 shown in Figure 8. As expected, a reduction in fracture height reduces the aperture compliance
 467 proportionally, which results in a moderate increase in net pressure to drive the same flow rate through
 468 smaller aperture. The reservoir pressure distribution, however, remains largely unchanged with the
 469 variation of the fracture height. Therefore, equation (12) proves to adequately predict the caprock
 470 hydraulic fracture propagation rate based on reservoir characteristics and pumping parameters, at least for
 471 the idealized scenarios that we have analyzed so far.

472
 473 Figure 8 Fracture aperture distribution and reservoir pore pressure distribution for two different fracture
 474 heights (62 m and 242 m, corresponding to fracturing barrier at 60 m and 240 m above the reservoir,
 475 respectively), 208 days into injection. Pore pressure is shown on a slice near the top of the reservoir. For
 476 each case, the maximum fracture net pressure and the maximum aperture across the fracture are
 477 annotated.

478

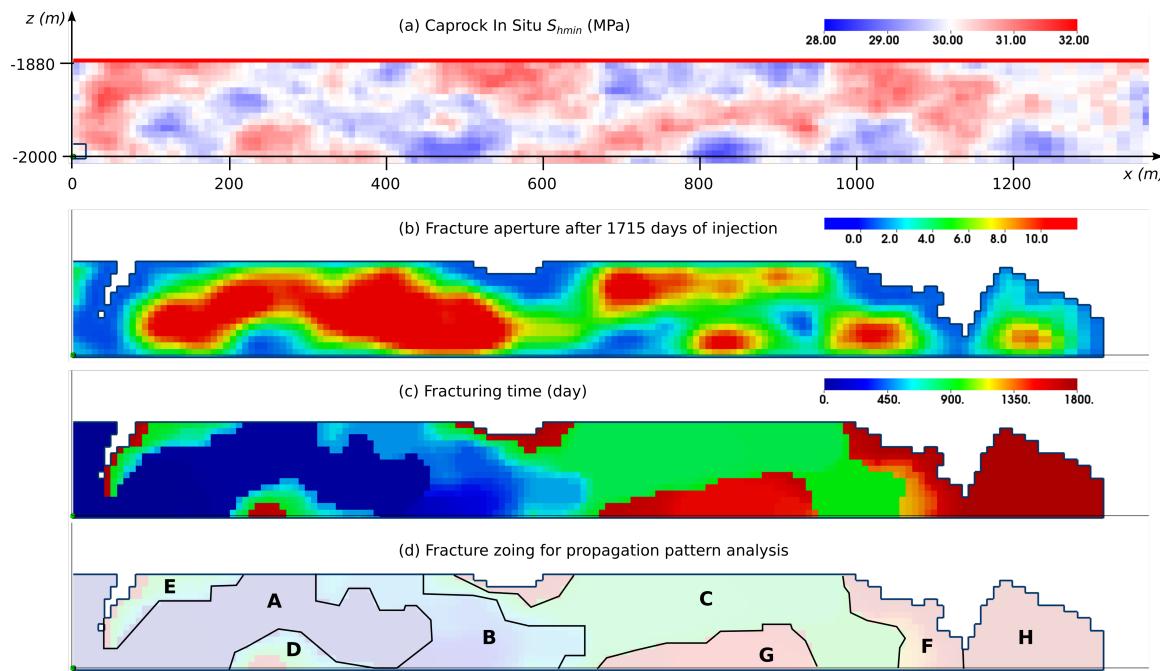

479 7 The effects of spatial variation of S_{hmin}

480 All the previous discussions assumed the vertical gradient of S_{hmin} to be the same as the
 481 hydrostatic gradient of the fluid and no horizontal variation of S_{hmin} . This section explores how the spatial
 482 distribution of S_{hmin} affects the growth of the caprock hydraulic fracture and the interactions between the
 483 fracture and the reservoir.

484 7.1 Vertical variation of S_{hmin}

485 We first consider the scenario in which S_{hmin} impedes the upward growth of the hydraulic fracture,
 486 namely when $-dS_{hmin}/dz < \rho_f g$ where g is the gravitational acceleration. Note that the sign convention
 487 dictates that $dS_{hmin}/dz < 0$ means S_{hmin} increases with depth as the z-axis points upwards. Under this

488 condition ($-dS_{hmin}/dz < \rho_f g$), an increase of fracture fluid pressure (compared with the baseline) would
 489 have two consequences. First, it allows S_{hmin} to be exceeded at a higher location and thereby a greater
 490 fracture height. Second, for a given fracture height, a higher net pressure generates a larger aperture. Both
 491 effects reduce the flow impedance of the fracture. Therefore, under a given S_{hmin} gradient and injection
 492 rate, the fluid pressure will assume a value that generates sufficient fracture height, aperture, and pressure
 493 gradient along the fracture to accommodate the injection rate. The equilibrium state under a greater
 494 dS_{hmin}/dz value (less negative or more positive) entails smaller fracture height and larger aperture. In
 495 Figure 9 the brown curve qualitatively depicts, under a constant injection rate, the fracture net pressure as
 496 a function of the fracture height. The shape of this curve is affected by stiffness of the rock, rheology of
 497 the fluid (CO_2), injection rate, among other factors. The blue curves show two hypothetical profiles of
 498 S_{hmin} (after the hydrostatic gradient corresponding to the density of supercritical CO_2 has been subtracted)
 499 in the caprock. The expected hydraulic fracture height in the caprock is approximately at where the brown
 500 curve and the blue curve first intersect.

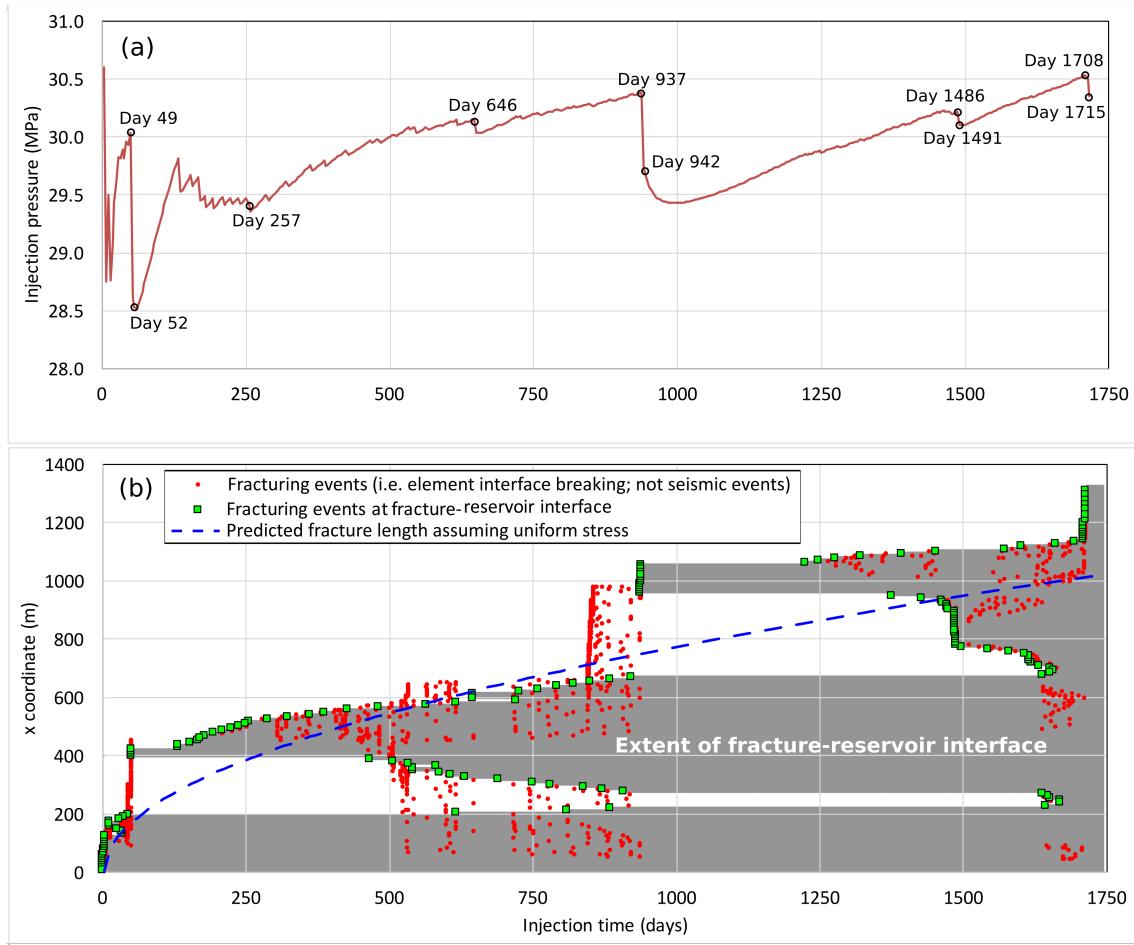


501
 502 Figure 9 Two hypothetical cases to illustrate how the vertical distribution of S_{hmin} in the caprock
 503 determines the height of the hydraulic fracture: (a) if S_{hmin} smoothly changes with depth, and (b) if S_{hmin}
 504 suddenly changes at rock formation interfaces to form a stress barrier. S_{hmin0} is S_{hmin} at the bottom of the
 505 caprock.

506
 507 If the stress gradient is such that $-dS_{hmin}/dz > \rho_f g$, it drives the hydraulic fracture to grow upwards.
 508 Because it takes less pressure (or more strictly speaking, less hydraulic head) to fracture the rock at a
 509 higher location, the caprock fracture tends to continue the upward propagation instead of fracturing the
 510 rock immediately above the reservoir. However, as the storage capacity of a fracture is small, the fracture
 511 growth that does not increase fracture-reservoir interface is much faster than that connected to the
 512 reservoir. The growth will soon be halted when it encounters a fracture barrier or a significant storage
 513 volume in the form of a porous and permeable formation. When encountering a fracture barrier, the
 514 fracture continues to dilate with increasing net pressure until the pressure is high enough to fracture the
 515 caprock immediately above the reservoir so that the injected fluid can flow back to the reservoir and
 516 release the excess pressure. The scenario of encountering a storage volume is essentially transporting the
 517 injected fluid to a shallower reservoir through the fracture.

519 7.2. Randomly distributed S_{hmin} in the caprock

520 When S_{hmin} is randomly distributed both vertically and horizontally, the system behavior becomes
 521 more complex but the principles governing the processes remain unchanged. To illustrate the fracturing
 522 and flow processes under such conditions, we impose a random perturbation to the caprock S_{hmin} field
 523 based on the baseline simulation in section 5 so that 1) the mean S_{hmin} in the caprock is unchanged, 2) the
 524 standard deviation of S_{hmin} is 0.5 MPa, 3) the auto-correlation lengths of S_{hmin} are 60 m and 120 m in the
 525 vertical and horizontal directions, respectively, and 4) the fracture barrier is still at 120 m above the
 526 reservoir. The generation of such auto-correlated random fields has been described in Guo et al. [2016]
 527 and is not repeated here. The distribution of resultant *in situ* S_{hmin} in the caprock is shown in Figure 10(a).
 528 Similar to the treatments for the baseline scenario in section 5, we remove the gravitational terms from the
 529 flow solutions, which dictates that the actual S_{hmin} profile being modeled has a vertical gradient identical
 530 to the hydrostatic pressure gradient corresponding to the surrogate fluid density. In other words, the mean
 531 S_{hmin} gradient and the fracture flow hydrostatic gradient cancel out and do not play an explicit role in the
 532 simulation.



533
 534 Figure 10 Simulation results for randomly distributed S_{hmin} . Quantities associated with the fracture are
 535 projected onto the x-z plane. (a) *In situ* minimum principle stress S_{hmin} in the fracturable portion of the
 536 caprock; (b) the distribution of fracture aperture after 1715 days of injection, i.e. in the end of the
 537 simulation; (c) the distribution of fracturing time along the caprock hydraulic fracture; and (d) zoning of
 538 the hydraulic fracture area based on fracturing time.

539
 540 As expected, the growth of the caprock fracture and its interaction with the reservoir are not as
 541 smooth and steady as in the baseline simulation. Figure 10(b) shows the distribution of fracture aperture
 542 after 1715 days (end of simulation) of pumping. Coordinating the patterns in Figure 10(a) and Figure
 543 10(b) reveals that large aperture tends to develop at locations with originally relatively low S_{hmin} .
 544 “Pockets” of large apertures are separated by high-stress zones, with the latter acting as bottlenecks for

545 flow. The largest aperture at that time is 14 mm, several times greater than that of the baseline case which
546 employed the same mean stress and injection rate. This is because the fracture fluid pressure is controlled
547 by the need to fracture high-stress zones. As pressure loss across the fracture is small, the net pressure
548 (which dilates the fracture aperture) can be as high as several MPa's at low stress zones, resulting in large
549 local aperture. Figure 10(c) shows the time of fracturing across the final fracture geometry, and in Figure
550 10(d) we identify eight zones based on distinct growth patterns. For instance, the fracture area in zone A
551 and that in zone C are characterized by uniform colors in Figure 10(c), indicating each is created over a
552 short period of time (i.e. fast growth). On the other hand, the relatively smooth color gradients in zone B
553 and zone F suggest gradual fracture growth.

554 Figure 11(a) shows the time history of injection pressure, where ten points are marked, denoting
555 remarkable events during the injection that illustrate various interaction modes between caprock hydraulic
556 fracture and reservoir under complex *in situ* stresses. Figure 11(b) shows separation of the fracture face
557 elements as individual “events” (red dots) while the fracturing of the faces along the fracture-reservoir
558 interface is highlighted as green squares. The shaded area in Figure 11(b) illustrates the evolution of the
559 horizontal extent of the fracture-reservoir interface, whose correspondences with the interface fracture
560 events is evident in the figure. Note that the “fracturing events” discussed here are mere discretized
561 fracturing steps in the numerical model; investigating the relationship between these events and actual
562 “seismic” or “microseismic” events associated with underground fluid injection is beyond the scope of the
563 current work.


564

565 Figure 11 Selected time histories of the simulation with randomly distributed S_{hmin} . (a) The evolution of
 566 bottomhole injection pressure with selected times denoted corresponding to the snapshots in Figure 12.
 567 (b) The distribution of fracturing events (red dots) in terms of x-coordinate and fracturing time. Note that
 568 the fracturing events in this context refers to occurrences of fracture growth and the associated mesh
 569 topology change, and do not imply seismic events. Fracturing events at the fracture-reservoir interface
 570 are highlighted as green squares. The shaded area denotes the evolution of the horizontal extent of the fracture-
 571 reservoir interface. The predicted fracture length evolution based on equation (12) calibrated by the
 572 baseline simulation is shown as the blue dashed line.

573

574 The following analysis is best illustrated by a combined review of Figure 11 and Figure 12. The
 575 first highlighted stage of the fracture propagation took place between day 49 of the injection and day 52.
 576 On day 49, the top of the fracture has reached $x = 320$ m while the bottom (interface with reservoir) was
 577 still bounded by a stress barrier at $x = 200$ m. The accumulation of pressure allowed the fracture to
 578 propagate through the upper portion to interface with the reservoir again at $x = 420$ m. The availability of
 579 unpressured reservoir volume resulted in an instantaneous pressure drop at day 52 and gradual pressure
 580 increase thereafter as newly accessible reservoir volume was pressurized. From day 52 to day 257, the
 581 fracture slowly propagated within a low-stress region at the bottom of the zone B, during which the
 582 pressure remained relative low and aperture small. From day 257 to day 646, the fracture-reservoir
 583 interface grew very slowly (evident in Figure 11(b)), limited by a high-stress barrier at $x = 550$ m, with

584 the injection pressure continuing to increase. After day 646, pressure was high enough to allow the
 585 fracture to grow backwards (negative x direction) to cover zone D. Although on day 937 the upper portion
 586 of the fracture had grown to $x = 980$ m, the fracture-reservoir interface only reached $x = 650$ m. On day
 587 942 as shown in Figure 12, the accumulated pressure allowed the fracture to break the high-stress barrier
 588 at $x = 980$ m and the fracture established new interface with the reservoir up to $x = 1080$ m. As another
 589 barrier exists ahead of the fracture front, similar processes repeated thereafter.

590

591 Figure 12 Snapshots of the caprock fracture extent, fracture aperture, and reservoir pore pressure on ten
 592 days are also denoted in Figure 11(a). The large black arrows in selected sub-figures indicate the most

593 significant subsequent fracture growth directions. The original *in situ* S_{hmin} is shown in a “slice” plane
 594 placed 400 m from the hydraulic fracture plane, on which the perimeter of the fracture is overlaid. The
 595 fracture is colored based on the aperture and the deformation is magnified by 4,000 times. On the fracture
 596 plane are vectors representing the flow direction and flow rate.

597

598 The caprock fracture growth under heterogeneous *in situ* stress appears to be much more
 599 complicated than that under more idealized conditions as presented in previous sections. However, the
 600 same principles governing the interaction between the fracture and the reservoir apply. When fracture
 601 growth is limited by stress barriers, fluid flowing into the reservoir through an interface of a fixed length
 602 results in continuous pressure increase, until the pressure is sufficiently high to allow the fracture to break
 603 into/across high-stress regions and eventually create new fracture-reservoir interface lengths. The creation
 604 of fracture into reservoir causes the injection pressure to decrease temporarily but that portion of the
 605 reservoir eventually saturates and motivates another episode of fracture growth. As shown in Figure
 606 11(a), although the injection pressure fluctuates remarkably between temporary fracture containment by
 607 stress barriers and fast breakthroughs, the range of variation is generally within the mean S_{hmin} value \pm
 608 standard deviation of S_{hmin} , echoing with the earlier observation that caprock S_{hmin} dictates injection
 609 pressure. Additionally, equation (12) with parameters calibrated based on the baseline simulation with
 610 homogeneous S_{hmin} provides a reasonable estimate of the fracture length development as shown Figure
 611 11(b).

612 8 Concluding remarks

613 8.1 Summary of technical findings

614 In this work, we studied the enabling conditions, processes, and mechanisms of hydraulic
 615 fracturing during CO₂ injection into a saline reservoir with relatively low permeability. The study utilizes
 616 fully-coupled numerical simulation of hydraulic fracturing and reservoir flow with a single-phase
 617 surrogate fluid.

618 First, we calculated the near-well pressure evolution for fluid injection into a moderately low-
 619 permeability saline reservoir. We found that under certain conditions common to commercial carbon
 620 storage applications, the near-well pressure could be higher than the fracturing pressure of the reservoir
 621 and/or the caprock. When the *in situ* minimum horizontal principal stress S_{hmin} in the reservoir formation
 622 is significantly lower than that in the caprock, it is possible to create a hydraulic fracture within the
 623 reservoir rock without fracturing the caprock. Such a fracture could be sufficient to provide efficient and
 624 effective access to the reservoir. However, a poroelastic analysis suggests that sustaining an open fracture
 625 in the reservoir will require continuously increasing pressure that may eventually be high enough to
 626 fracture the caprock.

627 Once initiated, the caprock hydraulic fracture exhibits pressure-limiting behavior dictating that
 628 the fracture fluid pressure remains only slightly higher than the pressure required to maintain an open
 629 fracture and is insensitive to any practical variation of the injection rate. However, because other energy
 630 dissipation mechanisms, including wellbore friction loss, entry loss, and the porous medium flow regime
 631 between wellbore exits and fracture entrances, are dependent on the flow rate, the wellhead injection
 632 pressure could still be sensitive to the injection rate. The propagation behavior of a caprock hydraulic

633 fracture connected to a CO₂ storage reservoir is analogous to that of the PKN hydraulic fracture in the
 634 leak-off-dominated regime. The fracture extends at such a rate that the creation of new flow interface
 635 between the fracture and the reservoir accommodates the injection rate. In essence, a hydraulic fracture
 636 provides an economical (i.e. very low energy dissipation across the fracture) and effective means for the
 637 injected fluid to access reservoir storage that is far from the injection point. Under a constant injection
 638 rate, the fracture length is proportional to the square root of elapsed time, proportional to the injection
 639 rate, and inversely proportional to an aggregate leak-off coefficient that represents the reservoir's ability
 640 to accommodate additional fluid at the given overpressure and hydraulic impedance at the fracture-
 641 reservoir interface. The aggregate leak-off coefficient for the fracture-reservoir interface can be
 642 approximated with the Carter's leak-off coefficient of the reservoir multiplied by the reservoir thickness.
 643 The most important implication of this finding is that the hydraulic fracture propagation rate is nearly
 644 independent of the fracture height and mechanical properties of the caprock.

645 Heterogeneity in caprock's *in situ* stress field induces fluctuations in the growth rate and injection
 646 pressure. The fracture can be temporarily contained by high-stress barriers while this leads to increasing
 647 pressure until it is sufficient to break the barriers. When the stress barrier is overcome, the potential
 648 energy accumulated in the fracture fluids drives rapid fracture growth until the fracture connects to
 649 unpressurized reservoir volume. Subsequently, the fracture fluid pressure decreases and the fracture is
 650 temporarily contained again, starting another episode of the containment-fast growth cycle. However, the
 651 overall behavior of such heterogeneous caprock fracture remains consistent with that under idealized
 652 uniform stresses, except that fracture aperture in low-stress "pockets" can be significantly larger than that
 653 in a smooth stress field. Although not investigated in the current work, the compartmentalization of
 654 reservoirs [Castelletto et al., 2013] could also cause fluctuations in fracture growth rate.

655 To quantitatively express the findings in a concise fashion, we define the following quantities:

- 656 • P_{ri} , initial reservoir pore pressure;
- 657 • P_{frac} , fluid pressure requires to initiate and sustain a hydraulic fracture;
- 658 • S_{hmin_r} , minimum principle stress in the CO₂ storage reservoir;
- 659 • S_{hmin_c} , minimum principle stress in the caprock immediately above the reservoir.

660 The following relationships generally hold:

- 661 1) If the reservoir rock is fracturable, $P_{frac} > S_{hmin_r}$, and the difference tends to increase over time
 662 due to poroelasticity.
- 663 2) If a hydraulic fracture cannot be sustained in the reservoir rock with a pressure $P_{frac} < S_{hmin_c}$, then
 664 caprock fracturing takes place and $P_{frac} \approx S_{hmin_c}$.
- 665 3) Because typically $P_{frac} - S_{hmin_c} \ll S_{hmin_c} - P_{ri}$, $S_{hmin_c} - P_{ri}$ ($\approx P_{frac} - P_{ri}$) determines both the
 666 reservoir storage capacity and the hydraulic fracture propagation rate.

667 8.2 Relevance to CO₂ storage design and site characterization

668 The findings of this work could have important implications for the design of geological carbon
 669 storage projects. Because flow along an open hydraulic fracture is tremendously more efficient than flow

670 within a porous medium in delivering fluid to far-field reservoir, injection through hydraulic fracturing
 671 could improve the CO₂ injection and storage capacity. The insensitivity of the injection pressure to the
 672 fracture height means that vertical containment of the fracture has no negative impact on the economics.
 673 In retrospect, this suggests that the arbitrary choice of fracture barrier location in the models did not
 674 significantly affect the results. Nevertheless, the identification and evaluation of fracture barriers in the
 675 caprock would be a critical issue in GCS project design, and deserve systematic studies.

676 The most desirable scenario is that a hydraulic fracture can be sustained exclusively within the
 677 reservoir rock (i.e. no caprock fracturing) at an injection pressure lower than S_{hmin_c} (minimum principal
 678 stress in caprock). Therefore, studying the fracturability of the reservoir rock, both as a generic scientific
 679 subject and for specific rock formations at the project level, is of a remarkable importance. If sustaining a
 680 hydraulic fracture exclusively within the reservoir under $P_{frac} < S_{hmin_c}$ has proven to be impossible for a
 681 site, the focus of the site characterization would be to investigate whether certain features of the caprock
 682 formation, such as stress gradient or persistent stress barriers, can effectively bound the vertical growth of
 683 the hydraulic fracture(s) without causing significant CO₂ leakage. Nevertheless, the current work only
 684 intends to reveal the mechanisms governing the propagation of caprock fracture and its interaction with
 685 storage reservoir. Whether geologic carbon storage through geomechanically contained caprock
 686 fracturing is a safe, viable engineering approach requires more systematic, rigorous studies.

687

688 **Acknowledgments:**

689 This study was originally motivated by extensive discussion with Dr. Joshua A. White of LLNL,
 690 and we would like to acknowledge his helpful input. Dr. Susan A. Carroll of LLNL also provided
 691 important guidance to this work. This work was partly supported by LLNL LDRD project “*High-Fidelity*
 692 *Fracture Model for Hydraulically Fractured Shale Reservoirs*” (16-ERD-014). This manuscript has been
 693 authored by Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA2 734-I
 694 with the US. Department of Energy. The United States Government retains, and the publisher, by
 695 accepting the article for publication, acknowledges that the United States Government retains a non-
 696 exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this
 697 manuscript, or allow others to do so, for United States Government purposes This work is LLNL report
 698 LLNL-JRNL-738072.

699 **References:**

700 Boait, F. C., N. J. White, M. J. Bickle, R. A. Chadwick, J. A. Neufeld, and H. E. Huppert (2012), Spatial
 701 and temporal evolution of injected CO₂ at the Sleipner Field, North Sea, *J. Geophys. Res.*, 117,
 702 B03309, doi:10.1029/2011JB008603.

703 Biot, M.A. (1941). "General Theory of Three-Dimensional Consolidation". *Journal of Applied Physics*.
 704 12 (2): 155–164. doi:10.1063/1.1712886.

705 Bryant, S. L., Lakshminarasimhan, S., and Pope, G. A. (2008). Buoyancy-Dominated Multiphase Flow
 706 and Its Effect on Geological Sequestration of CO₂, *SPE Journal*, 13(4), 447–454,
 707 doi:10.2118/99938-PA.

708 Carter, R.D.: "Derivation of the General Equation for Estimating the Extent of the Fractured Area,"
 709 Appendix I of "Optimum Fluid Characteristics for Fracture Extension," *Drilling and Production*

710 Practice, G.C. Howard and C.R. Fast, New York, New York, USA, American Petroleum Institute
 711 (1957), 261–269.

712 Carrier, B., & Granet, S. (2012). Numerical modeling of hydraulic fracture problem in permeable medium
 713 using cohesive zone model. *Engineering Fracture Mechanics*, 79, 312–328.
 714 <http://doi.org/10.1016/j.engfracmech.2011.11.012>

715 Castelletto N., G. Gambolati, and P. Teatini (2013), Geological CO₂ sequestration in multi-compartment
 716 reservoirs: Geomechanical challenges, *J. Geophys. Res. Solid Earth*, 118, 2417–2428,
 717 doi:10.1002/jgrb.50180.

718 Celia, M. A., Bachu, S., Nordbotten, J. M., & Bandilla, K. W. (2015). Status of CO₂ storage in deep
 719 saline aquifers with emphasis on modeling approaches and practical simulations. *Water
 720 Resources Research*, 51(9), 6846–6892. <http://doi.org/10.1002/2015WR017609>

721 Chiaramonte, L., White, J. A. and Trainor-Guitton, W. (2015), Probabilistic geomechanical analysis of
 722 compartmentalization at the Snøhvit CO₂ sequestration project. *J. Geophys. Res. Solid Earth*,
 723 120: 1195–1209. doi: 10.1002/2014JB011376.

724 Detournay, E. (2004). Propagation Regimes of Fluid-Driven Fractures in Impermeable Rocks.
 725 *International Journal of Geomechanics*, 4(1), 35. [3641\(2004\)4:1\(35\)](http://doi.org/10.1061/(ASCE)1532-

 726 3641(2004)4:1(35))

727 Detournay, E., & Cheng, A. H. D. (1991). Plane strain analysis of a stationary hydraulic fracture in a
 728 poroelastic medium. *International Journal of Solids and Structures*, 27(13), 1645–1662.
 729 [http://doi.org/10.1016/0020-7683\(91\)90067-P](http://doi.org/10.1016/0020-7683(91)90067-P)

730 Durucan, S., Shi, J. Q., Sinayuc, C., & Korre, A. (2011). In Salah CO₂ storage JIP: Carbon dioxide plume
 731 extension around KB-502 well - New insights into reservoir behaviour at the In Salah storage site.
 732 *Energy Procedia*, 4, 3379–3385. <http://doi.org/10.1016/j.egypro.2011.02.260>

733 Ehlig-Economides, C., & Economides, M. J. (2010). Sequestering carbon dioxide in a closed
 734 underground volume. *Journal of Petroleum Science and Engineering*, 70(1–2), 123–130.
 735 <http://doi.org/10.1016/j.petrol.2009.11.002>

736 Eiken, O., Ringrose, P., Hermanrud, C., Nazarian, B., Torp, T. A., & L. Høier (2011). Lessons Learned
 737 from 14 years of CCS Operations: Sleipner, In Salah and Snøhvit. *Energy Procedia*, 4, 5541–
 738 5548. <http://doi.org/10.1016/j.egypro.2011.02.541>

739 Fisher, M. K., & Warpinski, N. R. (2012). Hydraulic-Fracture-Height Growth: Real Data, *SPE Prod.
 740 Oper.*, 27(01), 8–19, doi:10.2118/145949-PA.

741 Fu, P., Johnson, S. M., & Carrigan, C. R. (2013). An explicitly coupled hydro-geomechanical model for
 742 simulating hydraulic fracturing in arbitrary discrete fracture networks. *International Journal for
 743 Numerical and Analytical Methods in Geomechanics*, 37(14), 2278–2300.
 744 <http://doi.org/10.1002/nag.2135>

745 Guo, B., Fu, P., Hao, Y., Peters, C. A., & Carrigan, C. R. (2016). Thermal drawdown-induced flow
 746 channeling in a single fracture in EGS. *Geothermics*, 61, 46–62.
 747 <http://doi.org/10.1016/j.geothermics.2016.01.004>

748 Han, W. S., G. A. Stillman, M. Lu, C. Lu, B. J. McPherson, and E. Park (2010), Evaluation of potential
 749 nonisothermal processes and heat transport during CO₂ sequestration, *J. Geophys. Res.*, 115,
 750 B07209, doi:10.1029/2009JB006745.

751 Haszeldine, R. S. (2009). Carbon Capture and Storage: How Green Can Black Be? *Science*, 325(5948),
 752 1647–1652. <http://doi.org/10.1126/science.1172246>

753 Hubbert, K. M., & Willis, D. G. (1957). Mechanics of Hydraulic Fracturing. *Transactions Of The*
 754 *American Institute Of Mining And Metallurgical Engineers*, 210(6), 153–163.

755 Iding, M., & Ringrose, P. (2010). Evaluating the impact of fractures on the performance of the In Salah
 756 CO₂ storage site. *International Journal of Greenhouse Gas Control*, 4(2), 242–248.
 757 <http://doi.org/10.1016/j.ijggc.2009.10.016>

758 International Energy Agency, 2010. *Energy Technology Perspectives 2010: Scenarios and Strategies to*
 759 *2050*. International Energy Agency, Paris, France.

760 Krueger, R. 2004. Virtual crack closure technique: History, approach, and applications. *Appl. Mech. Rev.*,
 761 57(2), 109, doi:10.1115/1.1595677.

762 Lecampion, B., J. Desroches, R. G. Jeffrey, and A. P. Bunger (2017), Experiments versus theory for the
 763 initiation and propagation of radial hydraulic fractures in low-permeability materials, *J. Geophys.*
 764 *Res. Solid Earth*, 122, 1239–1263 doi:10.1002/2016JB013183.

765 McGrail, B. P., H. T. Schaeff, A. M. Ho, Y.-J. Chien, J. J. Dooley, and C. L. Davidson (2006), Potential
 766 for carbon dioxide sequestration in flood basalts, *J. Geophys. Res.*, 111, B12201,
 767 doi:10.1029/2005JB004169.

768 Morris, J. P., Hao, Y., Foxall, W., & McNab, W. (2011). A study of injection-induced mechanical
 769 deformation at the In Salah CO₂ storage project. *International Journal of Greenhouse Gas*
 770 *Control*, 5(2), 270–280. <http://doi.org/10.1016/j.ijggc.2010.10.004>

771 Nordgren, R. P. (1972). Propagation of a Vertical Hydraulic Fracture. *Society of Petroleum Engineers*
 772 *Journal*, 12(4), 306–314. <http://doi.org/10.2118/3009-PA>

773 Okwen, R. T., Stewart, M. T., and Cunningham, J. A. (2011). Temporal variations in nearwellbore
 774 pressures during CO₂ injection in saline aquifers, *Int. J. Greenh. Gas Control*, 5(5), 1140–1148,
 775 doi:10.1016/j.ijggc.2011.07.011.

776 Orr, F. M. (2009). Onshore Geologic Storage of CO₂. *Science*, 325(5948), 1656–1658. http://doi.org/DOI_10.1126/science.1175677

777 Pacala, S., & Socolow, R. (2004). Stabilization Wedges: Solving the Climate Problem for the Next 50
 778 Years with Current Technologies. *Science*, 305(5686), 968–972.
 779 <http://doi.org/10.1126/science.1100103>

780 Pan, P.-Z., Rutqvist, J., Feng, X.-T., & Yan, F. (2013). Modeling of caprock discontinuous fracturing
 781 during CO₂ injection into a deep brine aquifer. *International Journal of Greenhouse Gas Control*,
 782 19, 559–575. <http://doi.org/10.1016/j.ijggc.2013.10.016>

783 Perkins, T.K., & Kern, L.R. (1961). Widths of Hydraulic Fractures. *Journal of Petroleum Technology*,
 784 13(9), 937–949. <http://doi.org/10.2118/89-PA>

785 Renshaw, C. E., and C. F. Harvey (1994), Propagation velocity of a natural hydraulic fracture in a
 786 poroelastic medium, *J. Geophys. Res.*, 99(B11), 21667–21677, doi:10.1029/94JB01255.

787 Rinaldi, A. P., & Rutqvist, J. (2013). Modeling of deep fracture zone opening and transient ground
 788 surface uplift at KB-502 CO₂ injection well, In Salah, Algeria. *International Journal of*
 789 *Greenhouse Gas Control*, 12, 155–167. <http://doi.org/10.1016/j.ijggc.2012.10.017>

790 Ringrose, P. S., Mathieson, A. S., Wright, I. W., Selama, F., Hansen, O., Bissell, R., Saoula, N., & J.
 791 Midgley. (2013). The in salah CO₂ storage project: Lessons learned and knowledge transfer.
 792 *Energy Procedia*, 37, 6226–6236. <http://doi.org/10.1016/j.egypro.2013.06.551>

793

794 Salimzadeh, S., Paluszny, A., & Zimmerman, R. W. (2017). Three-dimensional poroelastic effects during
795 hydraulic fracturing in permeable rocks. International Journal of Solids and Structures, 108: 153-
796 163. <http://doi.org/10.1016/j.ijsolstr.2016.12.008>

797 Settgast, R. R., Fu, P., Walsh, S. D., White, J. A., Annavarapu, C., & Ryerson, F. J. (2016). A fully
798 coupled method for massively parallel simulation of hydraulically driven fractures in 3-
799 dimensions. International Journal for Numerical and Analytical Methods in Geomechanics.
800 <http://doi.org/10.1002/nag.2557>

801 Shi, J. Q., Sinayuc, C., Durucan, S., & Korre, A. (2012). Assessment of carbon dioxide plume behaviour
802 within the storage reservoir and the lower caprock around the KB-502 injection well at In Salah.
803 International Journal of Greenhouse Gas Control, 7, 115–126.
804 <http://doi.org/10.1016/j.ijgpc.2012.01.002>

805 Span, R., & Wagner, W. (1996). A New Equation of State for Carbon Dioxide Covering the Fluid Region
806 from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. *Journal of Physical
807 and Chemical Reference Data*, 25(6), 1509. <http://doi.org/10.1063/1.555991>

808 Verdon, J. P., Kendall, J.-M., Stork, A. L., Chadwick, R. A., White, D. J., & Bissell, R. C. (2013).
809 Comparison of geomechanical deformation induced by megatonne-scale CO₂ storage at Sleipner,
810 Weyburn, and In Salah. *Proceedings of the National Academy of Sciences of the United States of
811 America*, 110(30), E2762-71. <http://doi.org/10.1073/pnas.1302156110>

812 Warpinski, N., Schmidt, R., & Northrop, D. (1982). In-Situ Stresses: The Predominant Influence on
813 Hydraulic Fracture Containment, *J. Pet. Technol.*, 34(3), doi:10.2118/8932-PA.

814 Warpinski, N. R., & Teufel, L.W. (1987). Influence of Geologic Discontinuities on Hydraulic Fracture
815 Propagation, *J. Pet. Technol.*, 39(2), 209–220, doi:10.2118/13224-PA.

816 Zimmerman, R.W. (2002) Fluid Flow in Porous Media, course notes for M.Sc. in Petroleum
817 Engineering. Department of Earth Science and Engineering, Imperial College, London.

818 Zhang, X., and R. G. Jeffrey (2012), Fluid-driven multiple fracture growth from a permeable bedding
819 plane intersected by an ascending hydraulic fracture, *J. Geophys. Res.*, 117, B12402,
820 doi:10.1029/2012JB009609.

821 Zoback, M. D., & Gorelick, S. M. (2012). Earthquake triggering and large-scale geologic storage of
822 carbon dioxide. *Proceedings of the National Academy of Sciences of the United States of
823 America*, 109(26), 10164–8. <http://doi.org/10.1073/pnas.1202473109>

824

825

826