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1. Introduction and objectives

* Solid particle receivers integrated with sCO, power cycles: T 1™ efficiency

* The design of particle-to- sCO, is necessary =) Shell and plate moving
packed bed HX
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1. Introduction and objectives
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1. Introduction and objectives

Particles inlet

* Main objective: to design the control system of a
particle-to-sCO, HX to maintain T, ¢, =700 °C
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2. To investigate the control system to
minimize both particles and sCO, outlet
temperature deviations
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2. Numerical model




3. 1D transient conservation of energy equations

Particles
0T, 0T, 2-hg,
. = _p. . U — AT.. =T ,
Ps " Cps ot Ps *Cps - Us ax + hCS ( w S) I IIA’HTX he I f_,hlccoz
* ( sCO2
L/
5C02 M Channel
aTCOZ aTCOZ 2 * hcoz P H
. . =—p. - CU. - AT. =T | Particle
pC02 Cp,COZ ot Ps Cp,s Ug Ox + hCCOZ ( w COz) Channel
Wall
aTw E hC02
pw'cp,w'?=t '(TS_TW)+ ¢ '(TCOZ_TW)
HX HX
* hg, is considered to be 150 W/(m?-K) in accordance to
previous 2D steady state calculations ( “Heat transfer Symmetry
models of moving packed-bed particle-to-sCO2 heat y Boundary
exchangers”, Albrecht, K., Ho, Clifford, Proceedings of the I

ASME 2017 Power and Energy Conference)
* h¢p, according to Gnielinsky correlation [ 3 J

* Implicit method MATLAB
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3. Sensitivity analysis




4. Sensitivity analysis - design of experiments

* DoE: which variables have a strong influence on HX response?

* Analysis of variance (ANOVA)

* Independent variables:
* Inlet conditions: T;, .coy, Tinp » Msco2 » M, (changes during plant operation)

* Heat transfer coefficients: hg,, and h..,, (correlations uncertainty)

* Dependent variables:

*  Time to reach equilibrium

* AT = Toutscoz — 700°C

e Toesignpoint | Deviations |_Finalvalue |
Particle inlet temperature (T;, ,) (°C) 775 J 50 725
550 J 50 500

Average particle-wall convection coeff (m) (W/(m?2K)) 150 4 10% 135

sCO2-wall convection coeff (h.y,) (W/(m2K)) 600 310% 540 [ 10 ]




4. Sensitivity analysis results

Pareto Chart of the Standardized Effects

(response is deltaT, o = 0.05)

Term g0
T

Factor

A
B
C
D
E
F

Name

Tin,sCO2 (C)

Tin,p (C)
m_in,sCO2 (kg/s)
m_in,p (kg/s)

hp-w (fraction)
hw-sCO?2 (fraction)

0 5 0 15 20 25 30
Standardized Effect

* Conclusions:

Pareto Chart of the Standardized Effects
(response is Time (s), a = 0.05)

2002
T

Factor

TMgNwWP

Name

Tin,sCO2 (C)

Tin,p (C)
m_in,sCO2 (kg/s)
m_in,p (kg/s)

hp-w (fraction)
hw-sCO?2 (fraction)

1

2 3 a
Standardized Effect

A 10% change in hy,, and h ., does not strongly affect the HX response

* HXresponse is strongly affected by changes in inlet temperature and mass flow
rates of sCO2 and particles
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4. Transient analysis

* 6 different cases varying T;, sco2 Tinp » Msco2 along the time

in,p 7

Design point

: () (W/(017-K)) | o W/(2-K)
150 600

775 0.0267 0.02

|n ,p (oc) Tin,sCOZ (oc) msCOZ (kg/s)

Deviation Value Deviation Deviation

725 450 °C 500 450 % 0.0133
750 = 550 450 % 0.0133
775 450 °C 500 450 % 0.0133
775 = 550 450 % 0.0133
750 450 °C 500 = 0.0267
775 450 °C 500 = 0.0267

« 2 different change rates:
* Instantaneous
* Linearly decreasing in 30 min




Transient results with change in sCO, temperature and mass
flow rate
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Transient results with change in sCO, temperature and mass
flow

Inlet conditions Tinp =775 °C Step change
Tinsco2 =500°C (/50 °C) . .
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Transient results with change in sCO, temperature and mass

flow
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Transient results with change in sCO, temperature and mass

flow

Inlet conditions T, =775°C
Tinsc02 =500 °C (1,50 °C)
Mc0,=0.0133 kg/s (1,50 %)
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5. Control strategies

* Goal: to maintain both T, .o, and T, , deviations from the desired values
(700 °C and 570 °C respectively) below 1°C when modifying T, «co2 Tinp »
Mo, (cases 1-6)

Tin,p mp TOUM =700 °c

* Steady state equations

Particles inlet sCO, outlet

1) Heat exchanger energy balance

Msco2,HX * Cp,scoz2 * (Tout,scoz,nx —Tinscoz,ux) =
My - Cpp * (Tinp —Toutp)

2) AT mean log equation
My - Cpp * (Tingp —Toutp) = U - A- ATy

Particles outlet sCO, inlet

Tout,p =570 °C ﬁin,scoz mscoz,Hx




5. Control strategies

* Goal: to maintain both T, .o, and T, , deviations from the desired values
(700 °C and 570 °C respectively) below 1°C when modifying T, «c02» Tinp »

Mo, (cases 1-6) Toutscoz
Tinpl| My Tout,scoz,Hx =700 °C

* Steady state equations
1) Heat exchanger energy balance

Msco2,HX * Cp,scoz2 * (Tout,scoz,nx —Tinscoz,ux) =
My - Cpp * (Tinp —Toutp)

Particles inlet

2) AT mean log equation

My - Cpp * (Tinp —Toutp) =U-A- ATy Bypass

3) Bypass mass balance

Particles outlet
Mgco2 = Msco2,Bp T Msco2,HX

4) Bypass energy balance T

Msco2 * Cpscoz * Tout,scoz =

=570 °C Moz Hx

out,p

Msco2,Hx * Cp,scoz * Tout,scoz,Hx T Msco2,8p * Cp,scoz * Tin,scoz

(0]

4 equations-4 unknown variables: Mo v, Mocos e, My, Tou scoz



5. Control strategies

* Steady state: for the inlet conditions of the 6 cases studied, Mg, .«
and m, can be calculated to obtain the desired temperatures

* Transient solution: steady state solution +

mSCOZ,HX(t) =|Msco2,HX ste ()| — Kscoz - (Tout,sCOZ (t) —700)

my, (t) = My ste ()| — K, - (Tout,p (t) —570)

- To reduce T, 0, and T, , deviations from the desired value
- Kscop @and K, depends on the T, ;c0,, Tin,p » Myco, Change rate

in,p ?

Step 30 min 60 min Step 30 min 60 min
1 100E-04 5.00E-04 1.00E-04 0.02  500E-04 1.00E-04
1.00E-04 0 0 1.00E-04 0 0
1.00E-04 1.00E-04 1.00E-04 0.1  7.00E-03 7.00E-03
1.00E-04 1.00E-04 1.00E-04 0.1  1.50E-04 1.50E-04
1.00E-04 1.00E-04 1.00E-04  0.02  7.00E-03 7.00E-03
1.00E-04 1.00E-04 1.00E-04  0.02  7.00E-03 7.00E-03

Case




Control results with change in sCO, temperature and mass

flow in 30 min
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Control results with change in sCO, temperature and mass
flow in 30 min

oy _ o o
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5. Conclusions

* The transient response of moving packed bed particles-to-sCO2 HX in
presence of inlet conditions deviations was analyzed

* A control system is needed to maintain the desired outlet temperatures
during transient response

* The control system is based on installing a bypass in the sCO2 side.
Particles and sCO2 mass flow rates through the HX are adjusted to
maintain the desired outlet temperatures

* The control system developed maintains outlet temperature deviations

below 1C
(25
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