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Abstract—Network contention in existing high performance
computing (HPC) systems increases job execution time and
reduces machine throughput. This problem is expected to become
worse in future systems as core counts increase and networks
become larger and more complicated. In this paper, we investigate
the use of network Quality of Service (QoS) to mitigate the effects
of network contention. QoS allocates bandwidth to individual
jobs, thus limiting the impact that one job can have on another
through network contention. We consider coarse-grained QoS,
in which each job runs at a different priority level, by running
a number of micro-benchmarks and applications in different
QoS configurations on real hardware with QoS capabilities.
Our results indicate that while network contention reduces job
performance by as much as 70%, coarse-grained QoS is unlikely
to improve throughput on HPC systems and may increase job
execution times by more than 100%. Based on our analysis,
finer-grained QoS is more likely to improve performance and
throughput.

I. INTRODUCTION

In high performance computing (HPC), several jobs ex-
ecute concurrently in high-end machines consisting of up
to thousands of nodes. The core counts of these high-end
machines are rapidly increasing, which means that each node
can produce data at a faster rate. This in turn means that it
is likely that more data will be communicated between nodes,
either because there are more potential message senders and
receivers (in a flat MPI model) or because a “leader” thread
sends more data (e.g., in an MPI+OpenMP model).

One negative aspect of the ability of many-core nodes to
send large amounts of data is that there is more total data on
the network, and increases in node count and network capacity
may not keep pace with increases in per-node core count.
This increases the chance that network congestion due inter-
job interference occurs. While schedulers for HPC machines
generally use space sharing—in which each job is assigned
a disjoint set of nodes to prevent on-node sharing and per-
formance degradation—the network on most HPC machines
is shared between jobs. System software solutions to network
contention will therefore become increasingly important.

Network contention occurs when multiple processes send
messages that travel over the same network link at the same
time. When this happens, messages must share the bandwidth
of the affected link, which generally reduces the performance
of all messages traveling through the link. This, in turn, can
degrade the performance of the jobs that sent the affected
messages and reduce the throughput of the HPC machine.

One way to mitigate the problems caused by contention is
to use Quality of Service (QoS) capabilities that are already
built into InfiniBand, a common networking fabric in HPC.
QoS is already used in the Internet and Local Area Networks
to prioritize different types of traffic, but it is not widely used
in HPC installations. QoS mechanisms can allocate bandwidth
among different applications (or classes of applications), thus
guaranteeing each application or class a minimum amount
of bandwidth. This can protect applications, to some degree,
from network interference from other applications, which may
improve overall throughput.

In this paper, we investigate the use of QoS to improve
throughput on HPC machines by running several micro-
benchmarks and MPI applications under different QoS con-
figurations. To the best of our knowledge, this is the first
empirical study of using QoS to mitigate inter-job interference
on HPC hardware. Our results show that network contention
increases job execution time by as much as 70%. However
coarse-grained QoS, in which each job runs at a different prior-
ity level, is unlikely to significantly improve HPC throughput
and may increase job execution times by more than 100%
in some cases. This differs from previous results based on
simulation [1]. We also analyze the performance of our micro-
benchmarks to understand why we were unable to improve
throughput. In general, we found that assigning any single
application a high priority tends to speed up ranks that do not
need to be sped up, which unnecessarily slows down other
jobs and decreases overall throughput. Our analysis shows that
applying QoS at the rank level rather than the job level is more
likely to improve job performance and throughput.

The rest of this paper is organized as follows. In Section II
we discuss the problem of network contention and provide
background on QoS. In Section III we describe our experimen-
tal setup, including the micro-benchmarks and applications we
ran and the hardware we used for testing. We discuss our
results in Section IV and present related work in Section V.
Finally, we summarize our findings in Section VI.

II. BACKGROUND

Network contention is a long-standing problem in HPC.
Contention occurs when multiple network flows—either from
the same application or different applications—use the same
network hardware at the same time. Contention increases
the amount of time routers and switches take to process



each packet. It also forces network flows to share bandwidth
with other flows. Thus, each flow experiences an increase
in latency and a decrease in effective bandwidth. In other
words, contention causes the network to slow down message
transmission. Slower message transmission, in turn, can result
in more idle time and longer execution times for applications.

Contention is particularly difficult to analyze and understand
because it is unpredictable. The amount of contention that
a job experiences is affected by many parameters, including
the communication characteristics of all jobs running on the
system, the allocation of nodes to jobs, the times at which
each job uses the network, and the network routing algorithm.
Because contention is context dependent, the same job can
experience widely different contention patterns (and thus exe-
cution times) when run at different times on the same system.

Network contention is already a problem on HPC systems,
and this problem is expected to get worse as we build larger
systems. Nodes in exascale systems will likely be much
more powerful than nodes in current systems, with (possibly
multiple) accelerators and many cores that can process large
amounts of data. This will allow users to perform larger and
more detailed computations, but it also will likely result in
larger and/or more messages being sent across the network.
In addition to this, machines with larger numbers of nodes
will likely also have larger and more complicated networks.
Messages may have to travel more hops to reach their destina-
tion, and they may be required to traverse hops with reduced
bandwidth. These problems will increase the amount of data
on the network, the amount of time that messages spend on
the network, and the probability that multiple messages will
use the same link at the same time. This will result in more
network contention and thus greater performance degradation.

Space sharing, or spatially dividing resources between jobs,
is one way to eliminate contention. Space sharing is already
typical for nodes; specific nodes are allocated to specific
jobs and jobs do not share nodes. This eliminates inter-
job contention for on-node resources such as the CPU and
memory. Space sharing is also a viable strategy for some kinds
of networks; each job is placed in a disjoint part of the network
so that no job shares a network link with other jobs. For
example, BlueGene systems use network space sharing [2].
However, because of the need to schedule jobs in disjoint
sections of the network, space sharing results in reduced
machine utilization. Because high utilization is a goal of many
HPC installations, most HPC machines do not space share the
network. For this reason we are investigating other methods
of addressing network contention.

Many modern networks have built-in Quality of Service
(QoS) mechanisms that can be used to mitigate the problems
of contention. There are many different types of QoS, but in
this paper, we are interested in traffic prioritization. A network
that uses QoS can assign different priorities to different flows
or classes of flows. The priority of each flow determines how it
is handled as it is transferred across the network and limits the
amount of bandwidth it can consume in the presence of other
network traffic. QoS, in the form of differentiated services [3],

has existed in the Internet for two decades and has been used
in video streaming [4], [5], cloud and data center networks [6],
and wireless networks [7], among other things.

QoS has been available in HPC networks for several years.
For example, InfiniBand, a network fabric used in many HPC
installations, allows users to divide flows into different service
levels (SLs), where the SL defines the priority of its traffic.
Each SL is associated with a priority, and SLs are allowed
to send data in a weighted round-robin fashion [8]. Thus, if
SL A has QoS of 3 and SL B has QoS of 5, SL A will
be allowed to send 3 packets, then SL B will be allowed to
send 5 packets, and so on. In addition to this, each SL is
managed independently, so contention on one SL cannot result
in blocked packets on another SL, even if they share the same
link. Thus, QoS can be used in InfiniBand to limit the amount
of network contention that a job can experience.

QoS support is also built in to common MPI libraries. For
example, MVAPICH2, a popular MPI implementation, allows
users to set the service level for each job using an environment
variable. We use this capability in our QoS system.

Despite its availability in common network fabrics and
MPI libraries, QoS has not seen widespread use in HPC.
Researchers have considered some ways of using QoS to
improve performance of HPC jobs, such as dividing traffic into
different SLs but assigning the same priority to all SLs [9],
[10]. Researchers have also looked into separating traffic into
different SLs, but this has only been tested in simulation [1].
In this work we investigate QoS on actual hardware and divide
traffic into SLs with different priorities.

III. EXPERIMENTAL SETUP

We evaluated the effectiveness of QoS at improving perfor-
mance and throughput by running several micro-benchmarks
and applications in various configurations with various QoS
settings. All of the benchmarks and applications are built on
MPI. In the following sections, we first describe the micro-
benchmarks and applications, and then describe the tests that
we ran.

A. Micro-Benchmarks

We used four micro-benchmarks that implement common
HPC communication patterns. Each of the benchmarks can
be tuned to send different sizes of messages or to compute
for different amounts of time. We call the benchmarks Flood-
Pairs, Nearest-Neighbor, All-to-all, and Random-Pairs. Each
is described below in greater detail.

Flood-Pairs is a modified version of the bisection bandwidth
test from the CORAL MPI benchmarks [11] which is designed
to measure the bisection bandwidth of an HPC installation. We
are not using it to measure bisection bandwidth but rather for
its communication characteristics. In this benchmark ranks are
grouped into pairs, each pair exchanges messages repeatedly,
and then the aggregate bandwidth is calculated. We selected
this benchmark because of its simplicity and its heavy network
usage. In our tests, the lower half of ranks were paired with
the upper half of ranks; for example, in a 140 rank test, rank



0 would be paired with rank 70, rank 1 would be paired with
rank 71, and so on. Because ranks are assigned in a block
fashion in our setup (the first block of ranks is assigned to the
first node, etc.), this ensures that as much communication as
possible is off-node.

Our second micro-benchmark, Nearest-Neighbor, is a sim-
ple 2D nearest neighbor exchange that we wrote. It lays
out ranks in a 2D grid, and each node exchanges messages
with its 4 neighbors in the grid. This continues for a set
number of iterations. There are also periodic global barriers
after a set number of iterations. We selected this benchmark
because nearest neighbor communication is common in MPI
applications.

Like Nearest-Neighbor, All-to-all is a simple benchmark
that we wrote. Each iteration is a single MPI_Alltoall
call in which every rank exchanges data with every other rank.
This repeats for a set number of iterations. This benchmark
is designed to represent applications that include periodic
global synchronization. While all-to-all communication is not
a perfect representation of an MPI application with periodic
global synchronization, it is a simple approximation that can
help us understand how QoS affects communication intensive
applications with frequent synchronization.

Our final benchmark, Random-Pairs, is similar to Flood-
Pairs in that the lower half of the ranks are paired with the
upper half of the ranks and then pairs send large amounts of
data to each other. However, in Random-Pairs the pairs are
assigned randomly. This allows us to study more complex,
irregular communication patterns.

B. Applications

We ran tests with four applications: Qbox, Crystal Router,
MILC, and pF3D. Each is either an application used for
production science or a proxy application designed to mimic
production applications. We selected these applications be-
cause they have high network usage and communication and
computation patterns that are representative of production
applications.

Qbox is a first-principles molecular dynamics simula-
tor [12]. Crystal Router demonstrates a many-to-many com-
munication pattern extracted from the Nek5000 applica-
tion [13]. We removed DUMPI tracing from the Crystal Router
code so that we can focus only on the communication behavior.
MILC is an MIMD lattice computation code modeled after
applications used to study quantum chromodynamics [14].
pF3D simulates laser-plasma interactions [15]. We used a
pF3D proxy application that emulates only the communication
pattern of pF3D. To make the application more realistic,
we added sleep calls between each communication phase to
simulate computation. We tuned the length of the sleep calls
so that the communication/computation ratio is roughly 50/50
when pF3D is running in isolation1.

1 The code for our benchmarks and applica-
tions will be released at https://bitbucket.org/lesavoie/
rome-2018-network-qos-in-many-core-mpi-applications. Some code will not
be released due to distribution restrictions.

C. Environment

We ran our tests on Catalyst, a machine at Lawrence Liv-
ermore National Laboratory. Catalyst has 300 compute nodes,
each with two 12-core Intel Xeon E5-2695 CPUs and 128 GB
of RAM. While Catalyst has tens of cores rather than hundreds
of cores per node it gives us the opportunity to study network
contention and QoS on real hardware before it becomes a
significant concern in future systems. Catalyst’s interconnect
is a two-level fat-tree built from QLogic InfiniBand QDR
hardware, and each node has two network connections [16].
Due to a hardware issue we disabled one of the network
connections on each of the nodes. In order to control the
amount of network contention experienced by our jobs we ran
our tests during dedicated access time when no other jobs were
running. This ensures that none of the contention experienced
by our jobs is caused by jobs started by other users that we
do not control.

We compiled our benchmarks and applications using MVA-
PICH2 2.2. We used the default version with no changes. As
noted in Section II, MVAPICH2 includes the ability to select
a service level using an environment variable. In our tests, we
used the IPATH_SL environment variable to set the service
level for each application; this is the environment variable that
sets the service level on QLogic hardware. By default, all jobs
run in the same service level, so for tests with default QoS we
set IPATH_SL to the same value for all jobs.

System administrators have set up four service levels on
Catalyst. Service levels 0 and 1 have a priority ratio of 9:1.
This means that when two jobs are using the same network
link at the same time, a job using service level 0 is allocated
approximately 9 times as much bandwidth as a job using
service level 1. Any job using an uncontested link is allowed
to use the full link bandwidth. Similarly, service levels 2 and
3 have a priority ratio of 9:1. However, service levels 0 and 1
are designated “high priority” while service levels 2 and 3 are
designated “low priority” with relative priorities of 254:1. This
means that, in a contended scenario, service levels 0 and 1 are
given 254 times more aggregate bandwidth than service levels
2 and 3. Thus, the effective priorities for the 4 service levels
are 2286:254:9:1. Users must have administrative privileges
to modify service levels, so we were not able to change these
priorities during our testing.

D. Methodology

We evaluated the effect of QoS on our benchmarks and
applications by running a large number of tests. Each test
involved a group of four applications or benchmarks using
either two or four service levels. We used 280 of the 300 nodes
to provide a buffer against node failures. We divided the nodes
evenly between the jobs, so each job ran on 70 nodes. Our tests
included each job running in its allocation in isolation (i.e.,
with no other jobs running), running all jobs together at the
default service level, and running all jobs together with various
combinations of service levels. For some tests, we varied the
message sizes or computation times of the micro-benchmarks.
We ran each test multiple times on different randomized node

https://bitbucket.org/lesavoie/rome-2018-network-qos-in-many-core-mpi-applications
https://bitbucket.org/lesavoie/rome-2018-network-qos-in-many-core-mpi-applications


allocations so that we can investigate the impact of QoS in
many different scenarios.

We set up each application such that each run took roughly
60 seconds when running in isolation. In some cases, we did
this by modifying the application to quit after a specified
number of iterations. While this may cause incomplete com-
putation, it does not affect our network contention analysis.
Because the benchmarks do not include set up phases, we
set up the benchmarks so that each run took roughly 30
seconds when running in isolation. We restarted each job
after it finished until all jobs had completed at least once.
This ensures that jobs experience similar network contention
throughout their execution time.

Each node on Catalyst has 24 cores across two sockets,
and we ran 22 ranks per node. We left one core per socket
unused to limit performance perturbation from interrupt pro-
cessing [17]. We also modified some of the applications to
print the elapsed time at the end of each run.

IV. RESULTS

In this section we discuss the results of our experiments
with Quality of Service in MPI applications. We include results
with different numbers of jobs, different numbers of service
levels, different sizes of messages, and different amounts of
time spent in computation. We also investigate the underlying
reasons for the observed performance.

A. Overall Results

Our first set of experiments is designed to test the overall
viability of using QoS to improve throughput on HPC systems.
In this set of tests, we ran our four micro-benchmarks simulta-
neously with each benchmark at a different service level. We
tested all possible assignments of jobs to service levels. For
the default case we ran all jobs at the same service level. In
addition to this, we ran each job with no other jobs running
and summed the time from the 4 jobs to produce an “ideal” run
time with no inter-job contention. We repeated all of the tests
at least 10 times but randomized the allocation of nodes to jobs
for each repetition. These results are shown in Figure 1. In this
figure, the x-axis shows the assignments of service levels to
jobs. The service levels for the four jobs are shown separated
by dashes. Jobs are listed in the following order: Flood-Pairs,
Nearest-Neighbor, All-to-all, Random-Pairs. Thus, the label
“0-1-2-3” on the x-axis indicates that Flood-Pairs ran at SL
0, Nearest-Neighbor ran at SL 1, and so on. As mentioned in
Section III, lower numbers indicate higher priority, so in the
previous example, Flood-Pairs has the highest priority. The
y-axis shows the sum of the execution times of each job in
seconds. Thus, the y-axis correlates to the throughput because
it indicates the amount of time it takes to complete a fixed
amount of work. The times are shown as boxplots to show
the range of results from the different node allocations. The
plots also include dashed lines showing the medians of the
ideal and default cases.

This chart demonstrates the motivation behind our work.
The penalty for switching from the ideal case to the default
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Fig. 1: Overall Performance of Micro-Benchmarks with Four
Service Levels

case is around 20% of execution time. Recall that the ideal case
emulates an idealized system with no inter-job contention, and
the default case runs all jobs at the same service level. The
difference between the two is the cost of inter-job network
contention. We have additional tests with larger numbers of
jobs that show that this penalty can be as high as 70% of
execution time. The purpose of our investigation into QoS is
to mitigate this penalty.

However, our results show that, at least in this configuration,
no assignment of jobs to service levels consistently outper-
forms the default (i.e., all jobs running at service level 0). The
penalty for slowing down some jobs completely offsets the
benefit of running other jobs at high priority. These results
show that per-job QoS can be used to prioritize some jobs
above others but not to improve overall throughput. We will
analyze this more deeply and discuss the reasons for this lack
of improvement in the following sections.

Figure 2 shows the same data broken out by benchmark.
Across the benchmarks the execution time approaches the
ideal time when it runs at a high service level, but the
benchmark is much slower when running at a lower service
level. Interestingly, the worst case time is much lower for
Flood-Pairs than it is for the other micro-benchmarks. This
suggests that putting Flood-Pairs at a relatively low service
level may be the best option with the type of coarse-grained
QoS we are testing. Figure 1 bears this out because the tests
in which Flood-Pairs is at service level 2 or 3 show the best
performance. However, this is still not enough to improve
overall performance over the default.

Figure 3 shows the performance of the four applications that
we tested. For these tests, the service levels listed on the x-
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(b) Nearest-Neighbor
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(c) All-to-all
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Fig. 2: Individual Performance of Micro-Benchmarks With Four Service Levels
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Fig. 3: Overall Performance of Applications with Four Service
Levels

axis are assigned to applications in the following order: Qbox,
MILC, Crystal Router, pF3D. The results are similar to the
results in Figure 1 except that the penalty from using multiple
service levels is lower. This is because the micro-benchmarks
spend 100% of their time in communication, whereas the
applications spend between 50% and 80% of their time in
communication. Thus, the effect of bandwidth restrictions on
the overall run time of the applications is relatively small.

B. Flood-Pairs Analysis

In order to better understand the performance of our micro-
benchmarks, we examined them individually. We will first
discuss Flood-Pairs because it is the easiest of our micro-
benchmarks to analyze. In Flood-Pairs, each rank communi-
cates with only one other rank. Furthermore, the 22 ranks on
a given node communicate with the 22 ranks on another node,
so performance of ranks on the same node is similar. There-
fore, the overall execution time of Flood-Pairs is determined
entirely by the speed of the slowest pair of ranks.

Figure 4 includes a data point for every rank of every Flood-
Pairs job we ran in our default tests (i.e., all jobs are running
at the same service level). In this figure, tests in which jobs
ran at different service levels are not included because that
changes the relationship between the amount of data sent on a
link and the amount of slowdown experienced by a rank. The
x-axis shows the maximum amount of data sent over any link
used by a rank. The y-axis shows the execution time of the
rank. As expected, there is a correlation between the amount
of data sent over a link used by a Flood-Pairs rank and the
amount of time it takes that rank to execute. This demonstrates
that network contention is a major reason for variation in run
times across Flood-Pairs ranks.
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Fig. 4: Flood-Pairs Rank Time Compared to Max Data on a
Link
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Fig. 5: Flood-Pairs Rank Times

We can understand the performance of Flood-Pairs more
fully by looking at an individual job. Figure 5 shows two
histograms of execution times for individual ranks in a single
Flood-Pairs job running under contention. The histogram at
the top shows Flood-Pairs rank timing when all jobs are
running at the same service level. The histogram at the bottom
shows data from the same run except that the Flood-Pairs job
is given higher priority than the other jobs. These two figures
are typical for Flood-Pairs jobs from our tests. The overall
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Fig. 6: Nearest-Neighbor Rank Time Compared to Max Data
on a Link

decrease in execution time from moving Flood-Pairs to a high
priority service level is relatively small: about 37 seconds to
about 31 seconds. This is based on the slowest rank from each
job (the rank that is farthest to the right). The execution time
of many of the other ranks also decreases; for example, several
ranks go from a roughly 28 second run time to a roughly 19
second run time. However, these ranks were already faster
than the slowest rank and thus do not contribute to the overall
execution time of the job.

The fact that we are decreasing the execution time of ranks
that do not affect the overall execution time of the job is
significant because it increases the execution time of other
jobs. Our data indicates that this is the primary cause of the
poor performance we see in Figure 1—coarse-grained QoS
decreases the execution time of some ranks unnecessarily,
which has negative consequences for other jobs.

C. Nearest-Neighbor Analysis

Nearest-Neighbor has a more complicated communication
pattern than Flood-Pairs. Because each rank communicates
with its four neighbors, the effects of slow links can propagate
from rank to rank. Thus, a rank can be slowed down by a
link that it is not using. This makes Nearest-Neighbor more
complicated to analyze than Flood-Pairs.

Figure 6 demonstrates this problem. This figure shows the
runtime of each rank compared to the maximum amount of
data sent over any link used by that rank. It is similar to
Figure 4 for Flood-Pairs except that it only shows the rank
times for one iteration right after a barrier. This ensures that the
execution time of each rank is only affected by the execution
times of its immediate neighbors, not by contention elsewhere
in the network. The relationship between contention on a link

and rank time is much less direct for Nearest-Neighbor than it
is for Flood-Pairs. In Nearest-Neighbor, the contention on a
link defines a lower bound for the rank time but not an upper
bound. This is expected for a communication pattern in which
ranks may be slowed down by other ranks.

We can analyze individual Nearest-Neighbor ranks to obtain
some idea of the impact of contention and QoS. Figure 7 shows
rank times for several iterations starting immediately after a
global barrier. In this figure, Nearest-Neighbor is contending
with 3 other jobs, all at the default service level. In these
images, each rank is represented by a small rectangle. The
ranks are arranged in the grid pattern that is used for Nearest-
Neighbor communication; thus, each rank communicates with
its 4 neighbors in the figure. The color of the rank indicates
how long it took that rank to complete the iteration; darker
colors identify faster ranks and lighter colors identify slower
ranks.

Figure 7a, the first iteration after a barrier, shows a regular
pattern of slow ranks. The slowest ranks are centered around
every 22nd rank, which is the first rank on each node. Because
we are running 22 ranks on each node, half of most ranks’
communication is on node (i.e., the messages sent and received
from the “left” and “right” neighbors). However, the first and
last ranks on each node must send and receive 3 out of 4
messages off-node, so these ranks take longer to complete an
iteration. In the remaining iterations in Figure 7 we see this
contention spread; each slow rank slows down its neighbors in
the first iteration, and those ranks slow down their neighbors
in the second iteration, and so on. Thus, a few slow ranks can
cause rapidly spreading slowdown throughout the application.

Figure 8 shows the same data but with Nearest-Neighbor
running at a higher priority than the other jobs. We see a
similar pattern with the ranks on the edges of nodes taking
longer to complete their first iteration after the barrier, which
causes neighboring ranks to execute more slowly in subsequent
iterations. However, the slowest ranks complete each iteration
faster when Nearest-Neighbor is at high priority.

By comparing Nearest-Neighbor at default QoS with
Nearest-Neighbor at high priority we see that some of the
disparity between ranks is innate (some ranks spend more time
communicating off node than others), but some of it is due to
contention. Furthermore, we see that some off-node messages
have a greater effect in determining the overall execution time
of the benchmark than others, but our coarse-grained QoS
scheme forces us to decrease the execution time of all ranks
regardless of whether the rank affects the execution time of the
whole job. As with Flood-Pairs, this increases the execution
time of other jobs and offsets the performance gain from QoS.

Figures 7 and 8 also show that a given rank may have a long
execution time during one iteration and a shorter execution
time during some later iterations. This is unexpected; our
analysis indicates that slow ranks should continue to be slow
under a static contention pattern. Thus, we believe that this
phenomenon occurs because the contention pattern changes.
As the execution time of ranks changes across iterations, the
times at which ranks send messages also changes, resulting
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Fig. 8: Rank Timing Per Iteration for Nearest-Neighbor at High Service Level

in a dynamic contention pattern and unstable rank execution
times. This does not change the overall conclusion of our
Nearest-Neighbor analysis; coarse-grained QoS unnecessarily
prioritizes some ranks at the expense of other jobs.

D. All-to-all, Random-Pairs, and Applications

Due to space constraints we do not present detailed analyses
of All-to-all, Random-Pairs, and the four applications we used.
However, based on our analysis above we expect that these ap-
plications exhibit similar behavior to Flood-Pairs and Nearest-
Neighbor. The data we have presented indicates that coarse-
grained QoS decreases the execution time of some ranks
unnecessarily, which causes slowdowns in other applications
and prevents overall performance gains.

E. Fewer Service Levels

It is possible that the lack of throughput improvement from
QoS is due to the fact that our service levels are so widely
spaced. The highest priority application is given 2286 times
higher priority than the lowest priority application. In order
to investigate this case, we ran additional tests with the four
micro-benchmarks but using only two service levels. We tested
cases in which the priority ratio was 9:1 and 254:1. Due to time
constraints we ran these tests on five random node placements.
These results are shown in Figure 9. There are vertical dashed
lines between tests with different sets of service levels; the left
shows the ideal and default, the middle shows a priority ratio
of 9:1, and the right shows a priority ratio of 254:1. Both cases

id
ea

l

de
fa

ul
t

0-
0-

1-
1

0-
1-

0-
1

0-
1-

1-
0

1-
0-

0-
1

1-
0-

1-
0

1-
1-

0-
0

0-
0-

3-
3

0-
3-

0-
3

0-
3-

3-
0

3-
0-

0-
3

3-
0-

3-
0

3-
3-

0-
0

0
50

10
0

15
0

20
0

25
0

30
0

35
0

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

Service Levels

Performance: Micro-Benchmarks with Two Service Levels

Fig. 9: Overall Performance of Micro-Benchmarks with Two
Service Levels

show improved performance over using four service levels,
with the priority ratio of 9:1 showing greater improvement
than the priority ratio of 254:1. However, QoS still provides
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Fig. 10: Overall Performance of Micro-Benchmarks with 50%
Communication

little to no benefit over a single default service level. This
suggests that the wide disparity in service levels is insufficient
to explain the lack of performance improvement.

It is possible that a 9:1 priority ratio is still too high of
a disparity between service levels to show improvement over
the default case; perhaps levels that are closer to each other
will result in better performance than a single default level.
Our data, however, provides no evidence that a crossover point
exists at which coarse-grained QoS improves performance and
throughput, though this possibility deserves more research. At
a minimum, our results show that service levels will have to
be carefully calibrated to produce any improvement.

F. Varying Computation/Communication Ratio

Our next set of tests considers the interplay between com-
putation/communication ratio and QoS. Figure 10 shows the
results of applying QoS when the benchmarks spend roughly
50% of their time in communication. The results are largely
similar to the 100% communication results in Figure 1 except
that as the amount of communication decreases the impact of
contention also decreases. This, in turn, means that the effect
of QoS decreases. We obtained a similar trend for experiments
in which communication represented 25% of the time, but
the results are omitted for space reasons. However, all tests
with multiple service levels still perform poorly compared to
running all jobs at the default service level.

G. Varying Message Size

We also ran tests with different sized messages. In the small
message tests, messages were 16 times smaller than in the tests
shown previously. In the large message tests, messages were 4
times larger. Due to time constraints we ran these tests on only

two different node allocations. As the message size increases
the impact of contention, and thus of QoS, also increases.
Otherwise, the results are similar regardless of message size.
We omit graphs for reasons of space.

H. Discussion

Throughout our results we found that coarse-grained QoS
does not consistently improve job performance and may sig-
nificantly reduce performance. However, our results suggest
that applying QoS at a finer level is likely to mitigate the
performance degradation caused by network contention. For
example, Figure 5 shows the distribution of execution times of
Flood-Pairs ranks in the default and high priority cases. Giving
high priority to Flood-Pairs reduces its execution time from
about 37 seconds to about 31 seconds — a 16% improvement.
If we assign high priority only to ranks that take longer than 31
seconds to execute in the contended case we can achieve the
same improvement by prioritizing roughly 11% of the ranks.
This should significantly reduce the impact of QoS on jobs
with lower priority. Similarly, Nearest-Neighbor’s execution
time is determined by only a few ranks. Figures 7 and 8 show
that we can reduce the time of the first iteration by 31% by
giving high priority to the first and last ranks on each node,
which is roughly 9% of the ranks. Similar improvements will
show up in the remaining iterations, resulting in an overall
performance improvement for the job. Applying rank-level
QoS to both jobs at the same time should improve performance
for both jobs as long as the high priority messages of the
two jobs do not conflict and we are careful not to slow other
ranks down to the point that they become the slowest ranks.
If we apply similar reasoning to all jobs on an HPC machine
we should be able to speed up many of the jobs in a large
number of cases. This will improve overall throughput. We
will explore these possibilities in our future work.

V. RELATED WORK

The basic ideas behind quality of service have been em-
ployed in many areas. In differentiated services [3] (used in
the internet), flows are divided into several classes, and each
class of traffic can be handled differently. Thus, real time
communication might be put into a high priority class while
file transfers might be put into a low priority class. We reuse
the idea of separating traffic into different classes in this paper.
QoS has also been applied in other areas, including video
streaming [4], [5], cloud and data center networks [6], and
wireless networks [7].

QoS has also been used in HPC to mitigate the problems of
network contention. Two papers [9], [10] divide traffic among
service levels to reduce head of line (HOL) blocking. HOL
blocking occurs when a packet destined for a non-contended
link is caught in a switch buffer behind a packet that is destined
for a contended link, thus forcing the non-contended packet to
wait in the buffer, even though its link is free. Different service
levels use different switch buffers, so flows with different
service levels cannot experience HOL blocking from each



other. However, these papers give all flows the same priority;
they do not assign different priorities to different service levels.

A more recent paper [1] by Jokanovic et al. assigns service
levels to applications based on their network utilization. Each
application is assigned to a separate service level, or if there
are more applications than service levels, applications with
similar network utilization are assigned to the same service
level. Service level priorities are set based on the network uti-
lization of the applications assigned to that service level. In this
way, application network interference with other applications
is limited, resulting in a performance gain.

The paper by Jokanovic et al. deserves deeper consideration
because it comes to the opposite conclusion compared to
our work. Jokanovic et al. demonstrated overall throughput
improvement with coarse-grained, per-job QoS. In our work
we found no such improvement. There are a number of pos-
sible reasons for this. First, Jokanovic et al. used simulation,
whereas we used hardware. It is possible that the simulation
missed some factors that affect network performance. Second,
Jokanovic et al. attempted to simulate future hardware while
we used current hardware. Third, we used different service
levels than Jokanovic et al. We expect that our service levels
produce a much wider difference in priority than the ones
used by Jokanovic et al. However, our results in Section IV-E
indicate that the difference in priority between our service
levels was not a significant factor in the lack of performance
improvement we saw. In any case, the use of QoS to improve
throughput on HPC machines deserves additional research.

Researchers have also considered other methods of dealing
with network contention. This includes adaptive routing [18],
which routes traffic away from congested links, and job place-
ment strategies that minimize contention [19], [20]. These
approaches are complimentary to our work.

VI. SUMMARY

In this paper we have investigated the use of QoS to mitigate
network contention by running a number of tests on real
hardware. Our tests indicate that coarse-grained QoS, which
involves setting service levels at the job level, is unlikely to
significantly improve throughput on HPC systems. This differs
from previous results based on simulation [1].

Our analysis of job performance with QoS indicates that
coarse-grained QoS speeds up ranks that do not need to be
sped up. This penalizes other applications and erases the
performance gain from QoS. In our future work we will
continue investigating QoS in HPC, particularly by applying
QoS at a finer-grained level. We expect that this will allow us
to demonstrate improved performance from QoS and develop
techniques that applications can use to get good performance
from future HPC systems.
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