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- Excellent optical access rivaling 3D traps
- NA 0.11 across surface
- NA 0.25 through slot
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- High trap frequencies (up to 3.2 MHz with Yb) 935 nm 1/ 1
- Precige_ control over principal axis rotation P, T2.1 GHz TS P i
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. i ot being ] [
reglor!s fo.r 2D scalability 369 nm > S Al N "eenty % E Can be set up in either co- or counter-propagating configurations
- Shuttling in and out of slotted area demonstrated AOL \‘:C
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- Very good trap performance D, otional State Addressing
- Lifetime over 100 h in Yb while taking data . Yol 1o Lot - Repetition rate lock used to
- Lifetime > 5 m without cooling 2 12.6 GHz _ AOM used to fine stabilize separation of comb teeth
- Low heating rates approx. 100 quanta/s (Yb, 2.5MHz trap freq) — tune frequency of smHz
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- HOA 2.1 has been released and is undergoing initial tests - Ty>5s,T,=1s o] | e
. . fre ><—
- Design features include: i
- Fixed floating M2 electrode Single Qubit Gates Mglmer-Sgrensen Gate
- New RF trace design for reduced RF loss §
- Added aluminum wire for heating and temperature measurements Microwave Gates | Entangled ZSbEate Fidelity
- First order Walsh Ha
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- Effect of new RF design in HOA-2.1 shows an improvement in , See P. Aliferis and A. W. Cross, Phys. Rev. Lett. 98, 220502 (2007) (< 8 quanta/s) —_— ~
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- Trap heating resulting from RF dissipation has been characterized resonance frequency 49.4MHz  50.5 MHz aser Gates F = B (P(100)) + P(|11))) + R 0.995
- Electrical properties have been tested at various temperatures ‘ reS(?na,tor Q 45 | 60 | co-propagating Process Fidelity
RF induced Heating vertical ad‘!ust field -2300V/m -80V/m Gate | Process Tnfidelity | 172 0-Norm |
: lateral adjust field -550V/m  -30V/m G 1.17(7) x 107% [ 5.3(2) x 1077 Measured with GST
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E HOA-2 300K 7.6pF 120 12MQ 140mW 4.2mW
o m £ TTK 0.7Q 80 mW
m o 4K 0.5 60 mW
= HOA-21 300K 7.6pF 09Q 1.6MQ 100mW 3.1mW -
TR B on Crystal Rotation
| 3 4K 0.5 60 mW
30 min- s Au/FS 300K 1.93pF 20Q 14MQ 15mW  3.7mW
77K 1.30 10 mW
RF Voltage at trap (~280 V) 4K 0.8 5.9mW
Temperature data corrected for emissivity Thunderbird 300K 24pF 06Q 15MQ 6.7mW 3.3mW
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- Technical noise has not been ruled out swap was found to be | p
- Noise scales as 1/f*n where n = 2.4(1) minimally 0.16 quanta/swap. L
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- Interpolating shuttling solutions o A FaasasasNas b = \ AN "R
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- Improvements have been Observed T 0.0625 0.125 O-SZ:UttlingVelocit:-(?n/s) 1 2 o JW% - H|gh Ve|OCIty SWapS breakdown £40

by locally compensating fields along i N Heating rate without shuttlin ] \/ \/ \/ \ / \/ \ TRe3 | presumably because of rotation-
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ShUttlmg path ———————————————————— + - - 04 - Low velocity swaps breakdown )
0 . . . . . . . . \/\ /\ /\ /\/v !g v\/\/vvx presumably because of prolonged
0 5 10 15 20 25 30 35 40 M M M ¥ )| e exposure to micromotion
Interpolation Setting : : . - -
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