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1.	Introduction	and	objectives
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• Solid particle receivers integrated with sCO2 power cycles: ↑T ↑ efficiency

• The design of particle-to- sCO2  is necessary  Shell and plate moving 
packed bed HX
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1.	Introduction	and	objectives

Particles inlet

CO₂ outlet

Particles outlet

x

CO₂ inlet

• Main objective: to design the control system of a 
particle-to-sCO2 HX to maintain Tout,sCO2 =700 °C

Steps:

1. To study the transient response of the 
HX in presence of inlet conditions 
deviations from the design point

2. To investigate the control system to 
minimize both particles and sCO2 outlet 
temperature deviations 
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3.	1D	transient	conservation	of	energy	equations
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• ℎ�� is considered to be 150 W/(m2·K) in accordance to 
previous 2D steady state calculations ( “Heat transfer 
models of moving packed-bed particle-to-sCO2 heat 
exchangers”, Albrecht, K., Ho, Clifford, Proceedings of the 
ASME 2017 Power and Energy Conference)

• ℎ���
according to Gnielinsky correlation

• Implicit method MATLAB

sCO2

Wall
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Design point Deviations Final value

Particle inlet temperature (Tin,p) (°C) 775 ↓ 50 725

sCO2 inlet temperature (Tin,sCO2) (°C) 550 ↓ 50 500

sCO2 mass flow rate (msCO2) (kg/s)  0.0267 ↓ 50% 0.0133

Particle mass flow rate (mp) (kg/s)  0.02 ↓50% 0.01

Average particle-wall convection coeff (ℎ�� ) (W/(m2·K)) 150 ↓10% 135

sCO2-wall convection coeff (hsCO2) (W/(m2·K)) 600 ↓10% 540

4.	Sensitivity	analysis	–design	of	experiments

• DoE: which variables have a strong influence on HX response?

• Analysis of variance (ANOVA)

• Independent variables: 

• Dependent variables:  

• Heat transfer coefficients: ℎ�� and hsCO2 (correlations uncertainty)

• Inlet conditions: Tin,sCO2 , Tin,p , msCO2 , mp (changes during plant operation)

• Time to reach equilibrium

• ∆� = ����,���� − 700°�
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• Conclusions: 

• A 10% change in ℎ�� and hsCO2 does not strongly affect the HX response

• HX response is strongly affected by changes in inlet temperature and mass flow 
rates of sCO2 and particles

4.	Sensitivity	analysis	results
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• 6 different cases varying Tin,sCO2 , Tin,p , msCO2 along the time
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4.	Transient	analysis

Design point

Tin,p (°C) Tin,sCO2 (°C) mCO2(kg/s) mp (kg/s) (���) (W/(m2·K)) hsCO2(W/(m2·K))

775 550 0.0267 0.02 150 600

Case
Tin,p (°C) Tin,sCO2 (°C) msCO2 (kg/s)

Deviation Value Deviation Value Deviation Value

1 ↓50 °C 725 ↓50 °C 500 ↓50 % 0.0133

2 ↓25 °C 750 = 550 ↓50 % 0.0133

3 = 775 ↓50 °C 500 ↓50 % 0.0133

4 = 775 = 550 ↓50 % 0.0133

5 ↓25 °C 750 ↓50 °C 500 = 0.0267

6 = 775 ↓50 °C 500 = 0.0267

• 2 different change rates:

• Instantaneous

• Linearly decreasing in 30 min
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Transient	results	with	change	in	sCO2	 temperature	and	mass	
flow	rate

Tin,p =775 °C
Tin,sCO2 =500°C (↓50 °C)
msCO2=0.0133 kg/s (↓50 %)  

Inlet conditions Step change 

x

CO₂ outlet

CO₂ inlet

Particles outlet

Particles inlet
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Transient	results	with	change	in	sCO2	 temperature	and	mass	
flow

Tin,p =775 °C
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Inlet conditions Step change 
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Temperature deviations: 
30 °C in Tout,p

60 °C in Tout,sCO2

A control system 
is necessary

x

CO₂ outlet

CO₂ inlet

Particles outlet

Particles inlet

Outlet



17

Transient	results	with	change	in	sCO2	 temperature	and	mass	
flow

Tin,p =775 °C
Tin,sCO2 =500 °C (↓50 °C)
msCO2=0.0133 kg/s (↓50 %)  

Inlet conditions Step change 
30 min change 

Temperature deviations: 
30 °C in Tout,p

60 °C in Tout,sCO2

x

CO₂ outlet

CO₂ inlet

Particles outlet

Particles inlet

Outlet

Outlet A control system 
is necessary
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• Goal: to maintain both Tout,sCO2 and Tout,p deviations from the desired values 
(700 °C and 570 °C respectively) below 1°C when modifying Tin,sCO2 , Tin,p , 
msCO2 (cases 1-6)

19

5.	Control	strategies

• Steady state equations

1) Heat exchanger energy balance
�����,�� · ��,���� · (����,����,��−���,����,��) =

�� · ��,� · (���,� −����,�)

2) ΔT mean log equation
�� · ��,� · (���,� −����,�) = � · � · ∆���

Tin,sCO2

Tin,p mp

Tout,p =570 °C

Tout,sCO2 =700 °C
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5.	Control	strategies

• Steady state equations

1) Heat exchanger energy balance
�����,�� · ��,���� · (����,����,��−���,����,��) =

�� · ��,� · (���,� −����,�)

2) ΔT mean log equation
�� · ��,� · (���,� −����,�) = � · � · ∆���

3) Bypass mass balance
����� = �����,�� + �����,��

4) Bypass energy balance
����� · ��,���� · ����,���� =

�����,�� · ��,���� · ����,����,�� + �����,�� · ��,���� · ���,����

4 equations-4 unknown variables: msCO2,HX , msCO2,BP , mp, Tout,sCO2,HX 

Tout,sCO2

=700 °C

Particles inlet
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sCO2 inlet
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msCO2
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Tout,p =570 °C

Tout,sCO2,HX
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Bypass



�����,�� � = �����,��,��� � − ����� · (����,����(�) − 700)

�� � = ��,��� � − �� · (����,�(�) − 570)
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5.	Control	strategies

steady state solution + proportional correction

Proportional correction: 
- To reduce Tout,sCO2 and Tout,p deviations from the desired value
- KsCO2 and Kp depends on the Tin,sCO2 , Tin,p , msCO2 change rate

Case
KsCO2 Kp

Step 30 min 60 min Step 30 min 60 min

1 1.00E-04 5.00E-04 1.00E-04 0.02 5.00E-04 1.00E-04

2 1.00E-04 0 0 1.00E-04 0 0

3 1.00E-04 1.00E-04 1.00E-04 0.1 7.00E-03 7.00E-03

4 1.00E-04 1.00E-04 1.00E-04 0.1 1.50E-04 1.50E-04

5 1.00E-04 1.00E-04 1.00E-04 0.02 7.00E-03 7.00E-03

6 1.00E-04 1.00E-04 1.00E-04 0.02 7.00E-03 7.00E-03

• Steady state: for the inlet conditions of the 6 cases studied, msCO2,HX  

and mp can be calculated to obtain the desired temperatures       

• Transient solution:
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Control	results	with	change	in	sCO2	 temperature	and	mass	
flow	in	30	min

Tin,p =775 °C
Tin,sCO2 =500 °C (↓50 °C)
msCO2=0.0133 kg/s (↓50 %)  

No control ΔTout,sCO2 =60 °CInlet conditions
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Control	results	with	change	in	sCO2	 temperature	and	mass	
flow	in	30	min

Tin,p =775 °C
Tin,sCO2 =500 °C (↓50 °C)
msCO2=0.0133 kg/s (↓50 %)  

No control ΔTout,sCO2 =60 °C

Control ΔTout,sCO2 =1 °C

Inlet conditions
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• The control system developed maintains outlet temperature deviations
below 1C
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5.	Conclusions

• The transient response of moving packed bed particles-to-sCO2 HX in
presence of inlet conditions deviations was analyzed

• The control system is based on installing a bypass in the sCO2 side.
Particles and sCO2 mass flow rates through the HX are adjusted to
maintain the desired outlet temperatures

• A control system is needed to maintain the desired outlet temperatures 
during transient response
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