2017 1IEEE 24th International Conference on High Performance Computing (HiPC)

Applying Graph Analytics to Understand Compute
Core Usage and Publication Trends in a Petascale
Supercomputing Facility

Sangkeun Lee, Sudharshan S. Vazhkudai, Raghul Gunasekaran
Oak Ridge National Laboratory
{lees4, vazhukudaiss, gunasekaranr}@ornl.gov

Abstract—The Oak Ridge Leadership Computing Facility
(OLCF) runs Titan, the No. 4 supercomputer in the world, to
deliver over four billion compute core hours every year to several
scientific domains, in their pursuit of leadership science. In this
paper, we analyze four years worth of heterogeneous log data
sources from the OLCF resource fabric, capturing metadata
on entities such as users (2,546), scientific project allocations
(674), jobs (1,352,402) and publications (1,146), to derive insights
into the trends in core hour usage and publications, across
35 science domains. We have constructed a scalable graph to
represent the OLCF entities and apply rich graph analytics for
our analysis. Based on this, we have analyzed the metadata
across five dimensions, namely (1) quantitative analysis of Titan
system usage, (2) quantitative analysis of OLCF publications, (3)
correlation analysis between system usage and publications, (4)
text analysis to derive OLCF research trends, and (5) utilization
of graph mining for association analysis. To the best of our
knowledge, our work is the first of its kind to apply graph-
based big data techniques to provide comprehensive insights
on an HPC center’s core hour usage and users’ publication
trends. Our results provide valuable details into an HPC center’s
core allocation program, measuring the productivity of scientific
domains, the interplay between core usage and research output,
accelerating collaboration, and in predicting new connections
between resource entities.

I. INTRODUCTION

The U.S. Department of Energy’s (DOE) Oak Ridge Lead-
ership Computing Facility (OLCF) [1] hosts the world’s No.
4 supercomputer, the 27 petaflops Titan system that comprises
of 18,688 CPU/GPU compute nodes and 710 TB of system
memory. Titan caters to a diverse user base from national
labs, academia, and industry, in solving grand challenge prob-
lems from 35 science domains such as Climate, Combustion,
Fusion, Chemistry, Energy Storage, Materials, Biology, As-
trophysics, and Nuclear Physics. Each Titan compute node
comprises a 16-core AMD CPU and an NVIDIA Kepler GPU,
with 14 streaming multiprocessors (SM), for a total of 560,640

This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-000R22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

0-7695-6326-0/17/$31.00 ©2017 IEEE
DOI 10.1109/HiPC.2017.00041

294

Rhea

. EOS
(Dgﬁj’s\g?')ys's (Cray XC30)
TITA 512node 736 node

Cray XK7
18688 nodes

| SION (Scalable I/0 Network) - FDR InfiniBand |
| |
Spider - Lustre

Parallel File System
(30 PB, 1TB/s)

HPSS — Archival
Storage System (Tape)

Fig. 1: Overview of systems in OLCF.

cores. User project allocations are charged 30 units per node-
hour, accounting for the 16 CPUs and 14 SMs. In addition
to Titan, the OLCF hosts several other resources such as the
32 PB Lustre-based parallel file system (PFS), the 60+PB
HPSS disk/tape archive, and several analysis and visualization
clusters (Fig. 1). Using all of the above infrastructure, Titan
delivers over four billion core hours every year to rigorously
peer-reviewed scientific user projects.

A sizeable chunk of Titan’s core hours is consumed by
leadership jobs, which consume at least 20% of the system
and exercise Titan’s unique heterogeneous node architecture.
Users routinely run several hundreds of thousands of jobs on
Titan every year that simulate complex scientific phenomena,
and glean insights. Based on such a use of the system, users
produce around 250 peer-reviewed publications every year
in leading scientific journals and conferences. The scientific
productivity of the OLCF national user facility is evaluated
based on its successful delivery of computing time to its user
base and on the users’ ability to conduct science using those
core hours, which is mainly measured by publications. It is
therefore vital to understand the trends in compute core usage
and scientific publications of the OLCFE.

Contributions: In this paper, we have conducted an em-
pirical analysis of the OLCF’s core usage and publication
data across several science domains, using four years (2013-
2016) of log data. For example, we are interested in studying
the trends in job size (both in terms of nodes and hours
used) across science domains, trends in monthly core hour
utilization, collaboration trends in/across science domains,
trends in user participation, etc., which can help the center’s

EE

IE
computer
psouety

resource utilization council to appropriately allocate resources
in the future.

HPC center staff often goes to great lengths to track down
the papers that used the center resources as it is a crucial metric
when it comes to evaluating a center’s productivity. In addition
to system usage analysis, we are interested in understanding
the trends in research publications of science domains based
on a quantitative analysis. For example, we have analyzed
publications over time, papers per project/user, citations per
paper/domain/user, average author counts in publications per
domain, and the collaboration metric in publications. Further,
we have studied the correlation between system usage and
scientific publications across the various domains, combining
core usage data with publication data.

We have utilized text analysis and association analysis to
unravel deeper insights. We have employed text analysis to
understand popular (or trending) research terms (or topics)
associated with publications and jobs over time. We have used
association analysis (graph mining) to derive collaborations of
OLCEF users (community detection) and speculative relation-
ships between publications and the scientific project alloca-
tions they may belong to (predictive analysis). The predictions
based on the association analysis can be particularly useful in
the absence of clear reporting by users (as is often the case in
HPC centers).

To perform such a quantitative, semantic and predictive
analysis in a systematic manner, we propose to view the
OLCF HPC resource fabric as a graph, and apply a rich set of
graph analytics techniques atop. Graph-based approaches can
analyze heterogeneous information with lots of connections,
while also allowing the ingest of new data sources without
having to change the database schema.

We have constructed a property graph by representing a
diverse set of HPC log data sources over several years,
comprising of entities such as users (2,546), projects (674),
jobs (1,352,402) and publications (1,146) as graph vertices
and the connections between them as edges. We have also
derived new connections based on predictive associations
between users, projects, jobs, and publications. For instance,
we have extracted keywords (also represented as vertices in the
graph) from publications using text-processing techniques, and
calculate the semantic relevance scores between publications
and keywords. The constructed graph is imported into the
neo4;j [2] graph database and queried using a declarative graph
query language called Cypher [3] to process various analytics
tasks.

To the best of our knowledge, our study is the first of its
kind to apply graph-based big data techniques to understand
heterogeneous data sets for a leadership-scale HPC center.
Particularly, we show (1) how to exploit the constructed
graph to correlate publication and job log analysis and (2)
to predict missing links between entities, which have not been
studied before. Further, our statistical results provide valuable
insights into an HPC center’s core allocation, measuring the
productivity of scientific domains, the interplay between core
usage and research output, accelerating collaboration, and in

predicting new connections between HPC resource entities.
Finally, we expect that our approach of deriving knowledge
from heterogeneous data sets will inspire many other system
administrators, researchers, and data scientists from other
facilities to undertake similar such efforts.

II. OLCF DATA SOURCES

We have used the following OLCF log data sources for the
analysis in this paper.

a) User and Project: OLCF maintains and tracks all
user activity using a RATS (Resource Allocation and Tracking
System) database. The database keeps track of user informa-
tion, such as name, username, affiliation, and contact details;
and project allocation information, such as project name, ID,
description, compute hours allocated and used. A user can
be a part of multiple projects, where a project represents the
science domain. For example, Astrophysics projects have a
project ID starting with ast followed by a number to identify
individual projects within the domain. RATS provides APIs
to query this information. We have used the RATS data for
associating publication and job log datasets (both of these logs
are explained below). More specifically, the publication data
set has author names and affiliations, which we map to the
user’s username in RATS. Similarly, the job log has only the
username field to associate to the specific user in RATS, and
thereby the associated publication.

b) Job logs: We have used the Titan scheduler’s (MOAB)
log of job events for our analysis. Each job log entry provides
details such as job-ID, username user who launched the job,
project-ID the user’s project allocation, start time or end
time of the simulation job, and the number of compute nodes
allocated. A new log entry is created at the start of the job
and another log entry at the end of the job. We have used four
years of job logs from 2013 to 2016 for the analysis in this
paper.

c) Publication: OLCF collects publications that have
acknowledged OLCEF in the text by using a web-crawler and
manual reporting. A web-crawled publication entry needs to
be finalized by the OLCEF staff. The publication database keeps
track of author names, affiliation, associated project ID, title,
abstract, type of publication (e.g., book, journal, conference,
etc.), name of venue, year, impact factor, citation count, etc.
Currently, association of a project ID with a publication is
manually processed by the OLCEF staff based on user reporting
and an expert’s classification. However, not all publication
entries in the collected log data have been associated with a
project. Unlike the job log dataset, collecting a publication
entry is a semi-automatic process, and can be potentially
incomplete. Therefore, the publication entries should be care-
fully considered for analysis.

III. ANALYSIS OVERVIEW

In this section, we present an overview of our analysis
of the compute core usage on Titan and the publication
trends. We have employed a graph to represent the entities
(users, projects, jobs, keywords and papers) in the OLCF

295

data sources, and apply graph analytics towards our analysis.
We have categorized our analysis tasks into five dimensions,
namely (1) Quantitative analysis of Titan system usage, (2)
Quantitative analysis of publications produced from Titan
usage, (3) Correlation analysis between Titan system usage
and publications, (4) Text analysis of publications to derive
OLCEF research trends, and (5) Utilization of graph mining for
association analysis.

A. Quantitative analysis of Titan’s compute core usage

The objective of this analysis is to understand Titan’s system
utilization patterns and usage trends over time by analyzing
the job logs. As a first step, we categorized the executed jobs
into three different job size bins, namely small (less than 375
nodes), medium (375 to 3750 nodes) and large (greater than
3750 nodes). The next task is to identify and understand the
variance seen across science domains, in the utilization of
Titan. To this end, we have processed graph pattern matching
queries to analyze the graph and interpret the query results as
shown in Section IV-C. Such an analysis has enabled us to
answer questions like “Which science domains used the most
core hours?’, “Which science domains tend to execute large or
small-scale jobs?’, ‘Can we expect particular science domain’s
job utilization peaks in a particular period of a year?’. The
answers to such questions can provide meaningful insights to
HPC centers for future deployments and time allocation.

B. Quantitative analysis of OLCF acknowledged publication

In this dimension, we first analyzed the aggregated statistics
on publications (e.g., the number of publications, aggregated
citation counts), and then we delved into the variance in
different science domains. This task has helped us in answer-
ing questions such as ‘Which science domain published the
most?’, ‘Which domain has the most publication or citation
count per person?’, ‘How does the number of publications
change over time?’, etc. Furthermore, we have analyzed the
collaboration trends by closely observing authorships to an-
swer questions like ‘How does the average number of authors
differ in different domains?’, ‘Which is the pair of domains
that collaborated the most?’, “Which domain has less tendency
to collaborate with the other domains?’. This analysis has
provided insights to OLCF regarding not only the quantity
but also the quality of publications. Similar to the previous
case, we have employed graph queries for the analysis.

C. Correlation analysis between Titan usage and publications

In this analysis, we have investigated the correlation be-
tween jobs and publications, as job executions and publication
activities are not independent of each other (e.g., scientists
perform jobs on HPC systems, which leads to the publication
of academic papers). By studying the correlation, we have
answered questions like ‘which domain has the highest publi-
cation and citations per core hour?’, ‘what size of jobs has led
to more publications or citations?’ (i.e., do large leadership
jobs necessarily mean more papers?), ‘which domains have
more users who both use HPC systems and also publish

papers?’. By observing these two different data sets together
(publications and jobs), we have derived unique insights that
cannot be accomplised by any one data set in isolation. For
this analysis, graph edges, connecting jobs and publications,
played a crucial role.

D. Text analysis of publications for OLCF research trends

A very valuable piece of information in the publication
dataset is fext information such as title and abstract of the
papers. We have extracted keywords from a publication’s text
and associated the keywords with the publication. We then
used a text analysis technique called LSA (Latent Seman-
tic Analysis) [4] to compute the semantic relevance scores
between and across publications and keywords. We used
the computed scores to assign edge weights between/across
Publication and Keyword vertices in the graph. Based on
the graph components constructed from the publication text,
we have derived semantic overviews regarding the contents
of the OLCF scientific projects with various perspectives.
It has provided us answers to questions like ‘What are the
most popular keywords in publications over time?’, ‘How
do keywords describing executed jobs change over time?’,
‘Which science domains share similar research topics?’, ‘How
does the prevalence of research related to keyword ‘nuclear’
change over time? (e.g., similar to Google Trend)’, etc.

E. Utilization of graph mining for association analysis

To derive further insights from associations in the OLCF
data sources, we have also employed two graph mining
approaches, community detection and link prediction. For com-
munity detection, we have modified the connected component
concept of an undirected graph to operate with a property
graph, and used it to analyze users’ collaboration associations.
For link prediction, we have quantified and utilized relation-
ship strength between two vertices in the graph, considering
paths existing between the vertices to find the speculative
relationships. Specifically, we have presented a use case of
predicting missing edges (deliverableOf) between Project and
Publication vertices. This capability is of significant value to
an HPC center like OLCEF, as it has enabled us to identify and
predict publications that were produced by scientific projects,
in the absence of proper reporting, which is often the case.

IV. GRAPH-BASED DATA ANALYSIS FRAMEWORK

To conduct the above analysis, we have employed a graph-
based approach to tie together the entities from the HPC data
sources.

A. Why graph?

OLCF data sources are heterogeneous, with many entities
in them having connections between each other. Often times,
these relationships are not explicitly described in the data
sources. For instance, an author of an OLCF publication can
be a user who executed a job on an OLCF HPC system.
For successful data analysis such as the aforementioned, it is
crucial to establish an integrated data analysis framework that

296

can capture insights hidden in the connected heterogeneous en-
tities. The data analysis framework should not be constrained
by a single data source’s limitations in the description, but be
able to consider them in concert, towards greater flexibility
and richer data analysis.

The graph model has been attracting much attention to
represent and understand such complex connections across
heterogeneous entities [5]. The graph model also allows flex-
ibility, as it is not constrained with a rigid schema. Data
can easily grow even when new data sources with different
schema and/or additional columns for the existing data sets are
continually introduced and ingested, unlike the relational data
model. Motivated by these characteristics, we have adopted a
graph-based approach. We have constructed a graph out of the
available OLCF’s data sources, and query the graph to discover
knowledge by delving into the existing subgraph patterns in
the constructed graph.

Specifically, we have adopted a property graph [6], which
is a directed, typed, attributed multi-graph that can naturally
represent heterogeneous entities as vertices, relationships as
edges, and capture their descriptions as vertex and edge
attributes.

B. Graph construction

The construction of the graph is a three step process as
follows.

1) Graph schema design: First, we define the logical
structure of our property graph, namely graph schema, by
identifying vertex types, edge types and their associated at-
tributes from the data source. Fig. 2 shows the schema of
the property graph that we have constructed. For each data
source, we have extracted vertices and edges from the data
source based on a pre-defined conversion mapping between the
schema of the data source and the defined graph schema [7].
A single entry from a data source can be converted into
a number of vertices and edges with different types. For
instance, we may convert each data entry, e, in the publication
data set, having relational schema R puypiication(DOI, title, list
of authors, abstract, journal, month, year) into a Publication
vertex, p, a set of vertices, uy,..., uy, of type User, a Journal
vertex, j, a set of edges of type, writtenBy, connecting p and
Ul,. .. Uy, and a publishedIn edge, connecting p and j.

{user_idx, username,name, email, OLCF_user

executedB writtenBy
relavantTo

memberOf

hasImportantKeyword

iscore, rank |

{job_idx, job_ID, job_name, user,
num_of nodes, execution_time, ...

Fig. 2: Overview of the graph schema for OLCF data sources. Note
that we only show attribute names for User, Job vertex type, and the
edge type, hasImportantKeyword.

2) Merging vertices representing the same entity: Ideally,
we do not want to have multiple vertices representing the
same entity. However, initially when we extract vertices from
disparate data sources, there can be vertices representing the
same entity, and we need to merge them as a single vertex.
It is straightforward if vertices generated from different data
sources use a common identifier (ID), then we can simply
merge the vertices with the same ID. However, this is not
true for all cases. If common identifiers are not available, we
have used a secondary similarity join approach to identify and
merge identical vertices.

For instance, the name (i.e., a person’s name) property
can be used to identify and merge the vertices representing
the same person. More specific conditions can be added to
increase the accuracy of same entity identification. Generally,
instead of using the secondary key value strictly to join,
we have computed the Levenshtein distance (d) between
the values of the secondary join key and perform similarity
join, where we have merged vertices if two vertices are the
closest to each other based on d, and d is less than 10%
of the average of two join key value lengths. This is useful,
because same contents (e.g., person’s name) can be described
in various ways (e.g., having a full or initial middle name)
in different locations. As a result, now the merged vertices
become the intermediate connectors on the paths between
vertices generated from different data sources (e.g., (Job)-
[executedBy]—(User)<—[isWrittenBy]-(Publication)). This ap-
proach has helped to consolidate the graph, and merge iden-
tical vertices from multiple data sources.

3) Deriving semantic graph components from text: Next,
we have utilized the text information available in the pub-
lication data source such as ftitle and abstract to further
enhance the graph and derive new associations between the
graph entities. To this end, we have first constructed a term-
document matrix by using the text from each publication
entry, using the TF-IDF technique (Term Frequency-Inverse
Document Frequency) [8], after filtering out stem words.
Then, we have performed the LSA (Latent Semantic Analysis)
technique [4] which finds a lower-rank approximation of the
matrix, using singular value decomposition (SVD) [9] and
uses it to achieve semantic similarity between word-document
and word-word by computing cosine similarity across vectors
in the matrix. We have used this outcome as an additional
information to enrich the graph and created Keyword vertices,
and edges of type, hasImportantKeyword (word-document)
and relaventTo (word-word), which contain similarity scores in
their properties. We have used top-30 most relevant keywords
for each publication and top-10 most similar keywords for each
keyword to create the edges of type, hasImportantKeyword and
relaventTo, respectively. These additional vertices and edges
have been useful in understanding the detailed contents of
research activities and in predicting missing information in
the graph (Section V-E2).

We have developed a tool to process the above three
steps, and executed it on a 2.7GHz, 12-Core Intel Xeon ES
machine with 64GB of RAM. Total execution time for graph

297

construction was approximately 100 minutes.

C. Querying the property graph

TABLE I: Statistical summary of the graph.

Node Type | Node# Edge Type Edge#
User 2,546 (Publication)-deliverableOf—(Project) 932
Project 674 (Publication)-hasImportantKeyword—(Keyword) | 34,380
Job 1,352,402 | (Publication)-writtenBy—(User) 6,873
Publication 1,146 (User)-memberOf—(Project) 3,592
Journal 299 (User)-PIOf—(Project) 301
Keyword 22,906 (Publication)-publishedIn— (Journal) 1,141
(Job)-executedBy—(User) 1,363,082
(Job)-executedFor—(Project) 1,363,082
(Keyword)-relevantTo—(Keyword) 232,370

We have used neo4j [2] for loading the constructed graph,
which is one of the leading commercial graph database man-
agement systems. For graph loading and query processing,
we have used the same machine that we used for graph
construction. Loading the graph into the database took 553
seconds, and the size of graph database is 812.35MB. Table |
shows the statistical summary of the constructed graph. We
have composed Cypher [3] queries representing our analytics
questions, and executed the queries on the graph database.
The following is a simple example Cypher query (Listing 1)
to achieve top 5 pairs of authors from 2013 to 2016 ordered
by their co-authorship counts in descending order.

Listing 1: Counting the distinct number of co-authored publications
of two users.

means any pair of users in it is directly or indirectly connected
to each other by following the co-authorship paths. We have
implemented a community detection algorithm that returns all
existing communities in a graph. It iteratively executes Cypher
queries to perform depth first traversals, following paths with
the given schema, for each vertex to identify the communities.
We discuss the result in Section V-El.

2) Link prediction: Link prediction aims to infer new asso-
ciations between the vertices. To this end, we have quantified
the score of the relationship strength between two vertices,
and consider the pair with the higher score to be speculatively
linked to each other. For instance, the following queries quan-
tify relationship strength between Publication and Project, and
find Top-5 potentially related Projects for each Publication in
two different ways. The result of queries can be used to predict
the deliverableOf association.

Listing 2: Cypher queries to predict top-5 potentially associated
projects for each publication with missing project information in two
different ways.

MATCH (ul:User)<-[:writtenBy]-(pl:Publication),
(u2:User)<-[:writtenBy]- (pl)

WHERE pl.pub_year>=2013 AND pl.pub_year<=2016

RETURN pl.name, p2.name, COUNT (DISTINCT p) AS co_author_cnt
ORDER BY co_author_cnt DESC LIMIT 10

The first two lines of the query (Listing 1) describe the graph
pattern representing the co-authorship of users. It queries two
User vertices ul and u2, where they both have writtenBy edges
from the Publication node pl. The WHERE clause makes the
graph patterns more specific (e.g., only querying data from
2013 to 2016), and the RETURN clause finally defines the
aggregated information that we want to get from the identified
graph pattern instances.

D. Employing graph mining for association analysis

1) Community detection: A connected component is a
subgraph in which any two vertices are connected to each
other by paths, and the vertex in the connected component
is not either directly or indirectly connected to vertices in
other connected components. We have extended this to include
heterogeneous vertices and edges, and defined a “community”
as follows. For a given graph G, a path schema, P (i.e., a
sequence of edge types), and a vertex type ¢, a community is a
set of type ¢ vertices in which any two vertices are connected
to each other by paths with the given path schema, P, and
any vertex in the community is not connected to vertices in
other communities by paths with the given path schema, P.
For instance, given our graph, a path schema describing co-
authorship of two users, (User)<[writtenBy]-(Publication)-
[writtenBy]—(User), and a vertex type User, a community

—-— Query 1

—— Predicting a Publication pl’s associated Project
—-— using Publication contents

MATCH

(pl)-[rl:hasImportantKeyword]-> (k:Keyword),

(k) <-[r2:hasImportantKeyword] - (p2:Publication),

(p2) —[:deliverableOf] - (prl:Project)
WHERE NOT (pl)-[:deliverableOf]-()
WITH

pl.publication_idx AS pub_id, prl.project_ID AS prj_id,
SUM(rl.score x r2.score) AS score ORDER BY score DESC
WITH

pub_id, collect ({pr_id:pr_id, score:score}) AS prediction
RETURN pub_id, prediction[0..5]

-— Query 2

-— Predicting a Publication pl’s associated Project
-- using pl’s authors’ memberships to Projects
MATCH

(pl:Publication)-[:writtenBy]->(u:User),
(u) —[:isMemberOf]->(prl:Project)

WHERE NOT (pl)-[:deliverableOf]-()

WITH

pl.publication_idx AS pub_id, prl.project_ID AS prj_id,
COUNT (prl) AS score ORDER BY score DESC

WITH

pub_id, collect ({pr_id:pr_id, score:score}) AS prediction
RETURN pub_id, prediction[0..5]

A publication can be related to a project that has other
associated publications, based on sharing similar keywords
with those other publications. With this intuition, Query 1
(Listing 2) finds potentially correlated projects with a pub-
lication. On the other hand, Query 2 (Listing 2) finds projects
based on a publication’s authors’ memberships to projects, as
the publication can be a deliverable of those projects. We have
combined the two scores for better accuracy of prediction. We
discuss the accuracy of link prediction in Section V-E2.

V. EVALUATION

We present our analysis, and derive insights on the com-
pute core usage and its impact on the scientific publications
(Table II shows the summary). First, we look at statistical
inferences from the data sources and then correlate them to
derive associative inferences. Our approach has also helped
in identifying missing associations based on learning from

298

the current relationships in the graph. Finally, we present a
graphical tool that helps navigate the graph for ascertaining
new facts that further complement the graph learning process.

A. Quantitative analysis of Titan’s compute core usage

In this section, we present the characteristics of compute
core usage of the Titan machine in OLCF from the perspective
of users and their science domains. For this analysis, we have
studied the constructed graph, for all users who have executed
a job on Titan. A vertex of type, User, in the graph can have
edges of type, memberOf, to vertices of type, Project, and
also map to a vertes of type, Job, with an edge of type,
JjobExecutedBy. We have mined for vertices of type, User,
which have both the edge types. Note that there can also exist
vertices of type, User, without any edges of type, memberOf,
in case we cannot find any information from the data sources.
We did not consider those vertices in this analysis. We have

500

400

300

200

Users per domain

100

ard
ast jmm
atm @

bif m

bio m
bip —
chm |
chp m

cli
cmb j—
cph
csc

env |

fus m—
gen m
geo mm
Isc @

-m
85
2

aph

2t
Fig. 3: Number of users per domain.

derived the statistical information about core usage using
Cypher queries as described in Section IV-C. Fig. 3 depicts the
proportion of users’ membership to domains based on edges
of type, memberOf. The domain Computer Science, csc, has
the largest number of users (522, 20.50%) and Staff, stf, is the
second (251, 9.86%). All other domains occupied less than
5% except three domains, Climate Science, cli, (228, 8.96%),
Materials Science, mat, (193, 7.58%) and Biophysics, bip (134,
5.26%). Note that though csc and stf are not science domains,
the user base is mostly system engineers and core computer
science researchers who directly work on architecting the
system and scaling system software on the compute platform.
Also, they work closely with domain scientists for scaling
application code, and such contributions result in significant
publications for core computer science research as well as for
the domains. Hence we list both these user communities as
science domains in our analysis.

Fig. 4 shows the aggregate number of jobs and compute
core hours used over our analysis period of four years. We
have categorized the jobs by the number of compute nodes
requested, e.g., jobs using less than 375 nodes as small jobs,
between 375 and 3750 as medium jobs, and over 3750 nodes
as large jobs.

The total number of jobs increased from 2013 to 2016. In
terms of used core hours, there is a big increase from 2013
to 2014, but we see similar core hours used from 2014 to
2016. Titan was only commissioned in 2013 and hence the
lower utilization. Although the majority of the jobs executed
on the system are small-sized jobs, the large jobs consume the

Count (*1000)

Core hours (*
(2]
o

00

2013 2014 2015 2016
2013 2014 2015 2016

] Large Jobs
— Large Jobs E—= Medium Jobs
E—= Medium Jobs — Small Jobs
— Small Jobs

(b) Core hour usage by the

(a) Jobs by the year. year.

Fig. 4: Jobs and core hour usage.

B
£
all Jobs === Medium Jobs Large

CBEZEOE >
S2EEQECEE
£ c a

Percentage

(b) Compute core usage by domain (%).

Fig. 5: Compute core usage by domain.

maximum compute core hours on the system, consistent with
OLCF’s leadership science mission. In terms of job sizes, most
small jobs tend to be test or debug runs by users testing newer
versions of applications or small scale tests in preparation
for a larger run. Alternatively, certain applications or science
domains inherently cannot scale beyond a set of nodes.
Next, we have interpreted the compute core usage by
science domains. Fig. 5a shows the number of jobs executed by
users in the various science domains. As expected, the number
of users per domain tends to be correlated with the number of
executed jobs, i.e., more users tend to execute more jobs (e.g.,
Computer Science, csc, Biophysics, bip, Climate Science, cli,
Staff, stf, Materials Science, mat). It is interesting to see that
certain domains like Nuclear Fusion, nfu, primarily executed
medium-sized jobs compared to other domains. Similarly,
Fig. 5b presents the compute core usage based on job size.
Surprisingly, while certain projects like Plasma Physics (env),
High Energy Physics (hep), Systems Biology (syb) had a small
fraction of job requests, but most of them were large jobs with
high core utilization. This analysis served as a clear indicator
to identify applications that scaled well on the computing
platform and were potential candidates for scaling on future

299

TABLE II: Summary of users’ publication and system usage activities across different science domains. User#(job# > 1) means users who
have run more than 1 job; User#(pub# > 1) means users who have more than 1 paper; User#(pub# > 1, job# > 1) means users with more
than 1 job and 1 paper. A higher active user ratio means more users participated in job executions and/or paper publications.

user# usert user# user# user# user# Active Active Active Inactive
Science Domain Name (Domain ID) user# Gob#>1) | (pubti>1) (#job>1, | (pub#>1, | (pub#>1, (pub#=0, | User Ratio | User Ratio User Ratio User Ratio
pub#=0) job#=0) job#>1) job#=0) (Job) (Publication) | (Both)

Accelerator Physics (aph) 12 12 6 6 0 6 0 1.000 0.500 0.500 0.000

Aerodynamics (ard) 50 43 11 32 0 11 7 0.860 0.220 0.220 0.140

Astrophysics (ast) 77 65 28 41 4 24 8 0.844 0.364 0.312 0.104

Atmospheric Science (atm) 25 23 8 15 0 8 2 0.920 0.320 0.320 0.080

Bioinformatics (bif) 21 18 7 11 0 7 3 0.857 0.333 0.333 0.143

Biology (bio) 27 27 16 11 0 16 0 1.000 0.593 0.593 0.000

Biophysics (bip) 134 117 49 73 5 44 12 0.873 0.366 0.328 0.090

Chemistry (chm) 84 83 45 39 1 44 0 0.988 0.536 0.524 0.000

Physical Chemistry (chp) 32 29 16 14 1 15 2 0.906 0.500 0.469 0.063

Climate Science (cli) 228 176 67 121 12 55 40 0.772 0.294 0.241 0.175

Combustion (cmb) 119 100 28 73 1 27 18 0.840 0.235 0.227 0.151

Condensed Matter Physics (cph) 83 78 41 39 2 39 3 0.940 0.494 0.470 0.036

Computer Science (csc) 522 437 174 281 18 156 67 0.837 0.333 0.299 0.128

Plasma Physics (env) 23 23 17 6 0 17 0 1.000 0.739 0.739 0.000

Fusion Energy (fus) 92 80 34 48 2 32 10 0.870 0.370 0.348 0.109

General (gen) 23 13 3 10 0 3 10 0.565 0.130 0.130 0.435

Geosciences (geo) 71 58 19 40 1 18 12 0.817 0.268 0.254 0.169

High Energy Physics (hep) 19 14 12 4 2 10 3 0.737 0.632 0.526 0.158

Lattice Gauge Theory (Igt) 17 15 4 11 0 4 2 0.882 0.235 0.235 0.118

Life Sciences (Isc) 27 19 4 15 0 4 8 0.704 0.148 0.148 0.296

Materials Science (mat) 193 177 78 102 3 75 13 0917 0.404 0.389 0.067

Medical Science (med) 6 6 2 4 0 2 0 1.000 0.333 0.333 0.000

Molecular Physics (mph) 18 15 1 14 0 1 3 0.833 0.056 0.056 0.167

Nanoelectronics (nel) 11 9 3 6 0 3 2 0.818 0.273 0.273 0.182

Nuclear Fission (nfi) 97 88 28 61 1 27 8 0.907 0.289 0.278 0.082

Nuclear Fusion (nfu) 4 4 0 4 0 0 0 1.000 0.000 0.000 0.000

Nuclear Physics (nph) 85 69 43 35 9 34 7 0.812 0.506 0.400 0.082

Neuroscience (nro) 9 8 2 6 0 2 1 0.889 0.222 0.222 0.111

Nanoscience (nti) 42 41 19 22 0 19 1 0.976 0.452 0.452 0.024

Physics (phy) 38 35 17 18 0 17 3 0.921 0.447 0.447 0.079

Solar/Space Physics (pss) 0 0 0 0 0 0 0 N/A N/A N/A N/A

Staff (stf) 251 155 69 96 10 59 86 0.618 0.275 0.235 0.343

Systems Biology (syb) 8 6 3 4 1 2 1 0.750 0.375 0.250 0.125

Turbulence (tur) 34 32 2 30 0 2 2 0.941 0.059 0.059 0.059

Vendor (ven) 64 51 0 46 0 5 13 0.797 0.000 0.078 0.203

Average | 72.742 60.742 24.457 38.228 2.085 22.514 9.914 0.864 0.332 0.314 0.115
OLCF systems. 350
300
B. Quantitative analysis of OLCF acknowledged publication 250
g 200
Publications and citations serve as primary indicators to un- 8150
derstand the impact of scientific productivity from leadership 100
computing facilities like OLCF. Fig. 6 presents publications 52

that acknowledged OLCF over the period of four years. As 2018 2014 2015 2016
—] with project ID m— no Project ID

described in Section II, not all publications in a given year
were identified and associated with a given project allocation.
We have composed graph analytics queries using Cypher as
explained in Section IV-C, to extract publication statistics from
the constructed graph. In the case of publications in 2015,
91.47% of the publications have their associated project IDs,
as opposed to only 50.34% in 2013. In Section IV-E2, we
presented how our graph approach can help in identifying
this missing information. However, to analyze the publication
trends of the different domains, we have only used the publi-
cations that have their associated project IDs, and did not use
the ones with missing information. Later in the section, we
validate and discuss the accuracy of our approach on predicting
the missing information.

In Fig. 7, we show the break down of publications and cita-
tions by science domains. The Climate Science (cli), Materials
Science (mat), and Nuclear Physics (nph) domains have the
most number of publications (44.71% of total) and citations
(56.12% of total). The number of citations per domain is
highly correlated with the number of publications per domain,
based on the Pearson Correlation Coefficient (PCC) that was

Fig. 6: Publication count per year.

0.95. PCC computes the linear correlation score between two
variables X and Y as follows: pxy = %, cov is the
covariance, ox and oy are the standard deviations of X
and Y, respectively. However, some domains such as Biology
(bio), Physical Chemistry (cph), Climate Science (cli) and
Astrophysics (ast) have high citation counts but with less
number of publications. To study the influence of individual
papers in different domains, we have calculated the number of
citations divided by the number of publications. Fig. 8 shows
that publications from the Biology (bio) domain has the highest
ratio (#citations/#publications = 22.33).

Using the author’s affiliation with a science domain, we
have used the publication data to understand collaboration
trends in inter/intra science domains. First, we have compared
the average number of authors per publication in different
domains, which is representative of the collaborating team
size. Each publication’s science domain is identified from the

300

200

150

100

No. of Publications

50 1 [
NI | AP N T T
o = Pop— pe——
§EESES8ES0R585258EC8FREREREEEERE3S
(a) Publication count per domain.
2500
o 2000
2
o
T 1500
g
‘5 1000
S
Z 500 I I 1
o IIII nllnm I - Il
§EESES2EEOREAE 258 EPEERERE2EEELRE2E
(b) Citation count per domain.
Fig. 7: Publication and citation per domain.
c 25
=l
_g 20
o
T 15
3
2 10
2
2 s 1 1
©
'60l|.lllll IIIIII I
§RESE28EETR545 258858 FRE0E 252255538
Fig. 8: Citations per publication.
s
w 12
o
5 10
2
o g
(7]
6
e, |
o
g iHth ' LUl
2 i | i
R R FE e R ESE

Fig. 9: Average number of authors per publication.

publication’s associated project. Fig. 9 shows that, on average,
each publication has 6.10 authors. The Plasma Physics (env)
domain, on an average, had the most number of authors (13.22)
per publication.

Next, we have analyzed how frequently each science domain
collaborates with other domains. To this end, for each domain
X, we counted the number of publications having an author
who is a member of the domain X and at least one another
who is a member of another domain that is not X. Fig. 10a
shows that Computer Science (csc) collaborates with the other
domains the most. It is a reasonable result, because in many
cases, computer scientists take a role for supporting scientists
from other scientific domains to be able to leverage OLCF
facilities for their research. Chemistry (chm) and Materials
Science (mat) are the next two that collaborate the most with
other domains. Fig. 10b shows the pairs of science domains
that tend to collaborate more. Considering that Staff (stf) is a
generic domain, we can see that scientists of Computer Sci-

301

100

2

H 80

T

S 60

Qo

S

9:40

o

S 20

4

0

QO ERES £ 20£ 00898 F Q0T ESQEEE>05E
0 o g c o £ 5 32 g 5= 90 c Qo wnLo =2cC
S5 E 8286020203358 a <

(a) Collaboration frequency, number of publications with authors from
more than one domain.
80

270

£ 60

S 50

g 40

& 30

5 20

o

z‘g
5 x = 5 ' 5 5
P EPRIPGI S SPGRPIES S
é,o§$.°pQ§a\\<é’ d®0Q§d§é °§@‘s\‘°@‘i
o 9 o £
&8 TS ssfosggss

(b) Collaboration frequency of two domains.

Fig. 10: Collaboration.

ence (csc)-Materials Science (mat), Computer Science (csc)-
Nuclear Physics (nph), Condensed Matter Physics (cph)-
Materials Science (mat) domains tend to collaborate more with
each other than the other pairs of domains.

C. Correlation analysis between Titan usage and publications

We have analyzed the correlation between publications and
compute core usage. As explained earlier, statistical informa-
tion about publication and compute core usage are achieved
from the graph. Thereafter, we have performed additional
computations externally to derive correlations. We observe that
users in general launch more small jobs, although the primary
compute usage is only because of large jobs. To understand
how the job size relates to publication, we have calculated
the Pearson correlation coefficient between the compute hours
used for different job size bins and the count of publications
for individual science domains (Fig. 12).

100
80
60
40
20

Percentage

COQREEQQLEQFEQLQ20CO0QG0FEILETEISLOERELSC
§R85P00C5°E 885580 P aREEAECE0R3¢

— Jobs = 0; Publication > 0 === Jobs = 0; Publication = 0

— Jobs > 0; Publication =0 Jobs > 0; Publication > 0

Fig. 11: (%) of User Contribution.

As seen in Fig. 12, core hours used is highly correlated to
both the number of publications and citations compared to the
number of users in domains. Domains that use more core hours
tend to have more publications and citations. Interestingly,
core hours consumed by small jobs is highly correlated with
both publication and citation counts, because scientific conduct
leading up to publications involves running many small test
and development jobs.

Publication ==
Citation m—

1

\\\°°

Correlation
o o
(2] ©

o
IS

et
N

11

«“\\\

o

@e‘

Fig. 12: Publication and Citation correlation to the job size(compute
core hours).

Not all job executions lead to publications. We have ana-
lyzed the ratio of job executions and publications to see how it
varies across different domains. Specifically, for each science
domain, we have computed the normalized publication count
divided by the normalized total core hours used by the domain.
As depicted in Fig. 13, Climate Science (cli) shows the highest
number, followed by Nanoscience (nti) and Molecular Physics

(mph).

2

S 25

4

s 2

3

515

o

3 1

&

I}

T 05 B

S

2 ||I||I

S [] | | | = | T | |

g 0
CDBEEOQEQSO0CY29E00BYESBEISOE2EQ5C
GEZES S SESCEERE 550803 EECE2ELELEHESE
o500 55 588528828 2EEe"ERETE5 578

Fig. 13: Publication per compute core hour (The domain med has
been excluded in this figure as its value 57.810 was an outlier.
The total core hour used by the domain was insignificant and the
publications resulted from compute used earlier than our analysis
period.)

D. Text analysis of publications for OLCF research trends

In addition to the standard entities (users, jobs, publications
and projects) in our graph, we have also introduced keywords,
extracted from the text of publications, as vertices. This helps
us in understanding research trends and similarity between
science domains based on keywords appearing in publications.
A key outcome of this analysis is the ability to summarize the
top keywords that describe research trends in publications for
each year. We have realized this in the graph in the following
fashion. Recall that the graph has keywords connected to
publications using the edge type, hasImportantKeyword, with
a property, score that depicts the strength of the edge. To
compute the ranking of a given keyword, we have summed
the score values of the edges of type, haslmportantKeyword.
The Cypher query below (Listing 3) shows how we computed
the top 10 keyword trends in this manner, for the year 2013
(see Table III for ranking).

Listing 3: Finding top-10 publication trend keywords.

We have found that the keyword nuclear occurred consis-
tently in all four years. Several keywords appeared multiple
times such as ice, fission, magnetic, precipitation, water, io,
graphene and performance.

TABLE III: Top 10 publication trend keywords.

Rank | 2013 2014 2015 2016

1 nuclear nuclear staff nuclear
2 reconnection | plasma flame water

3 ice graphene combustion | atlas

4 performance | ice quantum polymer
5 transport precipitation | nuclear fission
6 turbulence instability openshmem | detector
7 electron ionization ice qcd

8 nuclei land pi tev

9 magnetic io magnetic particle
10 graphene water variability pi

The previous discussion highlighted how we derived top 10
keywords representative of the publications in a given year.
Next, we discuss the derivation of the top 10 keywords that are
representative of the jobs that were run on OLCF. To address
this, we need the keyword to job score. However, since the
jobs logs are devoid of any keywords, semantically correlating
keywords to job execution trends is not a straightforward task.
Instead, we need to obtain a score for the graph pattern,
{keyword, publication, job}. Note that we already have the
connection between publication and keyword, and a relevance
score for the same. To derive the job to publication connection,
we have made the following inference: a publication is related
to a job if it was authored by and executed by the same user,
for the same project and that the publication occurred during
a certain time window. We have assumed a period of 1 to 2
years after job execution for the time period, which is how
long users typically take to publish after job runs. The longer
the core hour usage of a job, the higher the score of the link
between the job and the publication. We now have two scores,
which we have averaged to derive the score for the graph
pattern, {keyword, publication, job}. The Cypher query below
(Listing 4) shows how we computed the top 10 keywords
representing the jobs run at OLCF for the years 2013-2015
(see Table IV for ranking). Note that we have filtered out
generic terms (e.g. “opinion,” “diverse,” etc.) from the list,
and adjusted the ranking.

Listing 4: Computing base scores for ranking job trend keywords
(2013).

MATCH (j:Job)-[:JjobExecutedBy]->(u:User),
(u)<-[:writtenBy]-(p:Publication),
(p)—[:deliverableOf] - (pr:Project),

(J)—[:jobExecutedFor] - (pr),

(k:Keyword) <-[r:hasImportantKeyword] - (p:Publication)

WHERE j.year=2013 and j.year+l<=p.year and p.year<=j.year+2
RETURN k.keyword_term, sum(r.score) as keyword_score,
sum(j.num_of_nodesx*j.execution_time) as core_hour_score

MATCH (k:Keyword)<-[r:hasImportantKeyword]—
WHERE p.year=2013

RETURN k.keyword_term,sum(r.score) as ranking_ score
ORDER BY ranking_score desc

LIMIT 10

(p:Publication)

In a similar fashion, we can compute the similarity between
science domains based on common keywords, which could
help foster future collaborations.

302

TABLE IV: Top 10 job trend keywords.

1 enzymatic lattice transporters
2 biomass resonance scattering
3 molecular molecular ions
4 core-collapse | pi allosteric
5 magnetic qcd bar
6 supernovae spectrum interfacial
7 inhibition scattering sodium-coupled
8 lignin cosmological | qcd
9 dot bar fusion
10 neutrino retroviral spectrum
40

o 35¢

2

T 30t

g

£ 25

8 20

S 15[

2 L

e 10

§

z 5%‘

o B .
0 200 400 600 800 1000 1200

Community Size

Fig. 14: Distribution of community size based on the vertex type,
User.

E. Utilization of graph mining for association analysis

1) Community detection: As a use case of community
detection described in Section IV-D1, we have detected com-
munities with vertices of type, User, in the constructed graph,
based on their co-authorship connections. We have only con-
sidered User vertices with at least one publication. The total
number of identified communities was 246. The distribution
of community sizes follows the power-law distribution with
a long-tail, as there are a few large communities and a large
number of small communities (Fig. 14). The average size of
a community was 17.30. The top 10 large communities cover
more than 53.69% of the users that were considered in this
analysis, which means that the majority of the users are in
a large collaboration network. The largest community had
1,115 users, and the number of publications by the largest
community was 345, which is a very large portion (30.10%)
of the total number of publications. To see which domains
are part of such a large community, we have analyzed the
membership of users in the community to science domains.
We observe that a large portion of users belonged to Climate
Science (cli), Computer Science (csc), Physical Chemistry
(cph), and Biophysics (bip), and their publications are highly
associated with terms such as ice, data, io, climate, etc.
The most common sizes of communities were 3 and 4 (37
communities each). This result can be useful for OLCF to
identify small collaboration networks, and connect them with
larger communities that are working on similar research topics,
which can be identified by the keywords associated with the
communities.

2) Accuracy of link prediction via relationship strength
quantification: One of the objectives of our analysis was
to enable the association of scientific publications to OLCF
project allocations. As described earlier, associating the publi-
cations to projects is currently a tedious and manual process.
Our graph approach has helped predict missing project ID for
publications, and we have further verified the accuracy of the
prediction to validate the approach. As described in section
IV-D2, we have composed two different queries that perform
the quantification of relationship strength, one based on the
contents of publications (Query 1), and the other based on
the authors’ memberships to projects (Query 2). Each query
produced a set of results, (project ID, score), ordered by the
score in descending order. For each project ID, we have also
computed a weighted sum of two scores generated by query 1
and query 2, and used the value as a hybrid ranking score for
the project ID. w; and ws are weights assigned to the scores of
query 1 and query 2, respectively. If w; = 1.0 and wy = 0.0,
only query 1 was used, and if w; = 0.0 and we = 1.0, then
only query 2 was used.

For the evaluation, we have used the publications that
already have the associated project ID information to create
an answer set for the prediction test. We pretend that these
relationships do not exist in the graph, and tested if the
prediction technique can identify these relationships. For each
test case, we have estimated the project ID for the given
publication, p, and created a ranked list of project IDs by
sorting them in descending order using the score. Thereafter,
we measured the Top-k performance of the ranked list using
recall(k) [10] as follows. Recall(k) represents how accurately
our prediction can perform when generating a top-k ranked
list. Let r be the rank of the project ID, p. If r < k, we have
a hit, otherwise, a miss. Then, recall(k) = #lhTi‘ts where |T'| is
the number of tests.

Fig. 15 shows that query 1 (w;=1.0, w2=0.0) outperformed
query 2 (w1=0.0, w2=1.0). Hybrid usage of these two queries
(w1=0.5, wy=0.5) showed the best performance, where re-
call(k) is 0.78 and 0.86 for k=1 and k=5, respectively. The
result shows that using various paths between vertices can
improve the accuracy of predicting missing links.

o8l o
0.6 /

04 -

Precision Top-k

0.2 -

Fig. 15: Prediction accuracy of unknown project IDs.

303

VI. OLCF GRAPH NETWORK ANALYTIC ToOL

To put things together, we have a built web-based graphical
user interface analytic tool atop the constructed graph, the
queries, operations, and database that we have presented in
this paper. For the implementation, we have utilized vis.js [11],
Bootstrap, jQuery [12] and its DataTables plugin for the graph
visualization and web-interface, Tornado webserver [13] and
Py2neo python neo4j API for the server, and neo4j for the
back-end graph database. The tool was used to visualize
the graph and the analytics query results presented in this
paper. Although predefined analytics queries provide various
insights, the flexibility of searching and navigating through the
relationships can be very useful for individual user’s specific
needs. To this end, the tool allows users to search vertices
in the graph by keywords, navigate the search results by
following the edges, finding missing links between projects
and publications. It also has a panel where users can set up
constraints to filter out vertices and edges. Fig. 16 presents
screenshots of the dashboards provided by the developed tool.

VII. RELATED WORK

Constructing a graph from various data sources is driven by
the data model and query needs. Lee et al. [7] showed how
to create a heterogeneous graph from large-scale tabular data
sources via mapping between relational and graph schemas.
We have extended this approach by incorporating LSA [4]
to capture semantic relevance scores between documents and
keywords.

Our graph analysis was focused on acquiring statistical
characteristics of the graph based on various subgraph pattern
matching referred to as Online Graph Analytic Processing
(OLGAP) [14]. There are a number of graph engines that
can support OLGAP analysis such as neo4j [2], DEX [15],
Sesame [16], etc. The graph engine Sesame [16], using
RDF (Resource Description Framework) as its data model
and SPARQL [17] for the query language, is a widely used
graph data model and query language, due to its simplicity
and flexibility. However, they lack the definition of types and
attributes for nodes and edges that are crucial for analysis
of complex real-world data sets. We chose neo4j [2] and its
query language Cypher [3] due to its underlying property
graph-based data model that can represent complex node/edge
types and their attributes more naturally. Cypher is an SQL-
inspired declarative language for describing patterns, started
as a part of a commercial software, now being standardized
by the openCypher project.

Another important aspect of graph analysis is Graph Mining
(GM), which focuses on the automatic discovery or prediction
of graph properties (e.g., counting triangles [18], finding
eccentricity [19], finding connected components, computing
PageRank/Personalized PageRank [20], [21]) based on pre-
defined patterns. We have applied these techniques in our
work. In [10], the authors show that scoring relationship
strength between nodes using various paths can be used for
recommender systems. In a similar vein, we have used various
graph pattern queries to quantify the score for link prediction

between vertices. As future work, we could potentially lever-
age other graph mining approaches such as PageRank for the
identification of important vertices in the network.

In the HPC domain, the increased usage of GPUs has driven
the need for scaling graph libraries on compute platforms.
However, there has been very limited work on using graph
analytics to manage and understand such large-scale systems.
Constellation [22], was aimed at defining a science graph
network for fostering collaboration and knowledge discovery
across science domains, exploring similarities in the graph
structures across domains. In [23], the authors used semantic
graph techniques for cluster management, associating the job
scheduler’s log to failure events and looking for patterns of
failure. Similarly, [24] describes a distributed graph process-
ing approach for analyzing HPC system logs in real-time.
In this paper, we have used graph analytics for correlation
analysis between system usage and publications, and to derive
new edge mappings based on observed graph patterns.

VIII. CONCLUSIONS

In this paper, we have showcased a novel application of
graph-based big data techniques to glean insights on the OLCF
HPC center’s compute core usage and publication trends.
To this end, we have represented the OLCF HPC resource
fabric as a graph; the entities within the fabric such as users,
scientific projects, groups, jobs and publications as vertices
in the graph; the relationships between the entities as edges,
connecting the vertices; and, applied graph analytics, text
analysis and graph mining to understand heterogeneous data
sets for a leadership-scale HPC center. Our results provide
valuable insights into an HPC center’s core allocation program,
measuring the productivity of scientific domains, the interplay
between core usage and research output, semantic overviews
regarding the contents (publications) of the OLCF scientific
projects from various perspectives, accelerating collaboration,
entity relationship analysis, and in predicting new connections
between HPC resource entities.

REFERENCES

[1] “OLCF.” [Online]. Available: https://www.olcf.ornl.gov/

[2] J. J. Miller, “Graph database applications and concepts with neo4j,”
in Proceedings of the Southern Association for Information Systems
Conference, Atlanta, GA, USA, vol. 2324, 2013.

[3] J. Marton, G. Szdrnyas, and D. Varrd, “Formalising opencypher graph
queries in relational algebra,” arXiv preprint arXiv:1705.02844, 2017.

[4] T. K. Landauer, P. W. Foltz, and D. Laham, “An introduction to latent
semantic analysis,” Discourse processes, vol. 25, no. 2-3, pp. 259-284,
1998.

[5] H. S. Kunii, Graph Data Model: And Its Data Language.
Science & Business Media, 2012.

[6] M. A. Rodriguez and P. Neubauer, “Constructions from dots and
lines,” Bulletin of the American Society for Information Science and
Technology, vol. 36, no. 6, pp. 35-41, 2010.

[7] S. Lee, B. H. Park, S.-H. Lim, and M. Shankar, “Table2graph: A
scalable graph construction from relational tables using map-reduce,”
in Proceeding of the 1st IEEE BigDataService. 1EEE, 2015, pp. 294—
301.

[8] J. Ramos et al., “Using tf-idf to determine word relevance in document
queries,” in Proceedings of the Ist instructional conference on machine
learning, 2003.

Springer

304

[9]

[10]

(11]

[12]

[16

[17]

[18]

DR peeemr—
¢ COo Cmm

— - - e —— e = ==—cv—
\ \\\! - P e . L
; \ CE e s o e -
‘ \\'\ // ////"“,,_ = N
_'————~m"""":—— - - \
=7 - e —-;?\.fff;,_ -
N G Sve
77\
~ 4NN (7
(a) Search and navigation dashboard. (b) Entity profiling dashboard.

(c) Missing link prediction dashboard.
Fig. 16:

G. H. Golub and C. Reinsch, “Singular value decomposition and least
squares solutions,” Numerische mathematik, vol. 14, no. 5, pp. 403420,
1970.

S. Lee, S. Park, M. Kahng, and S.-G. Lee, “Pathrank: Ranking nodes
on a heterogeneous graph for flexible hybrid recommender systems,”
Expert Systems with Applications, vol. 40, no. 2, pp. 684-697, 2013.
B. Almende, “vis. js—a dynamic, browser based visualization library,”
URL http://visjs. org/. Acesso em, vol. 1, 2016.

E. McCormick and K. De Volder, “Jquery: finding your way through
tangled code,” in 19th annual ACM SIGPLAN conference. ACM, 2004.
M. Dory, A. Parrish, and B. Berg, Introduction to Tornado: Modern Web
Applications with Python. ~ O’Reilly Media, Inc.”, 2012.

S. Lee, S. R. Sukumar, S. Hong, and S.-H. Lim, “Enabling graph mining
in rdf triplestores using sparql for holistic in-situ graph analysis,” Expert
Systems with Applications, vol. 48, pp. 9-25, 2016.

N. Martinez-Bazan, V. Muntés-Mulero, S. Gémez-Villamor, J. Nin, M.-
A. Sanchez-Martinez, and J.-L. Larriba-Pey, “Dex: high-performance
exploration on large graphs for information retrieval,” in Proceedings of
the 16th ACM CIKM. ACM, 2007, pp. 573-582.

J. Broekstra, A. Kampman, and F. Van Harmelen, “Sesame: A generic
architecture for storing and querying rdf and rdf schema,” in ISWC 2002.
Springer, 2002, pp. 54-68.

E. PrudHommeaux, A. Seaborne et al., “Sparql query language for rdf,”
W3C recommendation, vol. 15, 2008.

C. E. Tsourakakis, “Fast counting of triangles in large real networks
without counting: Algorithms and laws,” in Proceeding of the 8th IEEE
ICDM. IEEE, 2008, pp. 608-617.

P. Hage and F. Harary, “Eccentricity and centrality in networks,”
networks, vol. 17, no. 1, pp. 57-63, 1995.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

Social

305

(d) OLCF core usage and publications data monitoring dashboard.

OLCF graph network analytic tool.

[21] H. Tong, C. Faloutsos, and J.-Y. Pan, “Fast random walk with restart
and its applications,” 2006.

S. S. Vazhkudai, J. Harney, R. Gunasekaran, D. Stansberry, S. H. Lim,
T. Barron, A. Nash, and A. Ramanathan, “Constellation: A science graph
network for scalable data and knowledge discovery in extreme-scale
scientific collaborations,” in 2016 IEEE International Conference on Big
Data (Big Data), Dec 2016, pp. 3052-3061.

J. Brandt, V. D. Sapio, A. Gentile, P. Kegelmeyer, J. Mayo, P. ebay,
D. Roe, D. Thompson, and M. Wong, “A framework for graph-based
synthesis,analysis, and visualization of hpc cluster job data,” Sandia
National Laboratories, Albuquerque, New Mexico (United States)., Tech.
Rep., 2010.

S. Weigert, M. Hiltunen, and C. Fetzer, “Mining large distributed log
data in near real time,” in Managing Large-scale Systems via the Analysis
of System Logs and the Application of Machine Learning Techniques,
ser. SLAML "11. ACM, 2011.

[22]

[23]

[24]

