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1 Introduction
Exascale Challenges Parallel computers today are mainly programmed using message passing
and coarse-grained threads (e.g. MPI [14] and OpenMP [11]). These models provide high perfor-
mance, but are tedious to use and error prone. Looking ahead to exascale, there will be a dramatic
increase in hardware complexity, which will lead to intolerable software complexity using current
programming models.

DSLs, Promise and Obstacles Domain specific languages (DSLs) ore a path to Exascale soft-
ware based on using automated code transformation to shift the burden of portable performance
from the application programmer to the compiler.

The promise of DSLs has been amply demonstrated by the success of at least a dozen DSLs
for scientific computing. Consequently, interest in DSLs for HPC has increased in recent years as
evidenced by publications, workshops, and conferences. Indeed, the X-Stack FOA for this pro-
posal expects that scientists will use DSLs ”to focus on their science rather than the fine details of
a complex Exascale system”. However, widespread adoption of the DSL approach is hindered by
major implementation challenges. First, it takes a large effort to implement even a small program-
ming language. Most commonly used implementation techniques support only part of the effort,
such as parsing or interpretation, while leaving difficult tasks like semantic analysis, optimization,
or code generation to be implemented manually. Second, most techniques support only restricted
forms of DSLs, omitting such desirable characteristics as custom concrete syntax, custom con-
trol structures, the ability to interleave DSL and conventional code or multiple DSLs in the same
file, or the ability to call conventional libraries in DSL code. Third, most techniques produce im-
plementations which are markedly inferior to conventional compilers, omitting important features
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such as thorough semantic checking, global optimization of DSL code, optimization across bound-
aries between DSL and conventional code or between multiple DSLs, and debugging and profiling
compiled code at the DSL source level. Recently a few authors have shown how to avoid most of
these limitations using functional host languages or novel research languages, but that work is not
applicable to common high performance computing languages (e.g. Fortran, C++, Python).
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Figure 1: Overview of our DSL development approach, defining the support to make it economical to build DSLs for
narrowly defined domains.

Summary of Original Proposal The initial project (referred to as D-TEC) was for three years
and started fall of 2012; its focus has been on the development of the infrastructure supporting
DSLs. The goal is that DSLs can be built easily and economically to address the requirements of
future HPC software development on Exascale architectures. As shown in Figure 1, we proposed to
use a novel integrated approach to support the lifecycle of DSL development and involve all major
players including HPC programmers, domain algorithm experts, DSL designers, implementation
experts, and so on. The resulting software artifacts and processes will include components sup-
porting application migration, DSL specifications, DSL language parsing, compiler construction,
refinement and transformation, performance analysis, runtime support, as well as parameterizing
abstract extreme-scale machines.

Proposed Work For this one-year renewal proposal, the plan was to continue the research of
DSL techniques to support Exascale computing across multiple layers of the software stack and
directly address critical Exascale research issues such as performance, locality, resiliency and un-
certainty quantification. The plan focusses on integrating many of the technologies that we have
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built as well as integrate D-TEC artifacts with technologies developed by other teams. Within
our own project, the goal is to continue to refine compiler and runtime optimizations and address
interoperability. Working with application groups, the focus is on demonstrating the benefits of
the developed DSL techniques across multiple dierent platforms. Collaborate with other X-stack
projects to leverage external research and development results and benefit broader user communi-
ties is also a part of the plan.

2 Accomplishments
This year, we have three new publications, and two new publications under submission. For
this one-year renewal proposal, the MIT team accomplished the following tasks.

• Demonstrate the productivity obtained when using DSLs (i.e., whether they provide good
productivity compared to classical approaches).

• Demonstrate the effectivness of DSLs (i.e., whether they can provide best class performance
on current hardware and whether they can provide portability).

• Demonstrate frameworks for productive development of highly-expressive DSLs.

• Demonstrate the ability of DSLs to overcome exascale challenges including scalability, re-
siliency, portability of performance, verification, etc.

• Demonstrate paths from legacy applications to new DSLs (i.e., whether it is possible to
translate legacy code into the new DSLs).

• Demonstrate variety of DSLs.

Accomplishments by the other teams are not reported in this progress report. In the remaining
of this section we provide details about each one of these accomplishments.

2.1 Demonstrate Productivity to Hero Class Performance
Halide [12] is a programming language and a compiler designed to make it easier to write high-
performance stencil computations (structured grids). It targets multiple hardware architectures
ranging from multi-core systems and GPUs to supercomputers. After its first appearance in 2012,
the Halide language has attracted a high academic and industrial interest. A relatively large com-
munity is now participating in the development of the Halide compiler. The language is now being
used in production by Google, Adobe, Facebook and Qualcomm and the number of contributors
to the Halide compiler reached 60 contributors 1 from different institutions and industrial partners.

Halide has the advantage of separating the algorithm from the optimizations (a.k.a., the schedul-
ing commands). The user writes an architecture-independent algorithm and then provides a set of
scheduling commands to indicate how the algorithm should be optimized for a given architecture.
To adapt a given code to a new hardware, the user needs only to modify the schedule without the

1https://github.com/halide/Halide

3



need to modify the algorithm. Furthermore, adapting a given piece of code to a new architecture
can be automated with the use of an auto-tuner which simplifies the whole process.

The separation between algorithms and scheduling commands also simplifies the exploration of
optimizations: one can quickly try different optimizations simply by writing different scheduling
commands. The compiler would generate the optimized code automatically. This simplifies greatly
the exploration of optimization trade-offs.

The Halide DSL expresses Local Laplacian Filtering (one of the important algorithms used
in Adobe Photoshop) in a mere 60 lines of code within a few hours, compared to the actual im-
plementation in Photoshop, which is 1500 lines of code written over 3 programmer-months and
a reference (unoptimized) C implementation that uses 300 lines of code. The Photoshop version
is threaded and vectorized, resulting in mixing of optimizations with algorithm, while the Halide
version separates out the domain-specific code from the schedule that describes how to optimize it.
This enables easy and quick exploration of the space of optimizations and enables high productivity
in general.

2.2 Demonstrate the Effectiveness of DSLs
2.2.1 Demonstrate Best of Class Performance on Current Hardware

We ported the HPCG benchmark (http://hpcg-benchmark.org) to the Tiramisu compiler.
Tiramisu is a compiler for expressing fast and portable data parallel computations. It provides a

simple C++ API for expressing algorithms (Tiramisu expressions) and how these algorithms should
be optimized by the compiler. Tiramisu can be used in areas such as linear and tensor algebra, deep
learning, image processing, stencil computations and machine learning. The Tiramisu compiler is
based on the polyhedral model thus it can express a large set of loop optimizations and data layout
transformations. Currently it targets (1) multicore X86 CPUs, (2) Nvidia GPUs, (3) Xilinx FPGAs
(Vivado HLS) and (4) distributed machines (using MPI). It is designed to enable easy integration
of code generators for new architectures.

The Tiramisu implementation was 1.2× faster than the original HPCG implementation (C+OpenMP).
We also implemented a set of dense linear algebra kernels in TIRAMISU and compared the

performance of generated code with that of highly optimized libraries such as Intel MKL Blas.
The Tiramisu implementation matched the performance of the most challenging Intel MKL BLAS
kernels such as gemm (generalized matrix multiplication). Tiramisu is the first compiler to achieve
such performance.

2.2.2 Demonstrate Performance Portability on Existing Hardware

We ported the HPGMG miniapp to Halide. The original miniapp was written in C with OpenMP
for shared memory parallelism.

Porting the original HPGMG miniapp (C+OpenMP) to Halide was straightforward and a sched-
ule for CPU (i.e., optimizations for execution on CPU) were generated automatically using Open-
Tuner (our auto-tuning tool).

The Halide implementation was 1.3× faster than the original implementation (C+OpenMP).
To demonstrate the performance portability on existing hardware, we ported the HPGMG

Halide implementation to GPU. To do that, we changed the original CPU schedule to a new GPU
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schedule. This meant changing few scheduling commands (i.e., few lines of code). No modifica-
tion on the algorithm was needed and only the schedule part was modified.

The Halide code ported to GPU was 1.77× faster than the original HPGMG implementation
(C+OpenMP).

2.3 Demonstrate more Productive Development of Highly-expressive DSLs
2.3.1 TIRAMISU

Building an effective mid-level compiler requires ensuring enough information is passed from
higher levels to enable optimizations. Furthermore, if the representation used in the mid-level
compiler is too low-level, transformations and optimizations may require undoing work from the
higher level layer. For example, LLVM and other low-level compiler frameworks use compact
three-address instruction sets with a single monolithic memory abstraction to optimize for single-
threaded performance. However, this abstraction is insufficient for the middle-end. First, infor-
mation about coarse-grain parallelism is missing, making it difficult to identify parallelization
opportunities. Second, memory layout decisions are already made, making it difficult to apply op-
timizations such as loop fusion, parallelization, and specialization for NUMA or GPUs, since such
transformations often require drastic rearrangement of memory layouts for intermediates. Thus,
building a new mid-level compiler requires introducing a new representation.

TIRAMISU introduces a novel three-layered representation that is ideal for mapping between
the architecture-independent front-end to a single-thread-optimizing back-end, while taking ad-
vantage of all the high-level architectural features. The top layer, the Abstract Computation Layer,
describes only the computations to perform. At this level, memory locations are not considered
and all dependences are represented using producer-consumer relationships. The second layer,
the Computation Placement Layer, maps statements onto an explicit processor and virtual time-
line of execution. The final layer, Concrete Computation Layer, specifies where to store produced
data until they are consumed. We use a mathematical representation based on the polyhedral
model [8, 9, 1, 4, 6] with extensions to handle irregular programs [5, 3] (programs with non-affine
control flow and array accesses). TIRAMISU is not an automatic parallelizing compiler. Trans-
formation decisions are left to the front-end compiler; TIRAMISU only provides mechanisms to
implement these decisions.

TIRAMISU is designed mainly for programs that operate over dense data using loop nests.
It allows compilers to transform their architecture-independent intermediate representations to a
single-thread-optimizing back-end intermediate representation while taking advantage of modern
architectural features such as multicore parallelism, non-uniform memory (NUMA) hierarchies,
clusters, and accelerators like graphics processing units (GPUs).

The design of the IRs enables the framework to apply advanced transformations on arbitrary
loop nests. A typical workflow for using TIRAMISU is as follows: High level language compilers
parse input programs and perform domain specific optimizations before translating the program
into Layer I of the TIRAMISU intermediate representation. The first layer of the IR is then trans-
formed to lower layers (Layer II and Layer III), and finally LLVM IR is generated.

TIRAMISU provides multiple advantages

• The use of TIRAMISU reduces the effort needed for developing a high level language com-
piler since it provides a rich, generic and reusable infrastructure for code optimization and
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Figure 2: CPU execution time comparison between
Halide-Original and Halide-TIRAMISU
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Figure 3: GPU kernel execution times for Halide-
Original and Halide-TIRAMISU
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Figure 4: Comparing CPU code generated from
TIRAMISU with Intel MKL

code generation;

• The novel three-level IR of TIRAMISU allows full architecture independence, thus high level
languages that target TIRAMISU can be fully architecture-independent which leads to code
portability;

• TIRAMISU uses state-of-the-art polyhedral techniques with many pragmatic extensions and
thus it can perform a large set of complex code transformations and can generate highly very
efficient code.

We have implemented a prototype version of TIRAMISU and integrated this prototype version
into the Halide compiler. The preliminary results are very encouraging. Figure 2 shows that, in
six benchmarks, the performance of code generated from TIRAMISU (called Halide-TIRAMISU in
the Figure) matches the performance of code generated from Halide (called Halide-original in the
figure). In one of the benchmarks, the performance of code generated from TIRAMISU outperforms
that of Halide. This is because TIRAMISU could perform optimizations that are difficult to do
in Halide. In two other benchmarks, TIRAMISU could express computational patterns that the
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current Halide compiler cannot express, therefore TIRAMISU complements Halide with many new
capabilities without degrading its current performance. Figure 3 shows a comparison between
GPU code generated by TIRAMISU and GPU code generated by Halide.

We also evaluated TIRAMISU by implementing a set of linear algebra and neural network ker-
nels, including saxpy (Y = αX+Y ), spmv (y = Ax with A sparse), sgemm (C = αAB+βC),
conv (a neural network convolution layer), and conv-conv (two conv layers fused together).
Figure 4 shows a comparison between the performance of CPU code generated by TIRAMISU and
the Intel MKL library. For linear algebra we use matrices of size 1060× 1060 and vectors of size
1060 while for DNN we use 512 × 512 as the data input size, 16 as the number of input/output
features and a batch size of 32.

For saxpy, spmv and sgemm, TIRAMISU matches the performance of Intel MKL. The com-
parison between the TIRAMISU implementation of sgemm and Intel MKL is interesting in particu-
lar because the Intel MKL implementation of this kernel is well-known for its hand-optimized per-
formance. We used a large set of optimizations to match Intel MKL. These optimizations include
two-level blocking of the three-dimensional sgemm loop, fusing the computation of T = αAB
and C = T + βC into a single loop, vectorization, unrolling, array packing, register blocking, and
separation of full and partial tiles (which is crucial to enable vectorization, unrolling, and reduce
control overhead). We also used auto-tuning to find the best tile size, unrolling factor and vector
length for the machine on which we run our experiments. For the conv kernel, TIRAMISU out-
performs the Intel MKL implementation due to the tuning of vector size, unrolling factor and tile
size. In conv-conv, TIRAMISU fuses the two convolution loops which improves data locality.

2.3.2 TACO: a Compiler for Dense and Sparse Linear Algebra

Sparse tensor operations (i.e., n-dimensional matrice operations) are fundamental operations in
many types of computations. There are infinite linear and tensor algebra expressions, making it
impossible to write code for all of them. We can restrict ourselves to low-order tensors and binary
expressions, but then we lose performance because we have to materialize large and often sparse
temporaries. This problem cries out for a compiler approach.

Consider the expression y = αAx + βy, where A is a matrix, x, y are vectors, and α, β are
scalars. The expression comes from the OSKI sparse linear algebra library, and was likely chosen
for performance in common cases. Good libraries choose a few variants and provide routines for
converting to and from the required formats. However, expressions come in many different shapes
and data formats; thus, limiting to a few variants is inefficent at best and inadequate at worst.

The Tensor Algebra Compiler (TACO) is the first system to compile any compound basic lin-
ear or tensor algebra expression to code that evaluates the expression through a single pass over
the combined (sparse) iteration space of the operands. Large sparse temporaries and format con-
versions are therefore avoided. The operands can be dense, sparse or mixed, which makes it a
powerful mechanism for emitting fused sparse computation from Simit programs.

Research Involved

• Develop a compiler theory for dense/sparse linear and tensor algebra,

• Develop a formalism for describing tensor storage formats,
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Figure 5: SpMV performance on matrices from real-world applications using taco and various other existing libraries.
Results shown here for pOSKI are untuned. We evaluated taco with matrices stored using the dense-sparse (DS) and
sparse-sparse (SS) formats, which are equivalent to the compressed sparse row format and the doubly compressed
sparse row format respectively.

• Optimizations to exploit tensor structure (symmetry, sparsity, precision),

• Develop a portable library that generates code for different platforms (CPU/GPU), and

• Distributed parallel execution on super-computers.
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Figure 6: Performance of blocked SpMV on various matrices using taco, compared with tuned pOSKI. We evaluated
taco with matrices stored using the dense-sparse, sparse-sparse, and dense-sparse-dense-dense (DSDD) formats, the
last of which is equivalent to the blocked compressed sparse row format.

Preliminary experiments have shown that taco is able to synthesize efficient sparse linear and
tensor algebra kernels that are competitive with - and even superior to - state-of-the-art, manually-
implemented kernels in terms of performance, even as taco supports a much wider set of operations
than traditional libraries. As shown in Figures 5 and 6, taco-generated SpMV and blocked SpMV
kernels can match the performance of hand-tuned equivalents that are found in high-performance
sparse linear algebra libraries like Eigen and even pOSKI, which uses auto-tuning techniques. In
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contrast to the aforementioned libraries though, as Figure 7 shows, taco can also generate a wide
range of sparse tensor algebra kernels that outperform MATLAB implementations by orders of
magnitude and that are even competitive with hand-optimized C equivalents provided by SPLATT.
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Figure 7: Performance of sparse tensor algebra kernels generated with taco and implemented in other existing libraries
(i.e. MATLAB Tensor Toolbox and SPLATT).

2.3.3 Mostly Automated Formal Verification of Loop Dependencies with Applications to
Distributed Stencil Algorithms

The class of stencil programs involves repeatedly updating elements of arrays according to fixed
patterns, referred to as stencils. Stencil problems are ubiquitous in scientific computing and are
used as an ingredient to solve more involved problems. Their high regularity allows massive par-
allelization. Two important challenges in designing such algorithms are cache efficiency and min-
imizing the number of communication steps between nodes. In this work, we introduce a math-
ematical framework for a crucial aspect of formal verification of both sequential and distributed
stencil algorithms, and we describe its Coq implementation. We present a domain-specific em-
bedded programming language with support for automating the most tedious steps of proofs that
nested loops respect dependencies, applicable to sequential and distributed examples. Finally, we
evaluate the robustness of our library by proving the dependency-correctness of some real-world
stencil algorithms, including a state-of-the-art cache-oblivious sequential algorithm, as well as two
optimized distributed kernels.

2.4 Demonstrate How to Overcome Exascale Challenges
Exascale challenges include scalability, resiliency, portability of performance, verification, etc.
Using DSLs permit the use of high-level abstractions to capture program semantics and automate
the generation of low-level code that avoids library overhead and takes into account the particular
challenges of operating at exascale.
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MSL is a synthesis-enabled DSL for distributed implementations. It makes writing complicated
distributed kernels easier by using synthesis. Programmers provide serial spec, parallel skeleton
and description of data distribution and the compiler completes implementation using synthesis.

Code generated using MSL scales to 16K+ cores and matches the performance of hand-optimized
Fortran+MPI (Figure 8)

Figure 8: Performance of code generated using MSL compared to hand-optimized Fortran+MPI code.

2.5 Demonstrate a Path from Legacy Applications to New DSLs
2.5.1 STNG: Synthesis Tool to Migrate Legacy Fortran Kernels to Halide

We developed STNG, a system to automatically lift the level of abstraction of a low-level Fortran
implementation to a high-level stencil DSL (Halide) in a provably correct way.

Lifting low-level Fortran code to a high-level DSL makes it possible to exploit the performance
and performance portability benefits of the DSL in the context of legacy code. By lifting the code,
we are able to exploit the optimization power of the DSL compiler and achieve order-of magnitude
performance improvements on existing code.

The key idea is to leverage our Sketch synthesis infrastructure to search for an expression in the
stencil DSL that can be proven to be equivalent to the original Fortran code. We rely on an SMT
solver to perform the final verification step in order to guarantee correctness of the transformation.
The main advantage of the tool is that it is based on sound and static methods for the verification
of equivalence.
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Our experiments show that lifting legacy code to a DSL and applying DSL optimizations is
better than optimizing original code. The results in Figure 9 are early promising results.

Figure 9: Speedup of automatically synthesised Halide relative the original serial code (the synthesised Halide is
further tuned).

2.5.2 Helium: Lifting Legacy Stencil Kernels to Halide DSL

We also extended our Helium system to lift more kernels from DOE relevant applications to the
Halide DSL. Helium is a system that uses unsound simple dynamic program analysis to identify
stencil kernels and lift them to Halide. We used Helium to lift the miniGMG app from binary
code to Halide. We then optimized the obtained Halide. The result was a 4.25× speedup over the
original binary.

2.5.3 Sketch-based Synthesis for Lulesh

We created a complete implementation of Lulesh in Sketch. This is the first miniApp fully imple-
mented in our Sketch system. It is allowing us to explore the use of synthesis in the context of a
complete miniApp for both shared memory and distributed memory parallelism. It is also allowing
us to explore the use of synthesis to exploit thread-level parallelism.

Research Involved We have extended our Sketch system to allow us to leverage synthesis in
the context of hybrid shared-memory + message-passing implementations. Sketch now includes
a model for deterministic shared memory parallelism that allows the programmer to leverage
multi-cores while avoiding the problems with non-determinism that can arise with such programs.
Sketch achieves this by automatically inserting checks that prevent data-races that may lead to
non-determinism in a kernel.

2.6 Demonstrate a Variety of Domain Specific Languages
2.6.1 Halide DSL for Stencil Computations

Code generated by the Halide compiler [12] is shown to outperform hand-written code. For ex-
ample, from simple Halide programs written in a few hours, Halide demonstrated performance up
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to 5× faster than hand-tuned C, intrinsics, and CUDA implementations optimized by experts over
weeks or months, such results are beyond the reach of past automatic compilers.

Our experiments demonstrated that code generated from Halide can run on a cluster and achieve
good scalability. Halide is now a lot more relevant for the DoE community. Our experiments also
demonstrated that distributed partitioning across NUMA nodes on a SMP provides higher perfor-
mance than flat partitioning. Figure 10 shows the scalability of a stencil computation generated
using Halide and run on the CORI supercomputer (Cray XC40 supercomputer).
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Figure 10: Scalability of code generated from Halide on CORI (Cray XC40)

Research Involved

• Extensions to handle distributed memory and communication.

• Introduced new tiling schemes such as duplication of work to reduce computation across
nodes while reusing the data within the node.

2.6.2 Simit DSL

Simulations of detailed physical systems, such as the stresses on airplane wings or LQCD, are
computationally intensive, requiring both efficient algorithms and painstakingly-optimized imple-
mentation. Many simulation codes are characterized by their local-global structure: the heart of
simulation deals with solving global problems over large, sparse linear algebraic systems, but the
elements in these systems are connected to a tiny subset of the entire system (sites in a lattice are
only connected to a few neighbors). Solving the overall problem requires implicit construction of
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Table 1: Comparison of two applications implemented with Matlab, Vectorized Matlab, Eigen [2], hand-optimized
C++ (SOFA [7] and Vega [13]) and Simit, showing the productivity and performance of Simit. (Intel Xeon E5-2695
v2)

ms per frame Source lines Memory (MB)

Implicit Springs

Matlab 13,280 23.7× 142 1.5× 1,059 6.1×
Matlab Vec 2,115 3.8× 230 2.5× 1,297 7.5×
Eigen 883 1.6× 314 3.4× 339 2.0×
SOFA 588 1.1× 1,404 15.1× 94 0.5×
Simit 559 1.0× 93 1.0× 173 1.0×

Neo-Hookean FEM

Matlab 207,538 181.3× 234 1.3× 1,564 12.8×
Matlab Vec 16,584 14.5× 293 1.6× 53,949 442.2×
Eigen 1,891 1.7× 363 2.0× 626 5.1×
SOFA 1,512 1.3× 1,541 8.6× 324 1.8×
Vega 1,182 1.0× 1,080 6.0× 614 5.0×
Simit 1,145 1.0× 180 1.0× 173 1.0×

a large global matrix before solving the resulting system of linear equations. Both the operator
construction and the solve are difficult to implement and optimize.

The typical approach taken by practical implementations is to separate the assembly and global
stages of the computation. Generically, this leads to C++ code to assemble matrices from a mesh
data structure, which are then passed to optimized linear algebra libraries in order to perform the
solve in a scalable manner. However, this approach incurs performance penalties due to the need to
translate between data structures, as well as the inability of these libraries to take advantage of un-
derlying matrix structure that is apparent at the mesh level. To mitigate this, high-performance im-
plementations integrate assembly and linear algebra using a single set of data structures; however,
optimizing such implementations is very challenging, rarely resulting in a reusable or performance
portable code.

Simit [10] is a new language and compiler infrastructure for expressing computations char-
acterized by this local-global structure that seeks to enable high-performance simulation code by
separating the structure of a system from its behavior. As such, it is well suited for LQCD. The
underlying programming model does this by providing two key abstractions as well as the abil-
ity to map between them. The first is a hypergraph with hierarchical edges, which represents the
geometric structure of a physical system, such as a lattice. The second key abstraction is blocked
tensors, a generalization of matrices and vectors, operations on which describe computation on the
whole system. The assembly map maps between these two abstractions, giving both a local view
of assembly on the graph and a global view of system-wide computation as linear algebra.

The assembly map also conveys the relationship between local and global operations to the
compilation framework, enabling it to compile the whole program into a globally-optimized rep-
resentation targeted to a specific architecture. This is combined with a physical representation of
the data that is similar to blocked compressed sparse row matrix format. Combining local-global
mapping awareness, sparsity-aware code generation and a blocked sparse matrix format results in
code that is fully optimized for the particular problem at hand, instead of being cobbled together
from libraries which cannot compose optimizations across function call boundaries.

Performance Results Table 1 shows the performance of Simit on two problems, compared with
current state of the art implementations using a variety of optimized frameworks. Simit obtains
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performance equivalent to hand-optimized code automatically, while allowing the programmer to
express algorithms in a high level way with many fewer lines of code. Simit’s expressibility is
similar to Matlab, but the performance is far greater.

3 Recent Publications
We have published the following papers as part of DTEC funded research (submitted papers cur-
rently under review are marked with ’*’):

Submitted* Tiramisu: A Code Optimization Framework for High Performance Systems. Riyadh Bagh-
dadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Patricia Suriana, Shoaib
Kamil, Saman Amarasinghe. ArXiv e-prints. February, 2018.

Submitted* Sparse Tensor Algebra Optimizations with Workspaces. Fredrik Kjolstad, Peter Ahrens,
Shoaib Kamil, and Saman Amarasinghe. ArXiv e-prints. April, 2018.

OOPSLA’18 Unified Sparse Formats for Tensor Algebra Compilers. Chou Stephen, Kjolstad Fredrik
and Amarasinghe Saman. ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications.

ASE’17 TACO: A Tool to Generate Tensor Algebra Kernels. Kjolstad Fredrik, Chou Stephen, Lu-
gato David, Kamil Shoaib and Amarasinghe Saman. 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE).

OOPSLA’17 The Tensor Algebra Compiler. David Lugato Fredrik Kjolstad, Shoaib Kamil Stephen Chou,
Saman Amarasinghe. ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications.

ACM T. Graph. Simit: A Language for Physical Simulation. Fredrik Kjolstad, Shoaib Kamil, Jonathan
Ragan-Kelley, David I. W. Levin, Shinjiro Sueda, Desai Chen, Etienne Vouga, Danny M.
Kaufman, Gurtej Kanwar, Wojciech Matusik, Saman Amarasinghe. ACM Trans. Graph..

PPoPP’16 Distributed Halide. Shoaib Kamil Tyler Denniston, Saman Amarasinghe. Symposium on
Principles and Practice of Parallel Programming.

PLDI’16 Verified lifting of stencil computations. Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, Ar-
mando Solar-Lezama. Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation.

ITP’16 Mostly Automated Formal Verification of Loop Dependencies with Applications to Dis-
tributed Stencil Algorithms. Thomas Gregoire, Adam Chlipala. Proceedings of the Interac-
tive Theorem Proving - Seventh International Conference (ITP’16). August 2016.

PLDI’15 Autotuning Algorithmic Choice for Input Sensitivity. Yufei Ding, Jason Ansel, Kalyan
Veeramachaneni, Xipeng Shen, Una-May O’Reilly, Saman Amarasinghe. ACM SIGPLAN
Conference on Programming Language Design and Implementation.
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PLDI’15 Helium: Lifting High-Performance Stencil Kernels from Stripped x86 Binaries to Halide
DSL Code. Charith Mendis, Jeffrey Bosboom, Kevin Wu, Shoaib Kamil, Jonathan Ragan-
Kelley, Sylvain Paris, Qin Zhao, Saman Amarasinghe. ACM SIGPLAN Conference on
Programming Language Design and Implementation.

PACT’14 OpenTuner: An Extensible Framework for Program Autotuning. Jason Ansel, Shoaib Kamil,
Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May O’Reilly, Saman
Amarasinghe. International Conference on Parallel Architectures and Compilation Tech-
niques.

4 Software released
We publicly released the following artifacts. We hope the DOE application community will help
evaluate them and provide constructive feedback so that these artifacts will become the basis for an
operational exascale tool software stack. Software will also be made available through the D-TEC
web site [60] and the proposed X-Stack website, if appropriate.

• Halide is released and available at http://halide-lang.org/. We will continue to
update the release to add features developed as part of this project.

• OpenTuner is available at http://opentuner.org/ and will continue to be updated as
it evolves during the course of this project.

• Tiramisu is released publicly at https://tiramisu-compiler.org/.

• Simit is released publicly at http://simit-lang.org/.

• TACO is released publicly at http://tensor-compiler.org/.

• The ROSE connection to OpenTuner are all released through ROSE compiler available at
http://www.rosecompiler.org/.

• The new version of Sketch (1.7.2) is released as open source and is available at http:
//people.csail.mit.edu/asolar. We will continue to update the release to add
features developed as part of this project.

• MSL, the distributed synthesis language, will be released at the end of the project at http:
//people.csail.mit.edu/asolar.

• A Coq library for verifying dependencies of stencil implementations https://github.
com/mit-plv/stencils.
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[13] F. S. Sin, D. Schroeder, and J. Barbič. Vega: Non-linear fem deformable object simulator. In
Computer Graphics Forum, volume 32, pages 36–48, 2013.

[14] D. W. Walker and J. J. Dongarra. Mpi: a standard message passing interface. Supercomputer,
12:56–68, 1996.

17


	Introduction
	Accomplishments
	Demonstrate Productivity to Hero Class Performance
	Demonstrate the Effectiveness of DSLs
	Demonstrate Best of Class Performance on Current Hardware
	Demonstrate Performance Portability on Existing Hardware

	Demonstrate more Productive Development of Highly-expressive DSLs
	blackTiramisu
	TACO: a Compiler for Dense and Sparse Linear Algebra
	Mostly Automated Formal Verification of Loop Dependencies with Applications to Distributed Stencil Algorithms

	Demonstrate How to Overcome Exascale Challenges
	Demonstrate a Path from Legacy Applications to New DSLs
	STNG: Synthesis Tool to Migrate Legacy Fortran Kernels to Halide
	Helium: Lifting Legacy Stencil Kernels to Halide DSL
	Sketch-based Synthesis for Lulesh

	Demonstrate a Variety of Domain Specific Languages
	Halide DSL for Stencil Computations
	Simit DSL


	Recent Publications
	Software released

