

Conditioning Multi-model Ensembles for Disease Forecasting

J. Ray and S. Lefantzi

Sandia National Laboratories, Livermore, CA

OBJECTIVE

- Develop methods that use observational data to reconcile conflicting predictions generated by an ensemble of disease models
 - Improve forecasting of influenza in the San Francisco Bay Area (SFBA)
 - Use ILI+ derived from Google Flu Trends (GFT) available at SFBA cities; also meteorological data (from National Land Data Assimilation System)
 - Use an ensemble of 5 models with very different underlying modeling assumptions & techniques

BACKGROUND

- There are a large variety of disease models; many are represented in the Biosurveillance Ecosystem (BSVE)
- Diverse data streams, and not just public health data, can be used to track disease outbreaks
 - E.g., ones derived from logs of web searches (Google Flu Trends), Twitter posts etc.
- Data assimilation systems e.g., ensemble Kalman filters and Bayesian techniques have been used to calibrate these models to observational data
- Despite being calibrated to data streams, these model ensembles provide conflicting forecasts for a given outbreak
- The reasons are:
 - Shortcomings / quality of the calibrating data
 - Relevance of the modeled epidemiological processes in the given outbreak
 - Redundant data streams and/or models that provide no new information to the ensemble

So, how do we improve the ensemble?

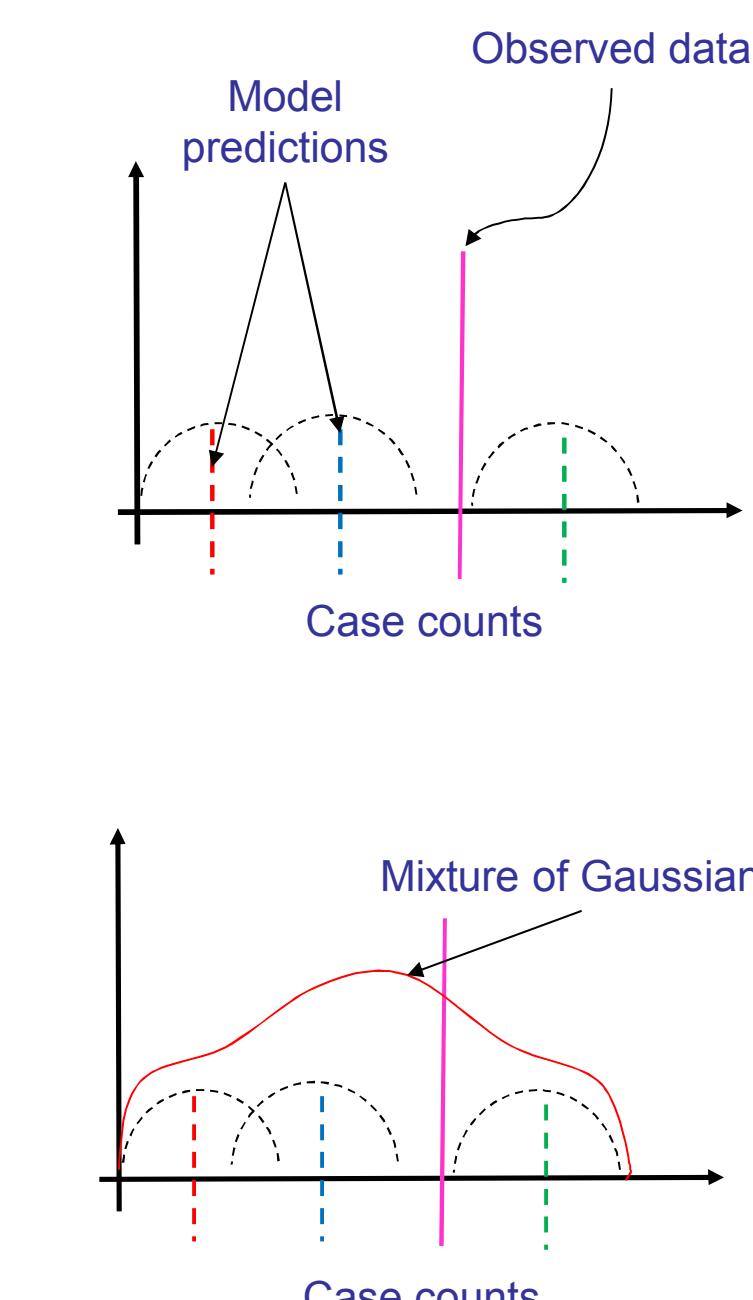
- Identify and remove the data streams & models that are redundant
- Up-weigh the more predictive models (all models are not equal, in a given outbreak)
 - Obviously, we will need "ground truth" i.e., observational data
- Given data, also provide "error bounds" for each model prediction

TECHNICAL APPROACH

- The key to reconciling N conflicting model predictions $f_n(t)$ for time t is to consider the ensemble prediction to be a weighted mean of the model predictions
- $Y^{(ens)}(t) = \sum_n \alpha_n f_n(t)$, where α_n are weights that sum to 1
- α_n are estimated so that $Y^{(ens)}(t)$ is similar to observations $Y^{(obs)}(t)$
- Or we can formulate the problem to keep all models but severely down-weight the ones that do not contribute to predictive skill e.g., via Bayesian Model Averaging
 - Requires some observational data
- The formulation of the estimation problem can be designed to remove redundant/correlated models and data streams e.g. via shrinkage
- Useful if we lack observational data

Bayesian Model Averaging (BMA)

- Assume that model predictions $f_n(t)$ are actually means of a Gaussian distribution $G(f_n(t), \sigma^2)$; variance σ^2 is unknown
- $Y^{(obs)}(t) \sim \sum_n \alpha_n G(f_n(t), \sigma^2)$ is a draw from a mixture of Gaussians
- We seek α_n that maximizes the likelihood of the draws $Y^{(obs)}(t)$, $t = 1 \dots T$; solved via Expectation Maximization



Shrinkage

- Fit the ensemble to data (estimate α_n) by shrinkage
- $$\min_{\alpha_n} \|Y^{(obs)}(t) - \sum_n \alpha_n f_n(t)\|_2^2 + \lambda \|\alpha_n\|_1$$
- λ ensures that many α_n get driven to zero; optimal λ determined by cross-validation. Use LASSO to do so

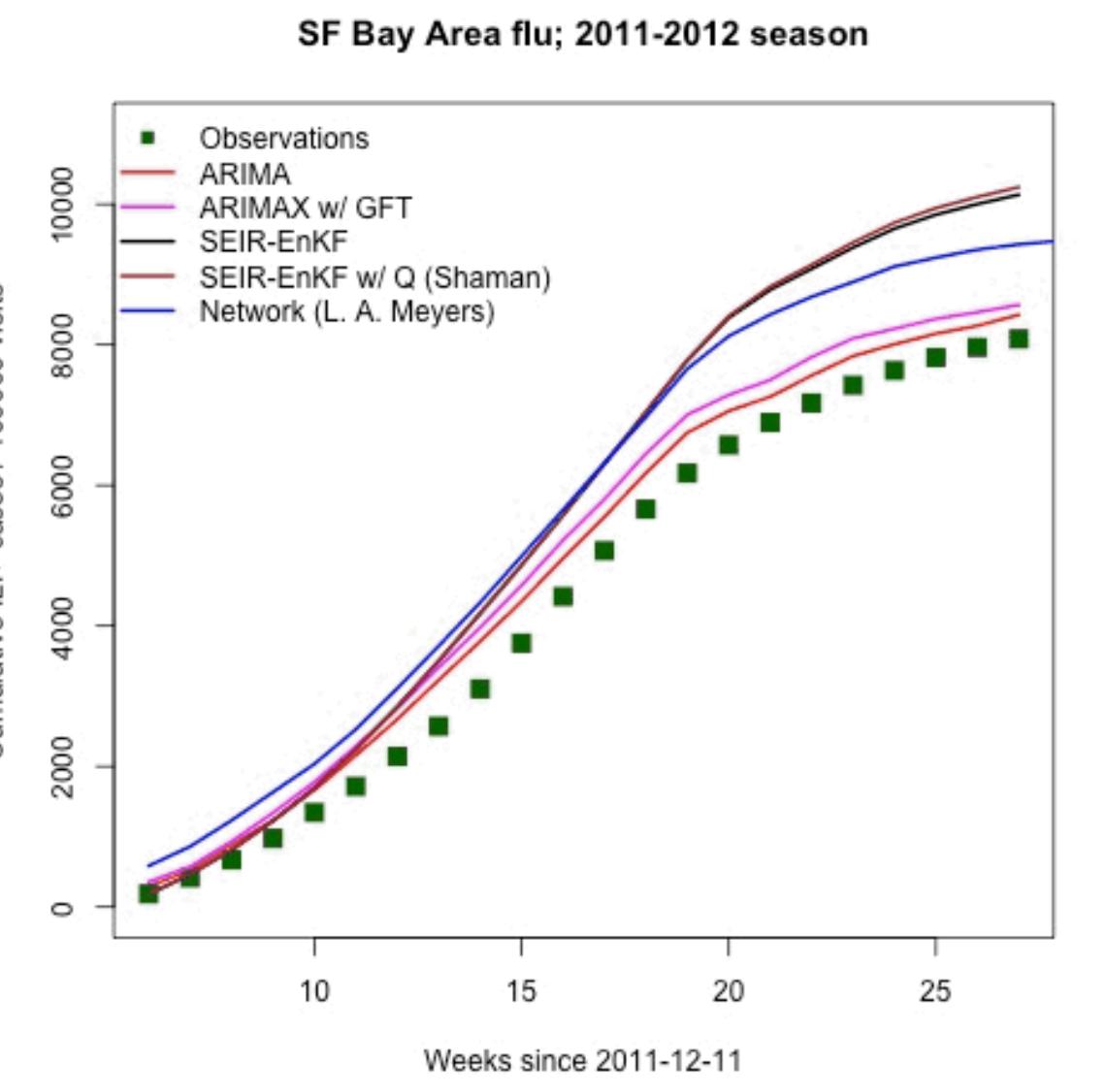
Test case

- Improve forecasting of influenza in the SFBA using an ensemble of 5 models
- Data: ILI+, derived from Google Flu Trends multiplied by % of ILI cases testing positive for flu. Use 2010-2013 data
- Randomly split data equally into a set for training individual models and another for model averaging

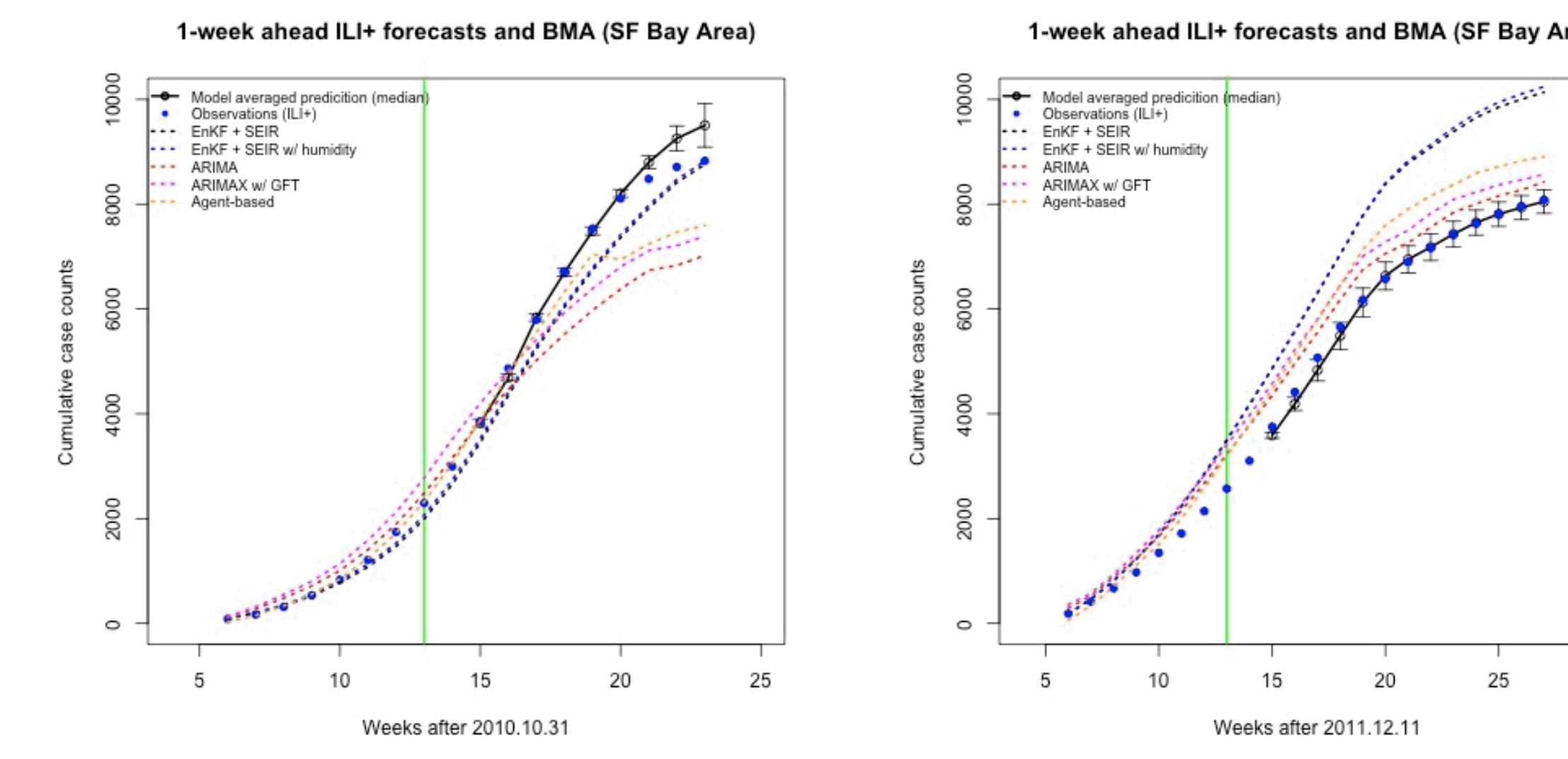
THE ENSEMBLE

The Models

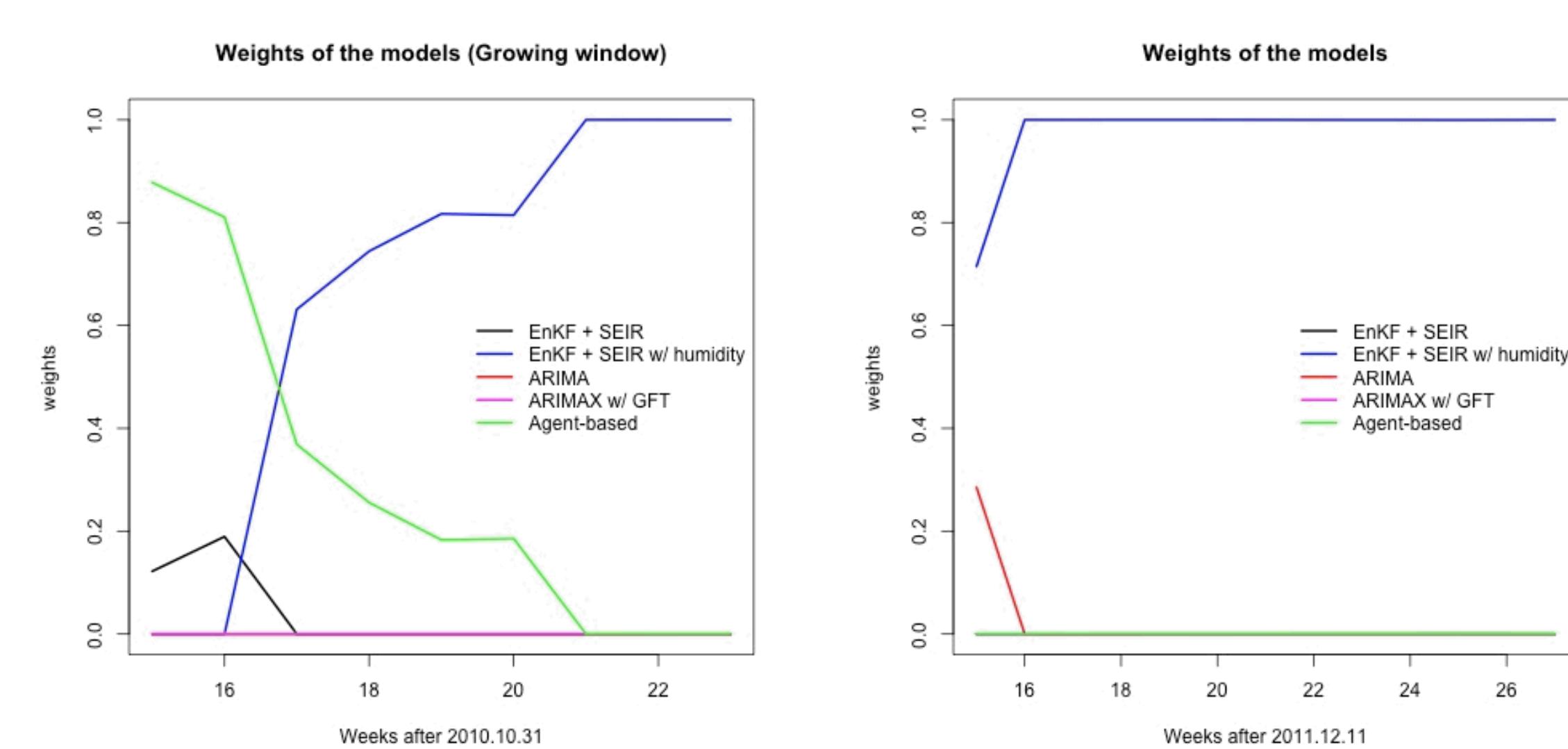
- Ensemble of 5 models
- 2 SEIR models driven by EnKF, assimilating ILI+; one also assimilates humidity
- 1 ARMA and 1 ARMAX model, also fitted to ILI+; ARMAX also uses Google Flu Trends
- 1 network model



RESULTS



- BMA forecast much closer to the observed data than the individual models
- Prediction uncertainty (error bars) much tighter than the scatter in the ensemble
- Continuous Rank Probability Score (CRPS) of BMA-ed ensemble smaller than raw ensemble
- Different models get up-weighted during different flu



BMA OR SHRINKAGE?

- BMA-ed ensemble fits the data better than the one from shrinkage
- Shrinkage only removes 2 models
- Poor performance could be caused by lack of data to get a good λ

CONCLUSIONS

- We have a preliminary method based on BMA to reconcile conflicting model predictions
- BMA performs better than estimating the weighted ensemble via shrinkage
- No model dominates; certain models perform better than others in a given season
- Simpler models do not necessarily perform better, even during the early epoch of an outbreak when data is limited
- Relative importance of a model can change as a flu season progresses.

Acknowledgements

The project is supported by DTRA contract CBCall14-AMD3-CBA-06-2-0029.

References

- A. E. Raftery et al, "Using Bayesian Model Averaging to Calibrate Forecast Ensembles", *Monthly Weather Review*, 133.5, 2005: 1155-1174.

For additional information, please contact:

Jaideep Ray, Sandia National Laboratories, jairay@sandia.gov

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.