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Abstract—The Oak Ridge Leadership Computing Facility
(OLCF) runs Titan, the No. 4 supercomputer in the world, to
deliver over four billion compute core hours every year to several
scientific domains, in their pursuit of leadership science. In this
paper, we analyze four years worth of heterogeneous log data
sources from the OLCF resource fabric, capturing metadata
on entities such as users (2,546), scientific project allocations
(674), jobs (1,352,402) and publications (1,146), to derive insights
into the trends in core hour usage and publications, across
35 science domains. We have constructed a scalable graph to
represent the OLCF entities and apply rich graph analytics for
our analysis. Based on this, we have analyzed the metadata
across five dimensions, namely (1) quantitative analysis of Titan
system usage, (2) quantitative analysis of OLCF publications, (3)
correlation analysis between system usage and publications, (4)
text analysis to derive OLCF research trends, and (5) utilization
of graph mining for association analysis. To the best of our
knowledge, our work is the first of its kind to apply graph-
based big data techniques to provide comprehensive insights
on an HPC center’s core hour usage and users’ publication
trends. Our results provide valuable details into an HPC center’s
core allocation program, measuring the productivity of scientific
domains, the interplay between core usage and research output,
accelerating collaboration, and in predicting new connections
between resource entities.

I. INTRODUCTION

The U.S. Department of Energy’s (DOE) Oak Ridge Lead-

ership Computing Facility (OLCF) [1] hosts the world’s No.

4 supercomputer, the 27 petaflops Titan system that comprises

of 18,688 CPU/GPU compute nodes and 710 TB of system

memory. Titan caters to a diverse user base from national

labs, academia, and industry, in solving grand challenge prob-

lems from 35 science domains such as Climate, Combustion,

Fusion, Chemistry, Energy Storage, Materials, Biology, As-

trophysics, and Nuclear Physics. Each Titan compute node

comprises a 16-core AMD CPU and an NVIDIA Kepler GPU,

with 14 streaming multiprocessors (SM), for a total of 560,640
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Fig. 1: Overview of systems in OLCF.

cores. User project allocations are charged 30 units per node-

hour, accounting for the 16 CPUs and 14 SMs. In addition

to Titan, the OLCF hosts several other resources such as the

32 PB Lustre-based parallel file system (PFS), the 60+PB

HPSS disk/tape archive, and several analysis and visualization

clusters (Fig. 1). Using all of the above infrastructure, Titan

delivers over four billion core hours every year to rigorously

peer-reviewed scientific user projects.

A sizeable chunk of Titan’s core hours is consumed by

leadership jobs, which consume at least 20% of the system

and exercise Titan’s unique heterogeneous node architecture.

Users routinely run several hundreds of thousands of jobs on

Titan every year that simulate complex scientific phenomena,

and glean insights. Based on such a use of the system, users

produce around 250 peer-reviewed publications every year

in leading scientific journals and conferences. The scientific

productivity of the OLCF national user facility is evaluated

based on its successful delivery of computing time to its user

base and on the users’ ability to conduct science using those

core hours, which is mainly measured by publications. It is

therefore vital to understand the trends in compute core usage

and scientific publications of the OLCF.

Contributions: In this paper, we have conducted an em-
pirical analysis of the OLCF’s core usage and publication

data across several science domains, using four years (2013-

2016) of log data. For example, we are interested in studying

the trends in job size (both in terms of nodes and hours

used) across science domains, trends in monthly core hour

utilization, collaboration trends in/across science domains,

trends in user participation, etc., which can help the center’s
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resource utilization council to appropriately allocate resources

in the future.

HPC center staff often goes to great lengths to track down

the papers that used the center resources as it is a crucial metric

when it comes to evaluating a center’s productivity. In addition

to system usage analysis, we are interested in understanding

the trends in research publications of science domains based

on a quantitative analysis. For example, we have analyzed

publications over time, papers per project/user, citations per

paper/domain/user, average author counts in publications per

domain, and the collaboration metric in publications. Further,

we have studied the correlation between system usage and

scientific publications across the various domains, combining

core usage data with publication data.

We have utilized text analysis and association analysis to

unravel deeper insights. We have employed text analysis to

understand popular (or trending) research terms (or topics)

associated with publications and jobs over time. We have used

association analysis (graph mining) to derive collaborations of

OLCF users (community detection) and speculative relation-

ships between publications and the scientific project alloca-

tions they may belong to (predictive analysis). The predictions

based on the association analysis can be particularly useful in

the absence of clear reporting by users (as is often the case in

HPC centers).

To perform such a quantitative, semantic and predictive

analysis in a systematic manner, we propose to view the

OLCF HPC resource fabric as a graph, and apply a rich set of

graph analytics techniques atop. Graph-based approaches can

analyze heterogeneous information with lots of connections,

while also allowing the ingest of new data sources without

having to change the database schema.

We have constructed a property graph by representing a

diverse set of HPC log data sources over several years,

comprising of entities such as users (2,546), projects (674),

jobs (1,352,402) and publications (1,146) as graph vertices

and the connections between them as edges. We have also

derived new connections based on predictive associations

between users, projects, jobs, and publications. For instance,

we have extracted keywords (also represented as vertices in the

graph) from publications using text-processing techniques, and

calculate the semantic relevance scores between publications

and keywords. The constructed graph is imported into the

neo4j [2] graph database and queried using a declarative graph

query language called Cypher [3] to process various analytics

tasks.

To the best of our knowledge, our study is the first of its

kind to apply graph-based big data techniques to understand

heterogeneous data sets for a leadership-scale HPC center.

Particularly, we show (1) how to exploit the constructed

graph to correlate publication and job log analysis and (2)

to predict missing links between entities, which have not been

studied before. Further, our statistical results provide valuable

insights into an HPC center’s core allocation, measuring the

productivity of scientific domains, the interplay between core

usage and research output, accelerating collaboration, and in

predicting new connections between HPC resource entities.

Finally, we expect that our approach of deriving knowledge

from heterogeneous data sets will inspire many other system

administrators, researchers, and data scientists from other

facilities to undertake similar such efforts.

II. OLCF DATA SOURCES

We have used the following OLCF log data sources for the

analysis in this paper.

a) User and Project: OLCF maintains and tracks all

user activity using a RATS (Resource Allocation and Tracking

System) database. The database keeps track of user informa-

tion, such as name, username, affiliation, and contact details;

and project allocation information, such as project name, ID,

description, compute hours allocated and used. A user can

be a part of multiple projects, where a project represents the

science domain. For example, Astrophysics projects have a

project ID starting with ast followed by a number to identify

individual projects within the domain. RATS provides APIs

to query this information. We have used the RATS data for

associating publication and job log datasets (both of these logs

are explained below). More specifically, the publication data

set has author names and affiliations, which we map to the

user’s username in RATS. Similarly, the job log has only the

username field to associate to the specific user in RATS, and

thereby the associated publication.

b) Job logs: We have used the Titan scheduler’s (MOAB)

log of job events for our analysis. Each job log entry provides

details such as job-ID, username user who launched the job,

project-ID the user’s project allocation, start time or end

time of the simulation job, and the number of compute nodes

allocated. A new log entry is created at the start of the job

and another log entry at the end of the job. We have used four

years of job logs from 2013 to 2016 for the analysis in this

paper.

c) Publication: OLCF collects publications that have

acknowledged OLCF in the text by using a web-crawler and

manual reporting. A web-crawled publication entry needs to

be finalized by the OLCF staff. The publication database keeps

track of author names, affiliation, associated project ID, title,

abstract, type of publication (e.g., book, journal, conference,

etc.), name of venue, year, impact factor, citation count, etc.

Currently, association of a project ID with a publication is

manually processed by the OLCF staff based on user reporting

and an expert’s classification. However, not all publication

entries in the collected log data have been associated with a

project. Unlike the job log dataset, collecting a publication

entry is a semi-automatic process, and can be potentially

incomplete. Therefore, the publication entries should be care-

fully considered for analysis.

III. ANALYSIS OVERVIEW

In this section, we present an overview of our analysis

of the compute core usage on Titan and the publication

trends. We have employed a graph to represent the entities

(users, projects, jobs, keywords and papers) in the OLCF
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data sources, and apply graph analytics towards our analysis.

We have categorized our analysis tasks into five dimensions,

namely (1) Quantitative analysis of Titan system usage, (2)

Quantitative analysis of publications produced from Titan

usage, (3) Correlation analysis between Titan system usage

and publications, (4) Text analysis of publications to derive

OLCF research trends, and (5) Utilization of graph mining for

association analysis.

A. Quantitative analysis of Titan’s compute core usage

The objective of this analysis is to understand Titan’s system

utilization patterns and usage trends over time by analyzing

the job logs. As a first step, we categorized the executed jobs

into three different job size bins, namely small (less than 375

nodes), medium (375 to 3750 nodes) and large (greater than

3750 nodes). The next task is to identify and understand the

variance seen across science domains, in the utilization of

Titan. To this end, we have processed graph pattern matching

queries to analyze the graph and interpret the query results as

shown in Section IV-C. Such an analysis has enabled us to

answer questions like ‘Which science domains used the most

core hours?’, ‘Which science domains tend to execute large or

small-scale jobs?’, ‘Can we expect particular science domain’s

job utilization peaks in a particular period of a year?’. The

answers to such questions can provide meaningful insights to

HPC centers for future deployments and time allocation.

B. Quantitative analysis of OLCF acknowledged publication

In this dimension, we first analyzed the aggregated statistics

on publications (e.g., the number of publications, aggregated

citation counts), and then we delved into the variance in

different science domains. This task has helped us in answer-

ing questions such as ‘Which science domain published the

most?’, ‘Which domain has the most publication or citation

count per person?’, ‘How does the number of publications

change over time?’, etc. Furthermore, we have analyzed the

collaboration trends by closely observing authorships to an-

swer questions like ‘How does the average number of authors

differ in different domains?’, ‘Which is the pair of domains

that collaborated the most?’, ‘Which domain has less tendency

to collaborate with the other domains?’. This analysis has

provided insights to OLCF regarding not only the quantity

but also the quality of publications. Similar to the previous

case, we have employed graph queries for the analysis.

C. Correlation analysis between Titan usage and publications

In this analysis, we have investigated the correlation be-

tween jobs and publications, as job executions and publication

activities are not independent of each other (e.g., scientists

perform jobs on HPC systems, which leads to the publication

of academic papers). By studying the correlation, we have

answered questions like ‘which domain has the highest publi-

cation and citations per core hour?’, ‘what size of jobs has led

to more publications or citations?’ (i.e., do large leadership

jobs necessarily mean more papers?), ‘which domains have

more users who both use HPC systems and also publish

papers?’. By observing these two different data sets together

(publications and jobs), we have derived unique insights that

cannot be accomplised by any one data set in isolation. For

this analysis, graph edges, connecting jobs and publications,

played a crucial role.

D. Text analysis of publications for OLCF research trends

A very valuable piece of information in the publication

dataset is text information such as title and abstract of the

papers. We have extracted keywords from a publication’s text

and associated the keywords with the publication. We then

used a text analysis technique called LSA (Latent Seman-

tic Analysis) [4] to compute the semantic relevance scores

between and across publications and keywords. We used

the computed scores to assign edge weights between/across

Publication and Keyword vertices in the graph. Based on

the graph components constructed from the publication text,

we have derived semantic overviews regarding the contents

of the OLCF scientific projects with various perspectives.

It has provided us answers to questions like ‘What are the

most popular keywords in publications over time?’, ‘How

do keywords describing executed jobs change over time?’,

‘Which science domains share similar research topics?’, ‘How

does the prevalence of research related to keyword ‘nuclear’

change over time? (e.g., similar to Google Trend)’, etc.

E. Utilization of graph mining for association analysis

To derive further insights from associations in the OLCF

data sources, we have also employed two graph mining

approaches, community detection and link prediction. For com-

munity detection, we have modified the connected component
concept of an undirected graph to operate with a property

graph, and used it to analyze users’ collaboration associations.

For link prediction, we have quantified and utilized relation-

ship strength between two vertices in the graph, considering

paths existing between the vertices to find the speculative

relationships. Specifically, we have presented a use case of

predicting missing edges (deliverableOf ) between Project and

Publication vertices. This capability is of significant value to

an HPC center like OLCF, as it has enabled us to identify and

predict publications that were produced by scientific projects,

in the absence of proper reporting, which is often the case.

IV. GRAPH-BASED DATA ANALYSIS FRAMEWORK

To conduct the above analysis, we have employed a graph-

based approach to tie together the entities from the HPC data

sources.

A. Why graph?

OLCF data sources are heterogeneous, with many entities

in them having connections between each other. Often times,

these relationships are not explicitly described in the data

sources. For instance, an author of an OLCF publication can

be a user who executed a job on an OLCF HPC system.

For successful data analysis such as the aforementioned, it is

crucial to establish an integrated data analysis framework that
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can capture insights hidden in the connected heterogeneous en-

tities. The data analysis framework should not be constrained

by a single data source’s limitations in the description, but be

able to consider them in concert, towards greater flexibility

and richer data analysis.

The graph model has been attracting much attention to

represent and understand such complex connections across

heterogeneous entities [5]. The graph model also allows flex-

ibility, as it is not constrained with a rigid schema. Data

can easily grow even when new data sources with different

schema and/or additional columns for the existing data sets are

continually introduced and ingested, unlike the relational data

model. Motivated by these characteristics, we have adopted a

graph-based approach. We have constructed a graph out of the

available OLCF’s data sources, and query the graph to discover

knowledge by delving into the existing subgraph patterns in

the constructed graph.

Specifically, we have adopted a property graph [6], which

is a directed, typed, attributed multi-graph that can naturally

represent heterogeneous entities as vertices, relationships as

edges, and capture their descriptions as vertex and edge

attributes.

B. Graph construction

The construction of the graph is a three step process as

follows.

1) Graph schema design: First, we define the logical

structure of our property graph, namely graph schema, by

identifying vertex types, edge types and their associated at-

tributes from the data source. Fig. 2 shows the schema of

the property graph that we have constructed. For each data

source, we have extracted vertices and edges from the data

source based on a pre-defined conversion mapping between the

schema of the data source and the defined graph schema [7].

A single entry from a data source can be converted into

a number of vertices and edges with different types. For

instance, we may convert each data entry, ep, in the publication

data set, having relational schema RPublication(DOI, title, list
of authors, abstract, journal, month, year) into a Publication
vertex, p, a set of vertices, u1,. . . , un, of type User, a Journal
vertex, j, a set of edges of type, writtenBy, connecting p and

u1,. . . ,un, and a publishedIn edge, connecting p and j.

Fig. 2: Overview of the graph schema for OLCF data sources. Note
that we only show attribute names for User, Job vertex type, and the
edge type, hasImportantKeyword.

2) Merging vertices representing the same entity: Ideally,

we do not want to have multiple vertices representing the

same entity. However, initially when we extract vertices from

disparate data sources, there can be vertices representing the

same entity, and we need to merge them as a single vertex.

It is straightforward if vertices generated from different data

sources use a common identifier (ID), then we can simply

merge the vertices with the same ID. However, this is not

true for all cases. If common identifiers are not available, we

have used a secondary similarity join approach to identify and

merge identical vertices.

For instance, the name (i.e., a person’s name) property

can be used to identify and merge the vertices representing

the same person. More specific conditions can be added to

increase the accuracy of same entity identification. Generally,

instead of using the secondary key value strictly to join,

we have computed the Levenshtein distance (d) between

the values of the secondary join key and perform similarity

join, where we have merged vertices if two vertices are the

closest to each other based on d, and d is less than 10%

of the average of two join key value lengths. This is useful,

because same contents (e.g., person’s name) can be described

in various ways (e.g., having a full or initial middle name)

in different locations. As a result, now the merged vertices

become the intermediate connectors on the paths between

vertices generated from different data sources (e.g., (Job)-
[executedBy]→(User)←[isWrittenBy]-(Publication)). This ap-

proach has helped to consolidate the graph, and merge iden-

tical vertices from multiple data sources.

3) Deriving semantic graph components from text: Next,

we have utilized the text information available in the pub-

lication data source such as title and abstract to further

enhance the graph and derive new associations between the

graph entities. To this end, we have first constructed a term-

document matrix by using the text from each publication

entry, using the TF-IDF technique (Term Frequency-Inverse

Document Frequency) [8], after filtering out stem words.

Then, we have performed the LSA (Latent Semantic Analysis)

technique [4] which finds a lower-rank approximation of the

matrix, using singular value decomposition (SVD) [9] and

uses it to achieve semantic similarity between word-document

and word-word by computing cosine similarity across vectors

in the matrix. We have used this outcome as an additional

information to enrich the graph and created Keyword vertices,

and edges of type, hasImportantKeyword (word-document)

and relaventTo (word-word), which contain similarity scores in

their properties. We have used top-30 most relevant keywords

for each publication and top-10 most similar keywords for each

keyword to create the edges of type, hasImportantKeyword and

relaventTo, respectively. These additional vertices and edges

have been useful in understanding the detailed contents of

research activities and in predicting missing information in

the graph (Section V-E2).

We have developed a tool to process the above three

steps, and executed it on a 2.7GHz, 12-Core Intel Xeon E5

machine with 64GB of RAM. Total execution time for graph
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construction was approximately 100 minutes.

C. Querying the property graph

TABLE I: Statistical summary of the graph.

Node Type Node# Edge Type Edge#
User 2,546 (Publication)-deliverableOf→(Project) 932
Project 674 (Publication)-hasImportantKeyword→(Keyword) 34,380
Job 1,352,402 (Publication)-writtenBy→(User) 6,873
Publication 1,146 (User)-memberOf→(Project) 3,592
Journal 299 (User)-PIOf→(Project) 301
Keyword 22,906 (Publication)-publishedIn→(Journal) 1,141

(Job)-executedBy→(User) 1,363,082
(Job)-executedFor→(Project) 1,363,082
(Keyword)-relevantTo→(Keyword) 232,370

We have used neo4j [2] for loading the constructed graph,

which is one of the leading commercial graph database man-

agement systems. For graph loading and query processing,

we have used the same machine that we used for graph

construction. Loading the graph into the database took 553

seconds, and the size of graph database is 812.35MB. Table I

shows the statistical summary of the constructed graph. We

have composed Cypher [3] queries representing our analytics

questions, and executed the queries on the graph database.

The following is a simple example Cypher query (Listing 1)

to achieve top 5 pairs of authors from 2013 to 2016 ordered

by their co-authorship counts in descending order.

Listing 1: Counting the distinct number of co-authored publications

of two users.

MATCH (u1:User)<-[:writtenBy]-(p1:Publication),
(u2:User)<-[:writtenBy]-(p1)
WHERE p1.pub_year>=2013 AND p1.pub_year<=2016
RETURN p1.name, p2.name, COUNT(DISTINCT p) AS co_author_cnt
ORDER BY co_author_cnt DESC LIMIT 10

The first two lines of the query (Listing 1) describe the graph

pattern representing the co-authorship of users. It queries two

User vertices u1 and u2, where they both have writtenBy edges

from the Publication node p1. The WHERE clause makes the

graph patterns more specific (e.g., only querying data from

2013 to 2016), and the RETURN clause finally defines the

aggregated information that we want to get from the identified

graph pattern instances.

D. Employing graph mining for association analysis

1) Community detection: A connected component is a

subgraph in which any two vertices are connected to each

other by paths, and the vertex in the connected component

is not either directly or indirectly connected to vertices in

other connected components. We have extended this to include

heterogeneous vertices and edges, and defined a “community”

as follows. For a given graph G, a path schema, P (i.e., a

sequence of edge types), and a vertex type t, a community is a

set of type t vertices in which any two vertices are connected

to each other by paths with the given path schema, P , and

any vertex in the community is not connected to vertices in

other communities by paths with the given path schema, P .

For instance, given our graph, a path schema describing co-

authorship of two users, (User)←[writtenBy]-(Publication)-
[writtenBy]→(User), and a vertex type User, a community

means any pair of users in it is directly or indirectly connected

to each other by following the co-authorship paths. We have

implemented a community detection algorithm that returns all

existing communities in a graph. It iteratively executes Cypher

queries to perform depth first traversals, following paths with

the given schema, for each vertex to identify the communities.

We discuss the result in Section V-E1.

2) Link prediction: Link prediction aims to infer new asso-

ciations between the vertices. To this end, we have quantified

the score of the relationship strength between two vertices,

and consider the pair with the higher score to be speculatively

linked to each other. For instance, the following queries quan-

tify relationship strength between Publication and Project, and

find Top-5 potentially related Projects for each Publication in

two different ways. The result of queries can be used to predict

the deliverableOf association.

Listing 2: Cypher queries to predict top-5 potentially associated

projects for each publication with missing project information in two

different ways.

-- Query 1
-- Predicting a Publication p1’s associated Project
-- using Publication contents
MATCH
(p1)-[r1:hasImportantKeyword]->(k:Keyword),
(k)<-[r2:hasImportantKeyword]-(p2:Publication),
(p2)-[:deliverableOf]-(pr1:Project)
WHERE NOT (p1)-[:deliverableOf]-()
WITH
p1.publication_idx AS pub_id, pr1.project_ID AS prj_id,
SUM(r1.score * r2.score) AS score ORDER BY score DESC
WITH
pub_id, collect({pr_id:pr_id, score:score}) AS prediction
RETURN pub_id, prediction[0..5]

-- Query 2
-- Predicting a Publication p1’s associated Project
-- using p1’s authors’ memberships to Projects
MATCH
(p1:Publication)-[:writtenBy]->(u:User),
(u)-[:isMemberOf]->(pr1:Project)
WHERE NOT (p1)-[:deliverableOf]-()
WITH
p1.publication_idx AS pub_id, pr1.project_ID AS prj_id,
COUNT(pr1) AS score ORDER BY score DESC
WITH
pub_id, collect({pr_id:pr_id, score:score}) AS prediction
RETURN pub_id, prediction[0..5]

A publication can be related to a project that has other

associated publications, based on sharing similar keywords

with those other publications. With this intuition, Query 1

(Listing 2) finds potentially correlated projects with a pub-

lication. On the other hand, Query 2 (Listing 2) finds projects

based on a publication’s authors’ memberships to projects, as

the publication can be a deliverable of those projects. We have

combined the two scores for better accuracy of prediction. We

discuss the accuracy of link prediction in Section V-E2.

V. EVALUATION

We present our analysis, and derive insights on the com-

pute core usage and its impact on the scientific publications

(Table II shows the summary). First, we look at statistical

inferences from the data sources and then correlate them to

derive associative inferences. Our approach has also helped

in identifying missing associations based on learning from
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the current relationships in the graph. Finally, we present a

graphical tool that helps navigate the graph for ascertaining

new facts that further complement the graph learning process.

A. Quantitative analysis of Titan’s compute core usage

In this section, we present the characteristics of compute

core usage of the Titan machine in OLCF from the perspective

of users and their science domains. For this analysis, we have

studied the constructed graph, for all users who have executed

a job on Titan. A vertex of type, User, in the graph can have

edges of type, memberOf, to vertices of type, Project, and

also map to a vertes of type, Job, with an edge of type,

jobExecutedBy. We have mined for vertices of type, User,

which have both the edge types. Note that there can also exist

vertices of type, User, without any edges of type, memberOf,
in case we cannot find any information from the data sources.

We did not consider those vertices in this analysis. We have
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Fig. 3: Number of users per domain.

derived the statistical information about core usage using

Cypher queries as described in Section IV-C. Fig. 3 depicts the

proportion of users’ membership to domains based on edges

of type, memberOf. The domain Computer Science, csc, has

the largest number of users (522, 20.50%) and Staff, stf, is the

second (251, 9.86%). All other domains occupied less than

5% except three domains, Climate Science, cli, (228, 8.96%),

Materials Science, mat, (193, 7.58%) and Biophysics, bip (134,

5.26%). Note that though csc and stf are not science domains,

the user base is mostly system engineers and core computer

science researchers who directly work on architecting the

system and scaling system software on the compute platform.

Also, they work closely with domain scientists for scaling

application code, and such contributions result in significant

publications for core computer science research as well as for

the domains. Hence we list both these user communities as

science domains in our analysis.

Fig. 4 shows the aggregate number of jobs and compute

core hours used over our analysis period of four years. We

have categorized the jobs by the number of compute nodes

requested, e.g., jobs using less than 375 nodes as small jobs,

between 375 and 3750 as medium jobs, and over 3750 nodes

as large jobs.

The total number of jobs increased from 2013 to 2016. In

terms of used core hours, there is a big increase from 2013

to 2014, but we see similar core hours used from 2014 to

2016. Titan was only commissioned in 2013 and hence the

lower utilization. Although the majority of the jobs executed

on the system are small-sized jobs, the large jobs consume the
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Fig. 4: Jobs and core hour usage.
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Fig. 5: Compute core usage by domain.

maximum compute core hours on the system, consistent with

OLCF’s leadership science mission. In terms of job sizes, most

small jobs tend to be test or debug runs by users testing newer

versions of applications or small scale tests in preparation

for a larger run. Alternatively, certain applications or science

domains inherently cannot scale beyond a set of nodes.

Next, we have interpreted the compute core usage by

science domains. Fig. 5a shows the number of jobs executed by

users in the various science domains. As expected, the number

of users per domain tends to be correlated with the number of

executed jobs, i.e., more users tend to execute more jobs (e.g.,

Computer Science, csc, Biophysics, bip, Climate Science, cli,
Staff, stf, Materials Science, mat). It is interesting to see that

certain domains like Nuclear Fusion, nfu, primarily executed

medium-sized jobs compared to other domains. Similarly,

Fig. 5b presents the compute core usage based on job size.

Surprisingly, while certain projects like Plasma Physics (env),
High Energy Physics (hep), Systems Biology (syb) had a small

fraction of job requests, but most of them were large jobs with

high core utilization. This analysis served as a clear indicator

to identify applications that scaled well on the computing

platform and were potential candidates for scaling on future
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TABLE II: Summary of users’ publication and system usage activities across different science domains. User#(job# > 1) means users who
have run more than 1 job; User#(pub# > 1) means users who have more than 1 paper; User#(pub# > 1, job# > 1) means users with more
than 1 job and 1 paper. A higher active user ratio means more users participated in job executions and/or paper publications.

Science Domain Name (Domain ID) user# user#
(job#>1)

user#
(pub#>1)

user#
(#job>1,
pub#=0)

user#
(pub#>1,
job#=0)

user#
(pub#>1,
job#>1)

user#
(pub#=0,
job#=0)

Active
User Ratio
(Job)

Active
User Ratio
(Publication)

Active
User Ratio
(Both)

Inactive
User Ratio

Accelerator Physics (aph) 12 12 6 6 0 6 0 1.000 0.500 0.500 0.000
Aerodynamics (ard) 50 43 11 32 0 11 7 0.860 0.220 0.220 0.140

Astrophysics (ast) 77 65 28 41 4 24 8 0.844 0.364 0.312 0.104
Atmospheric Science (atm) 25 23 8 15 0 8 2 0.920 0.320 0.320 0.080

Bioinformatics (bif ) 21 18 7 11 0 7 3 0.857 0.333 0.333 0.143
Biology (bio) 27 27 16 11 0 16 0 1.000 0.593 0.593 0.000

Biophysics (bip) 134 117 49 73 5 44 12 0.873 0.366 0.328 0.090
Chemistry (chm) 84 83 45 39 1 44 0 0.988 0.536 0.524 0.000

Physical Chemistry (chp) 32 29 16 14 1 15 2 0.906 0.500 0.469 0.063
Climate Science (cli) 228 176 67 121 12 55 40 0.772 0.294 0.241 0.175

Combustion (cmb) 119 100 28 73 1 27 18 0.840 0.235 0.227 0.151
Condensed Matter Physics (cph) 83 78 41 39 2 39 3 0.940 0.494 0.470 0.036

Computer Science (csc) 522 437 174 281 18 156 67 0.837 0.333 0.299 0.128
Plasma Physics (env) 23 23 17 6 0 17 0 1.000 0.739 0.739 0.000

Fusion Energy (fus) 92 80 34 48 2 32 10 0.870 0.370 0.348 0.109
General (gen) 23 13 3 10 0 3 10 0.565 0.130 0.130 0.435

Geosciences (geo) 71 58 19 40 1 18 12 0.817 0.268 0.254 0.169
High Energy Physics (hep) 19 14 12 4 2 10 3 0.737 0.632 0.526 0.158
Lattice Gauge Theory (lgt) 17 15 4 11 0 4 2 0.882 0.235 0.235 0.118

Life Sciences (lsc) 27 19 4 15 0 4 8 0.704 0.148 0.148 0.296
Materials Science (mat) 193 177 78 102 3 75 13 0.917 0.404 0.389 0.067
Medical Science (med) 6 6 2 4 0 2 0 1.000 0.333 0.333 0.000

Molecular Physics (mph) 18 15 1 14 0 1 3 0.833 0.056 0.056 0.167
Nanoelectronics (nel) 11 9 3 6 0 3 2 0.818 0.273 0.273 0.182
Nuclear Fission (nfi) 97 88 28 61 1 27 8 0.907 0.289 0.278 0.082
Nuclear Fusion (nfu) 4 4 0 4 0 0 0 1.000 0.000 0.000 0.000

Nuclear Physics (nph) 85 69 43 35 9 34 7 0.812 0.506 0.400 0.082
Neuroscience (nro) 9 8 2 6 0 2 1 0.889 0.222 0.222 0.111

Nanoscience (nti) 42 41 19 22 0 19 1 0.976 0.452 0.452 0.024
Physics (phy) 38 35 17 18 0 17 3 0.921 0.447 0.447 0.079

Solar/Space Physics (pss) 0 0 0 0 0 0 0 N/A N/A N/A N/A
Staff (stf ) 251 155 69 96 10 59 86 0.618 0.275 0.235 0.343

Systems Biology (syb) 8 6 3 4 1 2 1 0.750 0.375 0.250 0.125
Turbulence (tur) 34 32 2 30 0 2 2 0.941 0.059 0.059 0.059

Vendor (ven) 64 51 0 46 0 5 13 0.797 0.000 0.078 0.203
Average 72.742 60.742 24.457 38.228 2.085 22.514 9.914 0.864 0.332 0.314 0.115

OLCF systems.

B. Quantitative analysis of OLCF acknowledged publication

Publications and citations serve as primary indicators to un-

derstand the impact of scientific productivity from leadership

computing facilities like OLCF. Fig. 6 presents publications

that acknowledged OLCF over the period of four years. As

described in Section II, not all publications in a given year

were identified and associated with a given project allocation.

We have composed graph analytics queries using Cypher as

explained in Section IV-C, to extract publication statistics from

the constructed graph. In the case of publications in 2015,

91.47% of the publications have their associated project IDs,

as opposed to only 50.34% in 2013. In Section IV-E2, we

presented how our graph approach can help in identifying

this missing information. However, to analyze the publication

trends of the different domains, we have only used the publi-

cations that have their associated project IDs, and did not use

the ones with missing information. Later in the section, we

validate and discuss the accuracy of our approach on predicting

the missing information.

In Fig. 7, we show the break down of publications and cita-

tions by science domains. The Climate Science (cli), Materials
Science (mat), and Nuclear Physics (nph) domains have the

most number of publications (44.71% of total) and citations

(56.12% of total). The number of citations per domain is

highly correlated with the number of publications per domain,

based on the Pearson Correlation Coefficient (PCC) that was
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Fig. 6: Publication count per year.

0.95. PCC computes the linear correlation score between two

variables X and Y as follows: ρX,Y = cov(X,Y )
σXσY

, cov is the

covariance, σX and σY are the standard deviations of X
and Y , respectively. However, some domains such as Biology
(bio), Physical Chemistry (cph), Climate Science (cli) and

Astrophysics (ast) have high citation counts but with less

number of publications. To study the influence of individual

papers in different domains, we have calculated the number of

citations divided by the number of publications. Fig. 8 shows

that publications from the Biology (bio) domain has the highest

ratio (#citations/#publications = 22.33).

Using the author’s affiliation with a science domain, we

have used the publication data to understand collaboration

trends in inter/intra science domains. First, we have compared

the average number of authors per publication in different

domains, which is representative of the collaborating team

size. Each publication’s science domain is identified from the
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Fig. 7: Publication and citation per domain.
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Fig. 8: Citations per publication.
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Fig. 9: Average number of authors per publication.

publication’s associated project. Fig. 9 shows that, on average,

each publication has 6.10 authors. The Plasma Physics (env)
domain, on an average, had the most number of authors (13.22)

per publication.

Next, we have analyzed how frequently each science domain

collaborates with other domains. To this end, for each domain

X , we counted the number of publications having an author

who is a member of the domain X and at least one another

who is a member of another domain that is not X . Fig. 10a

shows that Computer Science (csc) collaborates with the other

domains the most. It is a reasonable result, because in many

cases, computer scientists take a role for supporting scientists

from other scientific domains to be able to leverage OLCF

facilities for their research. Chemistry (chm) and Materials
Science (mat) are the next two that collaborate the most with

other domains. Fig. 10b shows the pairs of science domains

that tend to collaborate more. Considering that Staff (stf) is a

generic domain, we can see that scientists of Computer Sci-
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(a) Collaboration frequency, number of publications with authors from
more than one domain.
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(b) Collaboration frequency of two domains.

Fig. 10: Collaboration.

ence (csc)-Materials Science (mat), Computer Science (csc)-
Nuclear Physics (nph), Condensed Matter Physics (cph)-
Materials Science (mat) domains tend to collaborate more with

each other than the other pairs of domains.

C. Correlation analysis between Titan usage and publications

We have analyzed the correlation between publications and

compute core usage. As explained earlier, statistical informa-

tion about publication and compute core usage are achieved

from the graph. Thereafter, we have performed additional

computations externally to derive correlations. We observe that

users in general launch more small jobs, although the primary

compute usage is only because of large jobs. To understand

how the job size relates to publication, we have calculated

the Pearson correlation coefficient between the compute hours

used for different job size bins and the count of publications

for individual science domains (Fig. 12).
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Fig. 11: (%) of User Contribution.

As seen in Fig. 12, core hours used is highly correlated to

both the number of publications and citations compared to the

number of users in domains. Domains that use more core hours

tend to have more publications and citations. Interestingly,

core hours consumed by small jobs is highly correlated with

both publication and citation counts, because scientific conduct

leading up to publications involves running many small test

and development jobs.
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Not all job executions lead to publications. We have ana-

lyzed the ratio of job executions and publications to see how it

varies across different domains. Specifically, for each science

domain, we have computed the normalized publication count

divided by the normalized total core hours used by the domain.

As depicted in Fig. 13, Climate Science (cli) shows the highest

number, followed by Nanoscience (nti) and Molecular Physics
(mph).

 0

 0.5

 1

 1.5

 2

 2.5

a
p
h

a
rd a
s
t

a
tm b

if
b
io

b
ip

c
h
m

c
h
p c
li

c
m

b
c
p
h

c
s
c

e
n
v

fu
s

g
e
n

g
e
o

h
e
p

lg
t

ls
c

m
a
t

m
p
h

n
e
l

n
fi

n
fu

n
p
h

n
ro n
ti

p
h
y

s
tf

s
y
b

tu
r

v
e
n

P
u
b
lic

a
ti
o
n
/C

o
m

p
u
te

 H
o
u
rs

Fig. 13: Publication per compute core hour (The domain med has
been excluded in this figure as its value 57.810 was an outlier.
The total core hour used by the domain was insignificant and the
publications resulted from compute used earlier than our analysis
period.)

D. Text analysis of publications for OLCF research trends

In addition to the standard entities (users, jobs, publications

and projects) in our graph, we have also introduced keywords,

extracted from the text of publications, as vertices. This helps

us in understanding research trends and similarity between

science domains based on keywords appearing in publications.

A key outcome of this analysis is the ability to summarize the

top keywords that describe research trends in publications for

each year. We have realized this in the graph in the following

fashion. Recall that the graph has keywords connected to

publications using the edge type, hasImportantKeyword, with

a property, score that depicts the strength of the edge. To

compute the ranking of a given keyword, we have summed

the score values of the edges of type, hasImportantKeyword.

The Cypher query below (Listing 3) shows how we computed

the top 10 keyword trends in this manner, for the year 2013

(see Table III for ranking).

Listing 3: Finding top-10 publication trend keywords.

MATCH (k:Keyword)<-[r:hasImportantKeyword]-(p:Publication)
WHERE p.year=2013
RETURN k.keyword_term,sum(r.score) as ranking_score
ORDER BY ranking_score desc
LIMIT 10

We have found that the keyword nuclear occurred consis-

tently in all four years. Several keywords appeared multiple

times such as ice, fission, magnetic, precipitation, water, io,

graphene and performance.

TABLE III: Top 10 publication trend keywords.

Rank 2013 2014 2015 2016
1 nuclear nuclear staff nuclear
2 reconnection plasma flame water
3 ice graphene combustion atlas
4 performance ice quantum polymer
5 transport precipitation nuclear fission
6 turbulence instability openshmem detector
7 electron ionization ice qcd
8 nuclei land pi tev
9 magnetic io magnetic particle
10 graphene water variability pi

The previous discussion highlighted how we derived top 10

keywords representative of the publications in a given year.

Next, we discuss the derivation of the top 10 keywords that are

representative of the jobs that were run on OLCF. To address

this, we need the keyword to job score. However, since the

jobs logs are devoid of any keywords, semantically correlating

keywords to job execution trends is not a straightforward task.

Instead, we need to obtain a score for the graph pattern,

{keyword, publication, job}. Note that we already have the

connection between publication and keyword, and a relevance

score for the same. To derive the job to publication connection,

we have made the following inference: a publication is related

to a job if it was authored by and executed by the same user,

for the same project and that the publication occurred during

a certain time window. We have assumed a period of 1 to 2

years after job execution for the time period, which is how

long users typically take to publish after job runs. The longer

the core hour usage of a job, the higher the score of the link

between the job and the publication. We now have two scores,

which we have averaged to derive the score for the graph

pattern, {keyword, publication, job}. The Cypher query below

(Listing 4) shows how we computed the top 10 keywords

representing the jobs run at OLCF for the years 2013-2015

(see Table IV for ranking). Note that we have filtered out

generic terms (e.g. “opinion,” “diverse,” etc.) from the list,

and adjusted the ranking.

Listing 4: Computing base scores for ranking job trend keywords
(2013).

MATCH (j:Job)-[:jobExecutedBy]->(u:User),
(u)<-[:writtenBy]-(p:Publication),
(p)-[:deliverableOf]-(pr:Project),
(j)-[:jobExecutedFor]-(pr),
(k:Keyword)<-[r:hasImportantKeyword]-(p:Publication)
WHERE j.year=2013 and j.year+1<=p.year and p.year<=j.year+2
RETURN k.keyword_term, sum(r.score) as keyword_score,
sum(j.num_of_nodes*j.execution_time) as core_hour_score

In a similar fashion, we can compute the similarity between

science domains based on common keywords, which could

help foster future collaborations.
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TABLE IV: Top 10 job trend keywords.

Rank 2013 2014 2015
1 enzymatic lattice transporters
2 biomass resonance scattering
3 molecular molecular ions
4 core-collapse pi allosteric
5 magnetic qcd bar
6 supernovae spectrum interfacial
7 inhibition scattering sodium-coupled
8 lignin cosmological qcd
9 dot bar fusion
10 neutrino retroviral spectrum
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Fig. 14: Distribution of community size based on the vertex type,
User.

E. Utilization of graph mining for association analysis

1) Community detection: As a use case of community

detection described in Section IV-D1, we have detected com-

munities with vertices of type, User, in the constructed graph,

based on their co-authorship connections. We have only con-

sidered User vertices with at least one publication. The total

number of identified communities was 246. The distribution

of community sizes follows the power-law distribution with

a long-tail, as there are a few large communities and a large

number of small communities (Fig. 14). The average size of

a community was 17.30. The top 10 large communities cover

more than 53.69% of the users that were considered in this

analysis, which means that the majority of the users are in

a large collaboration network. The largest community had

1,115 users, and the number of publications by the largest

community was 345, which is a very large portion (30.10%)

of the total number of publications. To see which domains

are part of such a large community, we have analyzed the

membership of users in the community to science domains.

We observe that a large portion of users belonged to Climate
Science (cli), Computer Science (csc), Physical Chemistry
(cph), and Biophysics (bip), and their publications are highly

associated with terms such as ice, data, io, climate, etc.

The most common sizes of communities were 3 and 4 (37

communities each). This result can be useful for OLCF to

identify small collaboration networks, and connect them with

larger communities that are working on similar research topics,

which can be identified by the keywords associated with the

communities.

2) Accuracy of link prediction via relationship strength
quantification: One of the objectives of our analysis was

to enable the association of scientific publications to OLCF

project allocations. As described earlier, associating the publi-

cations to projects is currently a tedious and manual process.

Our graph approach has helped predict missing project ID for

publications, and we have further verified the accuracy of the

prediction to validate the approach. As described in section

IV-D2, we have composed two different queries that perform

the quantification of relationship strength, one based on the

contents of publications (Query 1), and the other based on

the authors’ memberships to projects (Query 2). Each query

produced a set of results, (project ID, score), ordered by the

score in descending order. For each project ID, we have also

computed a weighted sum of two scores generated by query 1

and query 2, and used the value as a hybrid ranking score for

the project ID. w1 and w2 are weights assigned to the scores of

query 1 and query 2, respectively. If w1 = 1.0 and w2 = 0.0,

only query 1 was used, and if w1 = 0.0 and w2 = 1.0, then

only query 2 was used.

For the evaluation, we have used the publications that

already have the associated project ID information to create

an answer set for the prediction test. We pretend that these

relationships do not exist in the graph, and tested if the

prediction technique can identify these relationships. For each

test case, we have estimated the project ID for the given

publication, p, and created a ranked list of project IDs by

sorting them in descending order using the score. Thereafter,

we measured the Top-k performance of the ranked list using

recall(k) [10] as follows. Recall(k) represents how accurately

our prediction can perform when generating a top-k ranked

list. Let r be the rank of the project ID, p. If r ≤ k, we have

a hit, otherwise, a miss. Then, recall(k) = #hits
|T | where |T | is

the number of tests.

Fig. 15 shows that query 1 (w1=1.0, w2=0.0) outperformed

query 2 (w1=0.0, w2=1.0). Hybrid usage of these two queries

(w1=0.5, w2=0.5) showed the best performance, where re-

call(k) is 0.78 and 0.86 for k=1 and k=5, respectively. The

result shows that using various paths between vertices can

improve the accuracy of predicting missing links.
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VI. OLCF GRAPH NETWORK ANALYTIC TOOL

To put things together, we have a built web-based graphical

user interface analytic tool atop the constructed graph, the

queries, operations, and database that we have presented in

this paper. For the implementation, we have utilized vis.js [11],

Bootstrap, jQuery [12] and its DataTables plugin for the graph

visualization and web-interface, Tornado webserver [13] and

Py2neo python neo4j API for the server, and neo4j for the

back-end graph database. The tool was used to visualize

the graph and the analytics query results presented in this

paper. Although predefined analytics queries provide various

insights, the flexibility of searching and navigating through the

relationships can be very useful for individual user’s specific

needs. To this end, the tool allows users to search vertices

in the graph by keywords, navigate the search results by

following the edges, finding missing links between projects

and publications. It also has a panel where users can set up

constraints to filter out vertices and edges. Fig. 16 presents

screenshots of the dashboards provided by the developed tool.

VII. RELATED WORK

Constructing a graph from various data sources is driven by

the data model and query needs. Lee et al. [7] showed how

to create a heterogeneous graph from large-scale tabular data

sources via mapping between relational and graph schemas.

We have extended this approach by incorporating LSA [4]

to capture semantic relevance scores between documents and

keywords.

Our graph analysis was focused on acquiring statistical

characteristics of the graph based on various subgraph pattern

matching referred to as Online Graph Analytic Processing
(OLGAP) [14]. There are a number of graph engines that

can support OLGAP analysis such as neo4j [2], DEX [15],

Sesame [16], etc. The graph engine Sesame [16], using

RDF (Resource Description Framework) as its data model

and SPARQL [17] for the query language, is a widely used

graph data model and query language, due to its simplicity

and flexibility. However, they lack the definition of types and

attributes for nodes and edges that are crucial for analysis

of complex real-world data sets. We chose neo4j [2] and its

query language Cypher [3] due to its underlying property

graph-based data model that can represent complex node/edge

types and their attributes more naturally. Cypher is an SQL-

inspired declarative language for describing patterns, started

as a part of a commercial software, now being standardized

by the openCypher project.

Another important aspect of graph analysis is Graph Mining
(GM), which focuses on the automatic discovery or prediction

of graph properties (e.g., counting triangles [18], finding

eccentricity [19], finding connected components, computing

PageRank/Personalized PageRank [20], [21]) based on pre-

defined patterns. We have applied these techniques in our

work. In [10], the authors show that scoring relationship

strength between nodes using various paths can be used for

recommender systems. In a similar vein, we have used various

graph pattern queries to quantify the score for link prediction

between vertices. As future work, we could potentially lever-

age other graph mining approaches such as PageRank for the

identification of important vertices in the network.

In the HPC domain, the increased usage of GPUs has driven

the need for scaling graph libraries on compute platforms.

However, there has been very limited work on using graph

analytics to manage and understand such large-scale systems.

Constellation [22], was aimed at defining a science graph

network for fostering collaboration and knowledge discovery

across science domains, exploring similarities in the graph

structures across domains. In [23], the authors used semantic

graph techniques for cluster management, associating the job

scheduler’s log to failure events and looking for patterns of

failure. Similarly, [24] describes a distributed graph process-

ing approach for analyzing HPC system logs in real-time.

In this paper, we have used graph analytics for correlation

analysis between system usage and publications, and to derive

new edge mappings based on observed graph patterns.

VIII. CONCLUSIONS

In this paper, we have showcased a novel application of

graph-based big data techniques to glean insights on the OLCF

HPC center’s compute core usage and publication trends.

To this end, we have represented the OLCF HPC resource

fabric as a graph; the entities within the fabric such as users,

scientific projects, groups, jobs and publications as vertices

in the graph; the relationships between the entities as edges,

connecting the vertices; and, applied graph analytics, text

analysis and graph mining to understand heterogeneous data

sets for a leadership-scale HPC center. Our results provide

valuable insights into an HPC center’s core allocation program,

measuring the productivity of scientific domains, the interplay

between core usage and research output, semantic overviews

regarding the contents (publications) of the OLCF scientific

projects from various perspectives, accelerating collaboration,

entity relationship analysis, and in predicting new connections

between HPC resource entities.
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