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High Optical Access Trap (HOA-2)
- Excellent optical access rivaling 3D traps

- NA 0.11 across surface
- NA 0.25 through slot

- High trap frequencies (up to 3.2 MHz with Yb)
- Precise control over principal axis rotation
- Transition between slotted and un-slotted 

regions for 2D scalability
- Shuttling in and out of slotted area demonstrated

- Very good trap performance
- Lifetime over 100 h in Yb while taking data
- Lifetime > 5 m without cooling

- Low heating rates approx. 100 quanta/s (Yb, 2.5MHz trap freq)
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Voltage
Budget

Chain
length

Min
ratio

Calcium Ytterbium

±10V 2 1.32 2.1, 2.95, 3.15 MHz 1.0, 1.4, 1.5 MHz

±30V 2 1.32 3.5, 5.1, 5.5 MHz 1.79, 2.5, 2.6 MHz

±10V 3 1.87 1.46, 2.78, 2.92 MHz 0.7, 1.34, 1.42 MHz

±30V 3 1.87 2.5, 4.8, 5.0 MHz 1.22, 2.33, 2.45 MHz

Ion Crystal Rotation

Trap in z direction

-1V

-1V

Trap in z direction
1V

1V

0.73V

Trap in x direction
-0.9V

-0.9V

-1V

Rotate around x
1V

-1V

-0.898V
0.898V

Rotate around y

0V
0.39V

-1V
1V

-0.39V

Rotate around z

0V
1V
-1V

Heating rate in HOA-2 is low and uniform 
along the length of the quantum section

Heating rates as function of principal 
axes rotation

- Principal axes rotation measured 
by measuring π-times of Rabi 
flopping on cooled motional 
modes

- Minimal heating rates for motional 
mode parallel to trap surface

- Without technical noise: Vertical 
mode has at most

(P. Schindler, et al., Phys. Rev. A 
92, 013414 (2015). 

- Limited by technical noise

171Yb+, Trap frequency 2.8 
MHz, r.f. 50 MHz
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Heating Rates

- Interpolating shuttling solutions 
increases shuttling time but provides 
a smoother and more adiabatic 
transfer

- Shuttling induced heating increases 
dramatically as you break adiabaticity

- Improvements have been observed 
by locally compensating fields along 
shuttling path

Locally 
compensated 

along y dimension

Heating rate without shuttling

Shuttling-induced Heating

1658 us 830 us 416 us 18.6-209 us 10.3 us 14.5 us 18.6-22.8 us

10.3 us6.2 us

vs

Swap Characterization
- Current setup does not support 

individual addressing
- We prepare ions in the |01> state by 

separating the ions slightly and 
applying pi and 2pi rotations to the 
ions with a single pulse

- State preparation and detection 
fidelities are improved by separating 
the ions slightly, which also gives a 
cleaner readout on the segmented 
PMT

- Displacing the 
Raman beam 
leads to disparate 
Rabi frequencies

- Contrast is 
improved by 
using PB1 
compensated 
pulses

State Preparation and Measurement

Swap Breakdown
Velocity Upper Bound

Eventual Decay

Low Velocity Limit High Velocity Limit
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- The absolute upper bound on velocity 
for a successful swap is limited by 
timing constraints

- Swaps degrade after multiple rotations

Gates
Raman Beams

Comb Stabilization

Can be set up in either co- or counter-propagating configurations

Motional State Addressing

- AOM used to fine 
tune frequency of 
Raman beams

- Can be used for 
sideband cooling

- Clock state qubit is insensitive to 
magnetic fields

- T1 > 5 s, T*
2 ≈ 1 s

- Repetition rate lock used to 
stabilize separation of comb teeth

The 171Yb+ 

Qubit

Not being 
used currently
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Below the threshold for fault-tolerant error correction!
See P. Aliferis and A. W. Cross, Phys. Rev. Lett. 98, 220502 (2007)

Microwave Gates

Laser Gates

co-propagating

counter-propagating

Best reported process
fidelity of a two-qubit

gate in a scalable 
surface trap!
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Entangled State Fidelity

Process Fidelity

- First order Walsh 
compensation used

- Performed on the tilt 
mode parallel to the 
trap surface because 
of lower heating rates 
(< 8 quanta/s)

Measured with GST 
performed on the 

symmetric subspace: 
II, XX, YY, M

HOA-2.1 Rotation-Induced Heating

- Heating induced by the crystal 
swap was found to be 
minimally 0.16 quanta/swap. 

- These results were limited by 
vertical field compensation 
effects imposed by the floating 
M2 electrode in the HOA-2.0

- Preliminary heating rate measurements were 
found to be higher in than in HOA-2.0

- Technical noise has not been ruled out
- Noise scales as 1/f^n where n = 2.4(1)

HOA-2.1

- HOA 2.1 has been released and is undergoing initial tests
- Design features include:

- Fixed floating M2 electrode
- New RF trace design for reduced RF loss
- Added aluminum wire for heating and temperature measurements

Comparison of Trap Properties

- Effect of new RF design in HOA-2.1 shows an improvement in 
resonant circuit Q

- Trap heating resulting from RF dissipation has been characterized
- Electrical properties have been tested at various temperatures

Temperature data corrected for emissivity
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- Swap yield is stable over a large 
range of velocities from 18.6 to 209 us

- High velocity swaps breakdown 
presumably because of rotation-
induced heating

- Low velocity swaps breakdown 
presumably because of prolonged 
exposure to micromotion

- Symmetric curvature tensor determines trap 
frequencies and principal axes

- Traceless for static fields
- Trace is generated by RF pseudopotential

Voltages are 
symmetric about 
this line, but the 

Ez compensation 
is not!

 Result of floating M2 
electrode

RF induced Heating

Improved Q and Compensation in HOA 2.1

Electrical Characteristics
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