

Ensemble Grouping

strategies for embedded

Stochastic Collocation

Marta D'Elia, M.S. Ebeida, and E. Phipps (SNL*), A.A. Rushdi (UC Davis)

SIAM CSE 17 – Atlanta, GA, February 27th 2017

*Sandia National Labs, NM – Sandia National Laboratories is a multi mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

INTRODUCTION

UQ in computational modeling and simulation

quantifying uncertainties is a foundational component of predictive simulation

➡ development and analysis of many UQ methods

- random sampling,
- stochastic collocation
- stochastic Galerkin
- ...

INTRODUCTION

UQ in computational modeling and simulation

quantifying uncertainties is a foundational component of predictive simulation

→ development and analysis of many UQ methods

- random sampling,
- stochastic collocation
- stochastic Galerkin
- ...

in **large-scale** scientific computing

- high-dimensional uncertain input spaces
- localized and/or non-smooth behavior

→ research on **reducing the number of samples**

- adaptive sampling methods
- compressed sensing, tensor methods
- multi-level methods
- ...

INTRODUCTION

not enough!

the bottleneck is in the **sample evaluation**: applying these methodologies to large-scale scientific computing problems is often prohibitively expensive

INTRODUCTION

not enough!

the bottleneck is in the **sample evaluation**: applying these methodologies to large-scale scientific computing problems is often prohibitively expensive

our goal: reduce the cost of the evaluation of each sample

- propagate together multiple samples through a computational simulation: **embedded ensemble propagation**

E. Phipps, MD, H.C. Edwards, M. Hoemmen, J. Hu, S. Rajamanickam, *Embedded Ensemble Propagation for Improving Performance, Portability and Scalability of Uncertainty Quantification on Emerging Computational Architectures*, SIAM Journal of Sci Comp, 2017

idea: sample-dependent scalars in the code are replaced with small arrays

- the cost of assembling and solving the ensemble linear system is **substantially smaller** compared to the sequential case

INTRODUCTION

what can go wrong?

the total number of linear solver iterations for ensemble systems may be **strongly influenced** by which samples comprise the ensemble

➡ critical to the success is the **grouping** of samples into ensembles

INTRODUCTION

what can go wrong?

the total number of linear solver iterations for ensemble systems may be **strongly influenced** by which samples comprise the ensemble

→ critical to the success is the **grouping** of samples into ensembles

contribution

- analyze a case study where the linear solver iterations significantly vary from sample to sample
- design grouping strategies that maximize the computational gain brought by the ensemble propagation

MD, H.C. Edwards, J. Hu, E. Phipps, S. Rajamanickam, *Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods Applied to Anisotropic Diffusion Problems*, submitted, 2016

Outline

- (brief) Introduction to Stochastic Collocation methods
- Background: Embedded Ensemble Propagation
- Grouping strategies
- Case study: a highly anisotropic diffusion problem
- Future work

Introduction to Stochastic Collocation methods

Based on [M. Gunzburger, C. Webster, G. Zhang](#). Stochastic finite element methods for partial differential equations with random input data. *Acta Numerica (2014)*, pp. 521–650, 2014

PROBLEM SETTING

A stochastic elliptic PDE

- $D \subset \mathbb{R}^d$ ($d = 1, 2, 3$): bounded domain with boundary ∂D
- $(\Omega, \mathcal{F}, \mathbb{P})$: complete probability space

Find $u : \overline{D} \times \Omega$ such that almost surely

$$\begin{cases} \mathcal{L}(a)u = f & \mathbf{x} \in D \\ \mathcal{B}u = g & \mathbf{x} \in \partial D, \end{cases}$$

where

- \mathcal{L} – elliptic operator defined on D and parametrized by $a(\mathbf{x}, \omega)$
- $f(\mathbf{x}, \omega)$ – forcing term with $\mathbf{x} \in D$ and $\omega \in \Omega$
- \mathcal{B} – boundary operator
- $g(\mathbf{x}, \omega)$ – boundary data with $\mathbf{x} \in \partial D$ and $\omega \in \Omega$

PROBLEM SETTING

Assumptions on the parameters

- A. $f(\mathbf{x}, \omega)$ and $g(\mathbf{x}, \omega)$ are not affected by uncertainty

PROBLEM SETTING

Assumptions on the parameters

- A. $f(\mathbf{x}, \omega)$ and $g(\mathbf{x}, \omega)$ are not affected by uncertainty
- B. $a(\mathbf{x}, \omega)$ is bounded from above and below with probability 1
- C. $a(\mathbf{x}, \omega)$ can be written as

$$a(\mathbf{x}, \omega) = a(\mathbf{x}, \mathbf{y}(\omega)) \quad \text{in } D \times \Omega \quad \text{where}$$

$$\mathbf{y}(\omega) = (y_1(\omega) \dots y_N(\omega)) \in \mathbb{R}^N \quad \text{random vector, uncorr. components}$$

PROBLEM SETTING

Random parameter satisfying B and C:

truncated Karhunen-Loève (KL) expansion of the random field

Mercer's theorem: the second-order correlated random field $a(\mathbf{x}, \omega)$ with continuous covariance function $\text{cov}(\mathbf{x}, \mathbf{x}')$ can be written as

$$a(\mathbf{x}, \omega) = \mathbb{E}[a(\mathbf{x}, \cdot)] + \sum_{n=1}^{\infty} \sqrt{\lambda_n} b_n(\mathbf{x}) y_n(\omega),$$

λ_n : eigenvalues, in decreasing order, of cov

b_n : corresponding eigenfunctions

$y_n(\omega) \in \mathbb{R}$: uncorrelated random variables

PROBLEM SETTING

Random parameter satisfying B and C:

truncated Karhunen-Loève (KL) expansion of the random field

Mercer's theorem: the second-order correlated random field $a(\mathbf{x}, \omega)$ with continuous covariance function $\text{cov}(\mathbf{x}, \mathbf{x}')$ can be written as

$$a(\mathbf{x}, \omega) = \mathbb{E}[a(\mathbf{x}, \cdot)] + \sum_{n=1}^{\infty} \sqrt{\lambda_n} b_n(\mathbf{x}) y_n(\omega),$$

λ_n : eigenvalues, in decreasing order, of cov

b_n : corresponding eigenfunctions

$y_n(\omega) \in \mathbb{R}$: uncorrelated random variables

Truncated KL expansion: truncation of the summation to the N -th term:

$$a(\mathbf{x}, \omega) \approx \mathbb{E}[a(\mathbf{x}, \cdot)] + \sum_{n=1}^N \sqrt{\lambda_n} b_n(\mathbf{x}) y_n(\omega)$$

PROBLEM SETTING

Goal of Uncertainty Quantification

determine *statistical information* about an output of interest that depends on the solution, i.e. a functional $G(\mathbf{y})$

Examples: • $G(\mathbf{y}) = \frac{1}{|D|} \int_D u(\mathbf{x}, \mathbf{y}) d\mathbf{x}$

• $G(\mathbf{y}) = \max_{\mathbf{x} \in D} u(\mathbf{x}, \mathbf{y})$

Quantity of interest: moments of $G(\mathbf{y})$

e.g. QOI = $\mathbb{E} [G(\mathbf{y})] = \int_{\Gamma} G(\mathbf{y}) \rho(\mathbf{y}) d\mathbf{y}$

STOCHASTIC COLLOCATION METHODS

Stochastic collocation (SC) methods:

nonintrusive stochastic sampling methods based on decoupled deterministic solves

STOCHASTIC COLLOCATION METHODS

Stochastic collocation (SC) methods:

nonintrusive stochastic sampling methods based on decoupled deterministic solves

SC methods in a nutshell:

- let $u_h(\cdot, \mathbf{y})$ be the semi-discrete approximation of $u(\mathbf{x}, \mathbf{y})$ for $\mathbf{y} \in \Gamma$
- main idea:
 - collocate $u_h(\cdot, \mathbf{y})$ on a suitable set of samples $\{\mathbf{y}_m\}_{m=1}^M \subset \Gamma$, i.e. determine M semi-discrete solutions
 - use those solution to construct a **global polynomial** to represent the fully discrete approximation $u_{h,M}(\mathbf{x}, \mathbf{y})$

STOCHASTIC COLLOCATION METHODS

Stochastic collocation (SC) methods:

nonintrusive stochastic sampling methods based on decoupled deterministic solves

SC methods in a nutshell:

- let $u_h(\cdot, \mathbf{y})$ be the semi-discrete approximation of $u(\mathbf{x}, \mathbf{y})$ for $\mathbf{y} \in \Gamma$
- main idea:
 - collocate $u_h(\cdot, \mathbf{y})$ on a suitable set of samples $\{\mathbf{y}_m\}_{m=1}^M \subset \Gamma$, i.e. determine M semi-discrete solutions
 - use those solution to construct a **global polynomial** to represent the fully discrete approximation $u_{h,M}(\mathbf{x}, \mathbf{y})$
- polynomial: **interpolatory**

set of points $\{\mathbf{y}_m\}_{m=1}^M$ + basis functions $\{\psi_m(\mathbf{y})\}_{m=1}^M \in \mathcal{P}_{(p)}(\Gamma)$

$$\rightarrow \text{fully discrete approximation } u_{h,M}(\mathbf{x}, \mathbf{y}) = \sum_{m=1}^M c_m(\mathbf{x}) \psi_m(\mathbf{y}).$$

STOCHASTIC COLLOCATION METHODS

Fully discrete approximation

$$u_{h,M}(\mathbf{x}, \mathbf{y}) = \sum_{m=1}^M c_m(\mathbf{x}) \psi_m(\mathbf{y})$$

for **Lagrange** interpolation

$$c_m(\mathbf{x}) = u_h(\mathbf{x}, \mathbf{y}_m) \quad \Rightarrow \quad u_{h,M}(\mathbf{x}, \mathbf{y}) = \sum_{m=1}^M u_h(\mathbf{x}, \mathbf{y}_m) \psi_m(\mathbf{y})$$

GENERALIZED SPARSE GRIDS

One-dimensional approximation

- $l \in \mathbb{N}_+$: one-dimensional level of approximation
- $\{y_k^l\}_{k=1}^{m(l)}$: sequence of one-dimensional interpolation points
- $m(l)$: number of collocation points at level l

1D interpolation operator: for a continuous function v

$$\mathcal{I}_l[v](y) = \sum_{k=1}^{m(l)} v(y_k^l) \psi_k^l(y), \quad l = 1, 2, \dots$$

ψ_k^l : Lagrange fundamental polynomial of degree $p_l = m(l) - 1$

GENERALIZED SPARSE GRIDS

Multi-dimensional approximation

- $\mathbf{l} = (l_1 \dots l_N) \in \mathbb{N}_+^N$: a multi-index
- $L \in \mathbb{N}_+$: total level of the sparse grid approximation

GENERALIZED SPARSE GRIDS

Multi-dimensional approximation

- $\mathbf{l} = (l_1 \dots l_N) \in \mathbb{N}_+^N$: a multi-index
- $L \in \mathbb{N}_+$: total level of the sparse grid approximation

N-dimensional operator at level l : tensor product of 1D operators

N-dimensional sparse grid operator: sum of all operators for $l = 1, 2, \dots, L$

GENERALIZED SPARSE GRIDS

Adaptive grid generation (1D)

e_{jli} : error estimate at (x_j, y_{li}) =(j -th DOF, i -th sample at level l)

τ : user-defined error tolerance

Algorithm

at each successive interpolation level

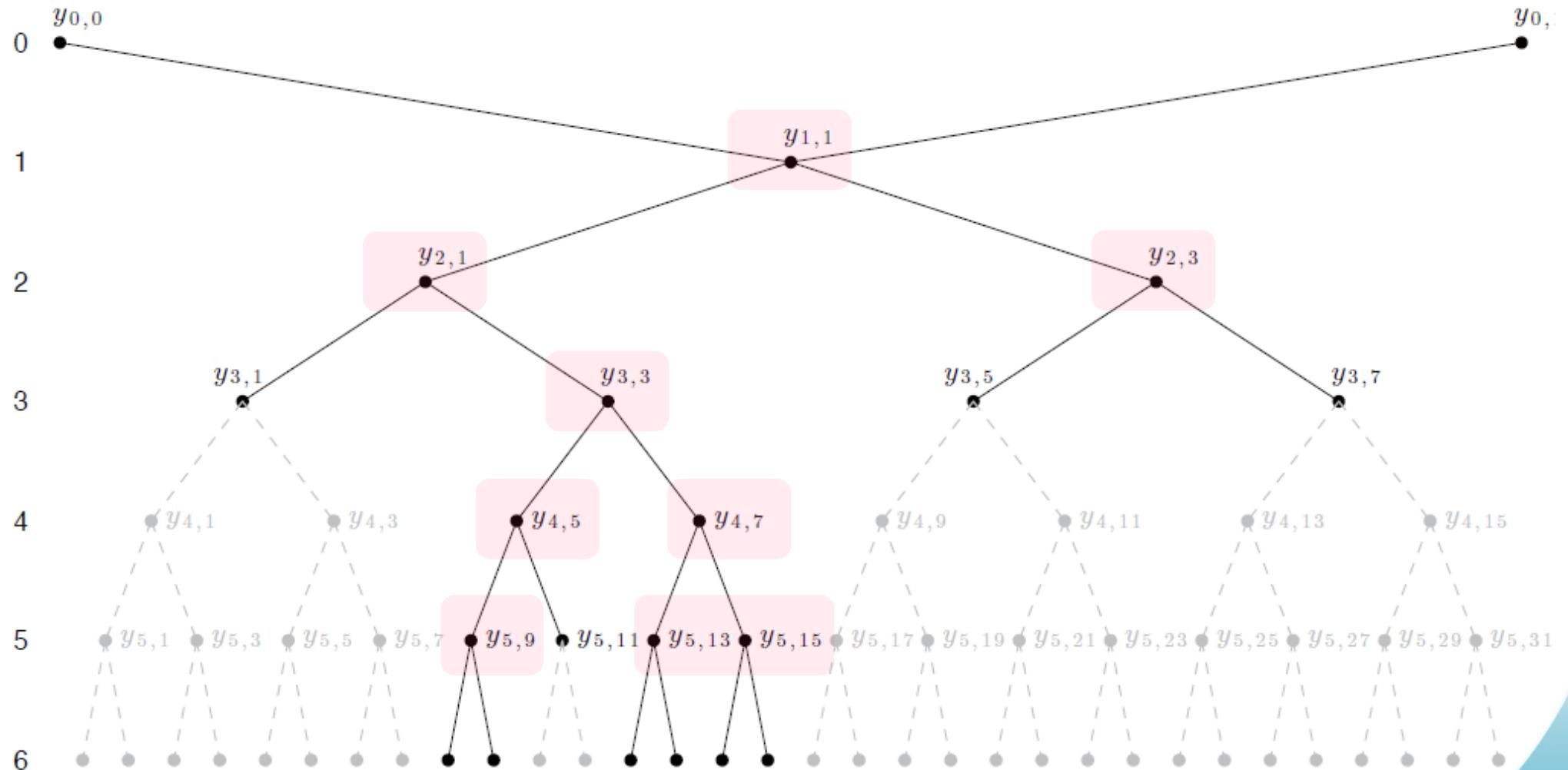
1. **evaluate** e_{jli}

IF $\max_j |e_{jli}| \geq \tau$

2. **refine** the grid around y_{li} adding the two neighbor points

GENERALIZED SPARSE GRIDS

Adaptive grid generation (1D)



GENERALIZED SPARSE GRIDS

Adaptive grid generation (1D)

e_{jli} : error estimate at (x_j, y_{li}) =(j -th DOF, i -th sample at level l)

τ : user-defined error tolerance

Algorithm

at each successive interpolation level

1. **evaluate** e_{jli}

IF $\max_j |e_{jli}| \geq \tau$

2. **refine** the grid around y_{li} adding the two neighbor points

N-dimensional case: same procedure! (keeping in mind that every point in the sample space has N neighbors)

GENERALIZED SPARSE GRIDS

PROS:

- complete decoupling of spatial and probabilistic discretizations
- very easy to implement (codes for PDEs used as black boxes)
- embarrassingly parallelizable

GENERALIZED SPARSE GRIDS

PROS:

- complete decoupling of spatial and probabilistic discretizations
- very easy to implement (codes for PDEs used as black boxes)
- embarrassingly parallelizable

CONS:

- perform well **only** when $u(\mathbf{x}, \mathbf{y})$ is smooth wrt \mathbf{y}
- fail to approximate solutions that have an irregular dependence

GENERALIZED SPARSE GRIDS

PROS:

- complete decoupling of spatial and probabilistic discretizations
- very easy to implement (codes for PDEs used as black boxes)
- embarrassingly parallelizable

CONS:

- perform well **only** when $u(\mathbf{x}, \mathbf{y})$ is smooth wrt \mathbf{y}
- fail to approximate solutions that have an irregular dependence

→ **LOCAL SC** methods:

the basis functions are **locally supported** piecewise polynomials

$\{\psi_m\}_{m=1}^M$ is a piecewise hierarchical polynomial basis

Numerical solution via ENSAMBLES

E. Phipps, MD, H.C. Edwards, M. Hoemmen, J. Hu, S. Rajamanickam,

Embedded Ensemble Propagation for Improving Performance, Portability and Scalability of Uncertainty Quantification on Emerging Computational Architectures, SIAM Journal on Sci Comp, 2017

A NEW STRATEGY

a few considerations:

- **problem:** in large-scale, high-performance scientific computing, the dominant cost is solving the PDE at each interpolation point

the cost of each sample evaluation can be so large that stochastic collocation for a little more than a handful of random variables y_n is intractable!

A NEW STRATEGY

a few considerations:

- **problem:** in large-scale, high-performance scientific computing, the dominant cost is solving the PDE at each interpolation point

the cost of each sample evaluation can be so large that stochastic collocation for a little more than a handful of random variables y_n is intractable!

- **idea:** improve the performance of the method “**opening up the box**” and exploiting the structure within each PDE evaluation.

EMBEDDED ENSEMBLE PROPAGATION

A NEW STRATEGY

EMBEDDED ENSEMBLE PROPAGATION

note: in scientific simulations there is a huge amount of data and computation that is the same for each realization of the uncertain input data (e.g. the mesh)

idea: reuse this information by **propagating multiple samples** (ensembles) at a time exploiting features of modern and emerging computer architectures

ENSEMBLE PROPAGATION in finite element simulations

Finite element discretization

- continuous problem $\mathcal{L}(a)u = f$
- discretization: for \mathbf{y}_m , $m = 1, \dots, M$

$$(\star) \quad L_m \mathbf{U}_m = \mathbf{F}, \quad L_m \in \mathbb{R}^{J \times J}, \quad \mathbf{U}_m \in \mathbb{R}^J, \quad \mathbf{F} \in \mathbb{R}^J,$$

J : number of spatial degrees of freedom

ENSEMBLE PROPAGATION in finite element simulations

Finite element discretization

- continuous problem $\mathcal{L}(a)u = f$
- discretization: for \mathbf{y}_m , $m = 1, \dots, M$

$$(\star) \quad L_m \mathbf{U}_m = \mathbf{F}, \quad L_m \in \mathbb{R}^{J \times J}, \quad \mathbf{U}_m \in \mathbb{R}^J, \quad \mathbf{F} \in \mathbb{R}^J,$$

J : number of spatial degrees of freedom

- given an ensemble size S , solve (\star) for S samples $\mathbf{y}_{m_1} \dots \mathbf{y}_{m_S}$:

$$L_{m_1} \mathbf{U}_{m_1} = \mathbf{F}, \quad \dots \quad L_{m_S} \mathbf{U}_{m_S} = \mathbf{F}$$

or equivalently

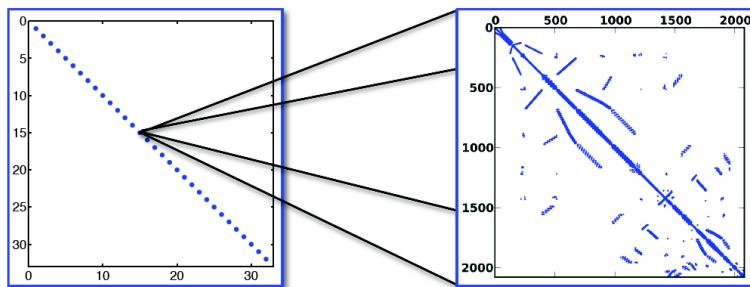
$$\left(\sum_{i=1}^S e_i e_i^T \otimes L_{m_i} \right) \left(\sum_{i=1}^S e_i \otimes \mathbf{U}_{m_i} \right) = \sum_{i=1}^S e_i \otimes \mathbf{F}$$

e_i : i^{th} column of the $S \times S$ identity matrix

ENSEMBLE PROPAGATION in finite element simulations

A *mathematically equivalent* formulation

$$\left(\sum_{i=1}^S e_i e_i^T \otimes L_{m_i} \right) \left(\sum_{i=1}^S e_i \otimes \mathbf{U}_{m_i} \right) = \sum_{i=1}^S e_i \otimes \mathbf{F}$$

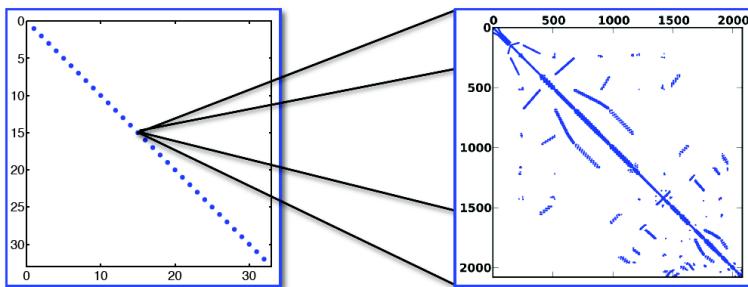


all spatial DOF for a given sample \mathbf{y}_{m_i}
are ordered consecutively

ENSEMBLE PROPAGATION in finite element simulations

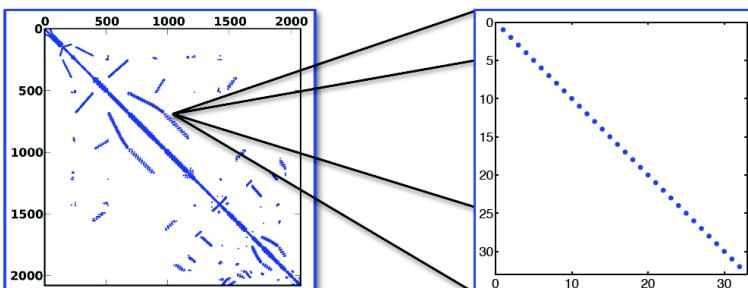
A *mathematically equivalent* formulation

$$\left(\sum_{i=1}^S e_i e_i^T \otimes L_{m_i} \right) \left(\sum_{i=1}^S e_i \otimes \mathbf{U}_{m_i} \right) = \sum_{i=1}^S e_i \otimes \mathbf{F}$$



all spatial DOF for a given sample \mathbf{y}_{m_i}
are ordered consecutively

$$\left(\sum_{i=1}^S L_{m_i} \otimes e_i e_i^T \right) \left(\sum_{i=1}^S \mathbf{U}_{m_i} \otimes e_i \right) = \sum_{i=1}^S \mathbf{F} \otimes e_i$$



DOF for all samples are ordered
consecutively for a given spatial DOF

ENSEMBLE PROPAGATION in finite element simulations

Advantage: the new formulation can be solved efficiently by **replacing** each sample-dependent quantity with a length- S array

ENSEMBLE PROPAGATION in finite element simulations

Advantage: the new formulation can be solved efficiently by **replacing** each sample-dependent quantity with a length- S array

Consequences: • Sample independent quantities automatically reused
(e.g. mesh, matrix graph, etc) \Rightarrow **reduction** of
computation, memory usage, memory traffic
because they are
computed, stored, loaded once per ensemble

ENSEMBLE PROPAGATION in finite element simulations

Advantage: the new formulation can be solved efficiently by **replacing** each sample-dependent quantity with a length- S array

Consequences: • Sample independent quantities automatically reused
(e.g. mesh, matrix graph, etc) \Rightarrow **reduction** of

computation, memory usage, memory traffic

because they are

computed, stored, loaded once per ensemble

- Random memory accesses of sample-dependent quantities replaced by contiguous accesses of ensemble arrays.

Example: this effect, combined with reuse of the sparse matrix graph can result in 50% reduction in cost of matrix-vector products

ENSEMBLE PROPAGATION in finite element simulations

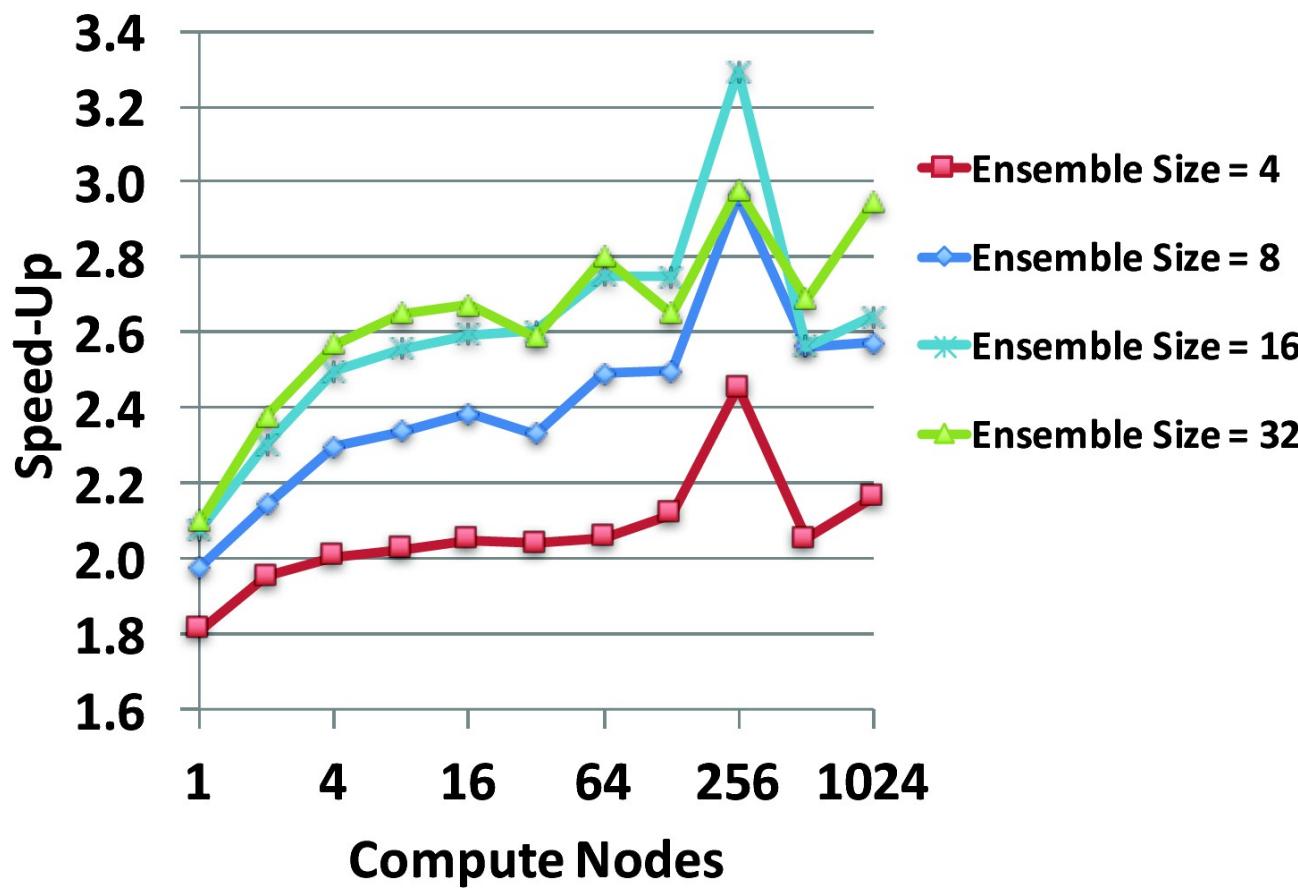
Consequences:

- arithmetic on ensemble arrays can be naturally mapped to fine-grained vector parallelism (present in most computer architectures today)
- # of distributed memory communication steps of sample-dependent information: reduced by a factor of S
- size of each communication message: increased by a factor of S

ENSEMBLE PROPAGATION: performance results

Results for ISOTROPIC diffusion: SPEED-UP for different ensemble size S

Cray XK7 Multigrid Preconditioned CG Solve (64x64x64 Mesh/Node)



ENSEMBLE PROPAGATION in finite element simulations

Note: in the previous tests the number of CG iterations is
independent of the sample value

⇒ the number of CG iterations for each ensemble is
independent of the choice of samples grouped together

ENSEMBLE PROPAGATION in finite element simulations

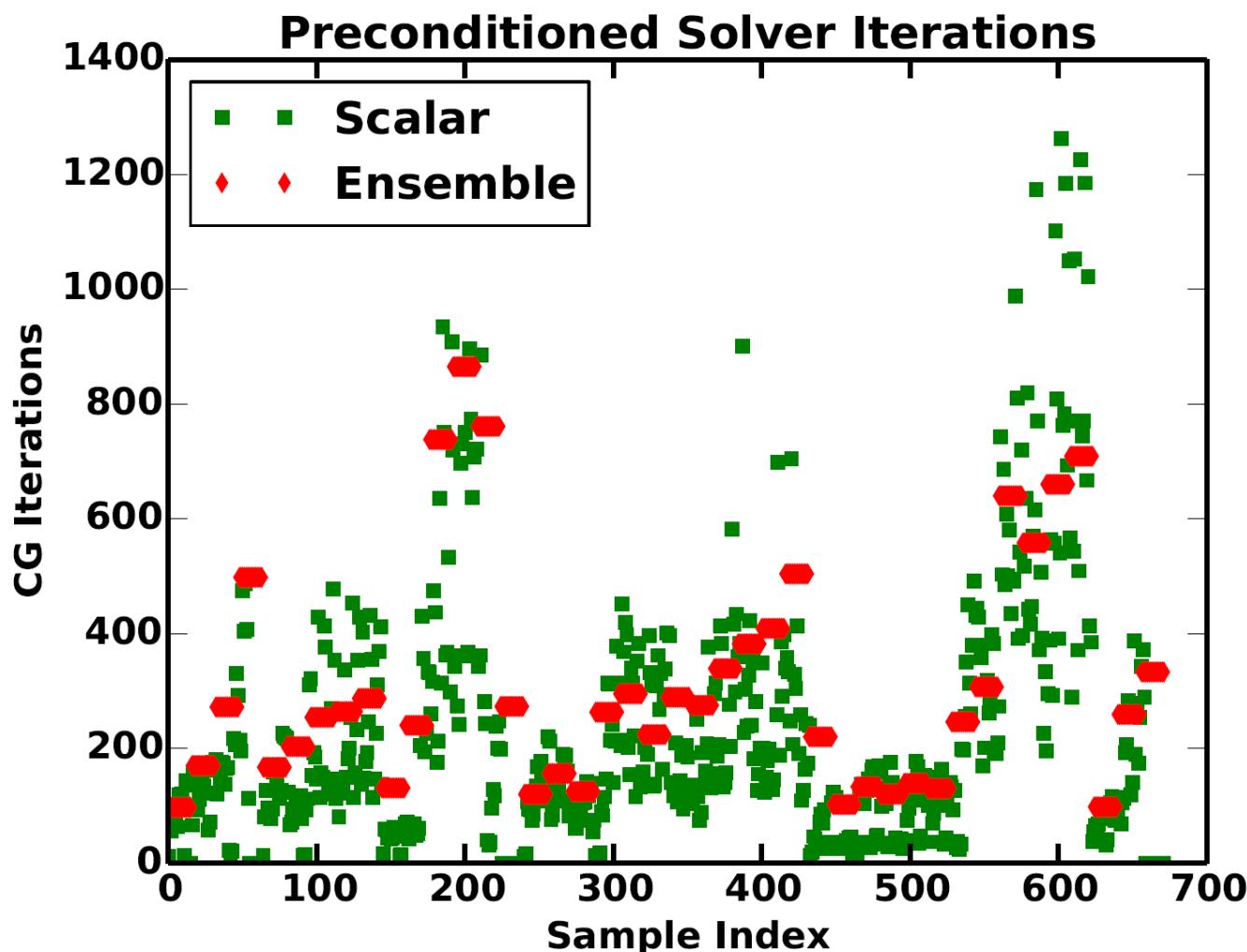
Note: in the previous tests the number of CG iterations is
independent of the sample value

⇒ the number of CG iterations for each ensemble is
independent of the choice of samples grouped together

This is unlikely for more realistic problems: **the way samples are grouped into ensembles has a strong effect on the performance**

ENSEMBLE PROPAGATION in finite element simulations

This is unlikely for more realistic problems, e.g. anisotropic diffusion



ENSEMBLE PROPAGATION in finite element simulations

Note: in the previous tests the number of CG iterations is
independent of the sample value

⇒ the number of CG iterations for each ensemble is
independent of the choice of samples grouped together

This is unlikely for more realistic problems: **the way samples are grouped into ensembles has a strong effect on the performance**

⇒ it is **necessary** to develop **grouping strategies** to maximize the performance improvement brought by the ensemble propagation

Grouping strategies

MD, H.C. Edwards, J. Hu, E. Phipps, S. Rajamanickam, *Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods Applied to Anisotropic Diffusion Problems*, submitted, 2016

SOME CONSIDERATIONS

Facts:

- the convergence of the linear solver is almost always affected by the spectral properties of the matrices L_m
- spectra of FE matrices are strongly related to quantities such as
 - **condition number**
 - **spatial variations of the parameters** (total variation, magnitude of the gradient, strength of the anisotropy, etc.)

SOME CONSIDERATIONS

Facts:

- the convergence of the linear solver is almost always affected by the spectral properties of the matrices L_m
- spectra of FE matrices are strongly related to quantities such as
 - **condition number**
 - **spatial variations of the parameters** (total variation, magnitude of the gradient, strength of the anisotropy, etc.)
- **different quantities affect different solvers:**
 - CG is strongly affected by the condition number
 - stretched and irregular grids affect the behavior of AMG

SOME CONSIDERATIONS

Facts:

- the convergence of the linear solver is almost always affected by the spectral properties of the matrices L_m
- spectra of FE matrices are strongly related to quantities such as
 - **condition number**
 - **spatial variations of the parameters** (total variation, magnitude of the gradient, strength of the anisotropy, etc.)
- **different quantities affect different solvers:**
 - CG is strongly affected by the condition number
 - stretched and irregular grids affect the behavior of AMG
- **regardless** of the rearrangement of rows and columns, the spectra of the ensemble matrices are the **union of the spectra** of the matrices within each ensemble

SOME CONSIDERATIONS

Facts:

- the convergence of the linear solver is almost always affected by the spectral properties of the matrices L_m
- spectra of FE matrices are strongly related to quantities such as
 - **condition number**
 - **spatial variations of the parameters** (total variation, magnitude of the gradient, strength of the anisotropy, etc.)
- **different quantities affect different solvers:**
 - CG is strongly affected by the condition number
 - stretched and irregular grids affect the behavior of AMG
- **regardless** of the rearrangement of rows and columns, the spectra of the ensemble matrices are the **union of the spectra** of the matrices within each ensemble
- **the convergence of the ensemble solver is in general poorer** than that of the solver applied to each sample individually

SOME CONSIDERATIONS

Question: how to **minimize** the deterioration of the convergence?

Strategy: group together samples whose FE matrices have similar spectral properties, i.e. that require a similar number of iterations

SOME CONSIDERATIONS

Question: how to **minimize** the deterioration of the convergence?

Strategy: group together samples whose FE matrices have similar spectral properties, i.e. that require a similar number of iterations

Challenge: **find indicators** for predicting which samples feature a similar convergence behavior

Highly anisotropic diffusion problems

MD, H.C. Edwards, J. Hu, E. Phipps, S. Rajamanickam, *Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods Applied to Anisotropic Diffusion Problems*, submitted, 2016

MD, M. Ebeida, E. Phipps, A. Rushdi *Surrogate-based Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods*, in preparation.

SOME CONSIDERATIONS

Diffusion equation:

$$\begin{cases} \mathcal{L}(a(\mathbf{y}))u = -\nabla \cdot (A(\cdot, \mathbf{y})\nabla u) = f & \mathbf{x} \in D, \mathbf{y} \in \Gamma \\ \mathcal{B}u = u = 0 & \mathbf{x} \in \partial D \end{cases}$$

forcing term: $f \in L^2(D)$:

diffusivity tensor: $A(\mathbf{x}, \cdot) = \text{diag}(a(\mathbf{x}, \mathbf{y}), \bar{a})$ (in 2D)

$a(\mathbf{x}, \mathbf{y})$: truncated KL approximation of a random field, i.e.

$$a(\mathbf{x}, \mathbf{y}) = a_{\min} + \hat{a} \exp \left\{ \sum_{n=1}^N \sqrt{\lambda_n} b_n(\mathbf{x}) y_n \right\}$$

SOME CONSIDERATIONS

Facts: • the FE matrix corresponding to $A(\mathbf{x}, \mathbf{y}_m)$ is always spd

⇒ the discretized problem has a unique solution

⇒ it is suitable for an iterative solver based on CG

SOME CONSIDERATIONS

Facts: • the FE matrix corresponding to $A(\mathbf{x}, \mathbf{y}_m)$ is always spd

⇒ the discretized problem has a unique solution

⇒ it is suitable for an iterative solver based on CG

• the convergence of CG depends on the condition number
(very slow when L_m has a widespread spectrum)

⇒ use preconditioned CG (PCG)

AMG are often the preconditioner of choice for diffusion problems

SOME CONSIDERATIONS

Facts: • the FE matrix corresponding to $A(\mathbf{x}, \mathbf{y}_m)$ is always spd

⇒ the discretized problem has a unique solution

⇒ it is suitable for an iterative solver based on CG

• the convergence of CG depends on the condition number
(very slow when L_m has a widespread spectrum)

⇒ use preconditioned CG (PCG)

AMG are often the preconditioner of choice for diffusion problems

• **even for SPD matrices** a variety of issues can hamper the effectiveness of AMG algorithm, e.g.

- mesh stretching and irregular meshes
- highly anisotropic problem coefficients
- choice of discretization, etc.

GROUPING STRATEGIES

A. PARAMETER-BASED: the grouping depends on the values, in space, of the diffusion tensor in correspondence of a single sample

[1] MD, H.C. Edwards, J. Hu, E. Phipps, S. Rajamanickam,
*Ensemble Grouping Strategies for Embedded Stochastic Collocation
Methods Applied to Anisotropic Diffusion Problems*, submitted, 2016

GROUPING STRATEGIES

A. PARAMETER-BASED: the grouping depends on the values, in space, of the diffusion tensor in correspondence of a single sample

Indicator: $I(\tilde{\mathbf{y}}) = \|r(\mathbf{x}, \tilde{\mathbf{y}})\|_\infty$ where $r(\mathbf{x}, \tilde{\mathbf{y}}) = \frac{\lambda_{\max}(A(\mathbf{x}, \tilde{\mathbf{y}}))}{\lambda_{\min}(A(\mathbf{x}, \tilde{\mathbf{y}}))}$

r : ratio between max and min eigenvalues of the diffusion tensor
⇒ **intensity of the anisotropy** at each point in the spatial domain

max of r over D : measure of the anisotropy associated with $\tilde{\mathbf{y}}$

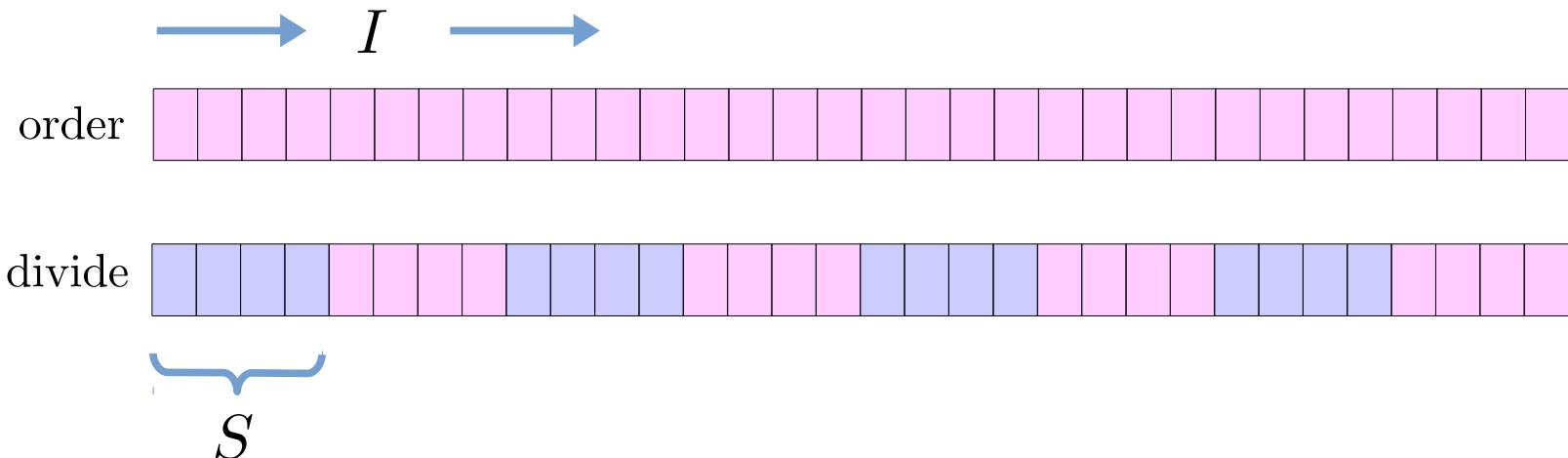
$$r(\mathbf{x}, \tilde{\mathbf{y}}) = \frac{\lambda_{\max}(A(\mathbf{x}, \tilde{\mathbf{y}}))}{\lambda_{\min}(A(\mathbf{x}, \tilde{\mathbf{y}}))} = \frac{a(\mathbf{x}, \tilde{\mathbf{y}})}{\bar{a}}$$

[1] M.D. H.C. Edwards, J. Hu, E. Phipps, S. Rajamanickam,
*Ensemble Grouping Strategies for Embedded Stochastic Collocation
Methods Applied to Anisotropic Diffusion Problems*, submitted, 2016

GROUPING STRATEGIES

Grouping:

- **order** the samples according to increasing values of I
- **divide** the samples into groups of size S



GROUPING STRATEGIES

B. SURROGATE-BASED[2]: the grouping depends on a *sparse grid* surrogate for the number of iterations associated with a new sample

$G(\tilde{\mathbf{y}})$: *exact* QOI

$\hat{G}(\tilde{\mathbf{y}})$: *predicted* QOI,

$\hat{G}(\cdot)$: *surrogate* for QOI (sparse grid approximation)

$I(\tilde{\mathbf{y}})$: *exact* #its

$\hat{I}(\tilde{\mathbf{y}})$: *predicted* #its

$\hat{I}(\cdot)$: *surrogate* for #its

[2] MD, M. Ebeida, E. Phipps, A. Rushdi *Surrogate-based Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods*, in preparation.

GROUPING STRATEGIES

B. SURROGATE-BASED[2]: the grouping depends on a *sparse grid* surrogate for the number of iterations associated with a new sample

$G(\tilde{\mathbf{y}})$: *exact QOI* can be computed for the **current** and **past** levels

$\hat{G}(\tilde{\mathbf{y}})$: *predicted QOI*,

$\hat{G}(\cdot)$: *surrogate* for QOI (sparse grid approximation)

$I(\tilde{\mathbf{y}})$: *exact #its* can be computed for the **current** and **past** levels

$\hat{I}(\tilde{\mathbf{y}})$: *predicted #its*

$\hat{I}(\cdot)$: *surrogate* for #its

[2] MD, M. Ebeida, E. Phipps, A. Rushdi *Surrogate-based Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods*, in preparation.

GROUPING STRATEGIES

B. SURROGATE-BASED[2]: the grouping depends on a *sparse grid* surrogate for the number of iterations associated with a new sample

$G(\tilde{\mathbf{y}})$: *exact QOI* can be computed for the **current** and **past** levels

$\hat{G}(\tilde{\mathbf{y}})$: *predicted QOI*,

$\hat{G}(\cdot)$: *surrogate* for QOI (sparse grid approximation)

$I(\tilde{\mathbf{y}})$: *exact #its* can be computed for the **current** and **past** levels

$\hat{I}(\tilde{\mathbf{y}})$: *predicted #its*

$\hat{I}(\cdot)$: *surrogate* for #its

Advantage: does not require a lot of computational effort and **does not assume any knowledge** of the parameters or of the SPDE itself

[2] MD, M. Ebeida, E. Phipps, A. Rushdi *Surrogate-based Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods*, in preparation.

GROUPING STRATEGIES

B. SURROGATE-BASED

Algorithm

given N_{\max} (sample budget), S (ensemble size) and τ (error tolerance)

- A. **generate** \mathcal{Y}_0 (initial sample set)
- B. **group** the samples in the order they are generated
- C. **iterate** until we reach the budget or satisfy the tolerance

GROUPING STRATEGIES

B. SURROGATE-BASED

Algorithm

given N_{\max} (sample budget), S (ensemble size) and τ (error tolerance)

- A. **generate** \mathcal{Y}_0 (initial sample set)
- B. **group** the samples in the order they are generated
- C. **iterate** until we reach the budget or satisfy the tolerance
 1. **solve** the PDEs and evaluate $G(\mathbf{y}_i)$ and $I(\mathbf{y}_i)$ $\forall \mathbf{y}_i \in \mathcal{Y}_l$ (current sample set)
 2. **build the surrogates** \hat{G} and \hat{I}
 3. **determine** a candidate sample set for grid refinement

IF the conditions of the stopping criterion are not satisfied, use \hat{G} and \hat{I} to
 4. **select** \mathcal{Y}_{l+1} (new sample set)
 5. **group** the samples in ensembles

Numerical tests

MD, H.C. Edwards, J. Hu, E. Phipps, S. Rajamanickam, *Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods Applied to Anisotropic Diffusion Problems*, submitted, 2016

MD, M. Ebeida, E. Phipps, A. Rushdi *Surrogate-based Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods*, in preparation.

PROBLEM SETTING

Domains: $D = [0, 1]^3 \times \Gamma = [-1, 1]^6$

Covariance function: exponential: $cov(\mathbf{x}, \mathbf{x}') = \sigma_0 \exp \left\{ -\frac{\|\mathbf{x} - \mathbf{x}'\|}{\delta} \right\};$

PROBLEM SETTING

Quantity of Interest: $\|\mathbf{u}\|_2$

Sparse Grid generation:

- **technique:** adaptive refinement, local piecewise linear basis
- **software:** TASMANIAN <http://tasmanian.ornl.gov>, by M. Stoyanov
robust libraries for high dimensional integration and interpolation

PROBLEM SETTING

Quantity of Interest: $\|\mathbf{u}\|_2$

Sparse Grid generation:

- **technique:** adaptive refinement, local piecewise linear basis
- **software:** TASMANIAN <http://tasmanian.ornl.gov>, by M. Stoyanov
robust libraries for high dimensional integration and interpolation

Solver:

- **FE assembling:** Intrelab, Matlab interface of the Trilinos package Intrepid
- **FE linear solver:** ML (Matlab interface), AMG preconditioned CG

PROBLEM SETTING

Indicators of computational savings

$$R = \frac{S \sum_{k=1}^K \mathbf{I}_k}{\sum_{k=1}^K \sum_{i=1}^S I(\mathbf{y}_{k,i})} \quad \text{total increase in work over all levels}$$

\mathbf{I}_k : # its for the k th

$I(\mathbf{y}_{k,i})$: # its for i th sample in the k th ensemble

PROBLEM SETTING

Indicators of computational savings

$$R = \frac{S \sum_{k=1}^K \mathbf{I}_k}{\sum_{k=1}^K \sum_{i=1}^S I(\mathbf{y}_{k,i})} \quad \text{total increase in work over all levels}$$

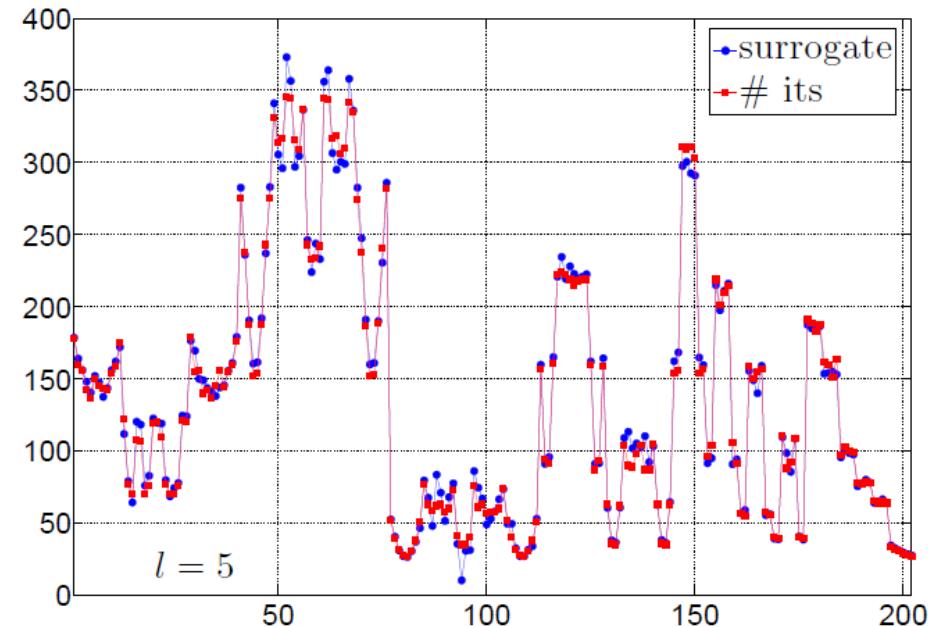
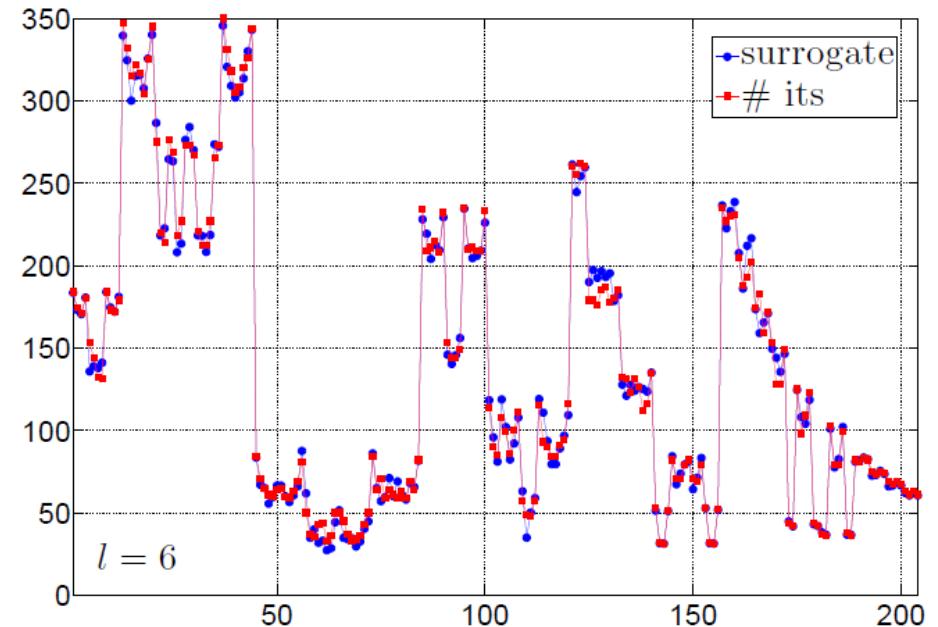
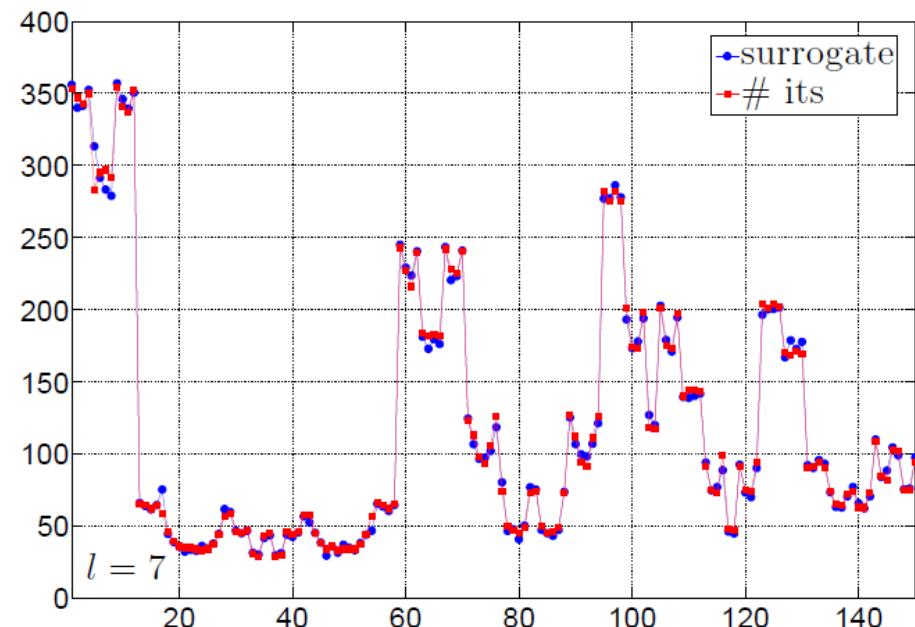
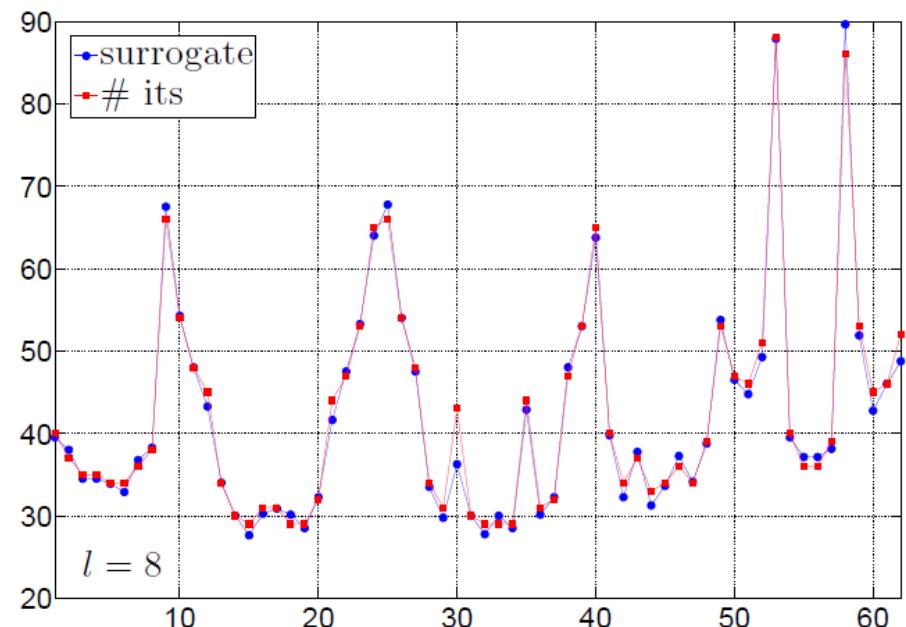
\mathbf{I}_k : # its for the k th

$I(\mathbf{y}_{k,i})$: # its for i th sample in the k th ensemble

achieved speed-up:

$$\frac{\text{speed-up(ensemble prop)}}{R}$$

SQUARED EXPONENTIAL COVARIANCE



SQUARED EXPONENTIAL COVARIANCE – R

N	S	parameter	exact its	surrogate its	No ordering
3	8	1.445	1.447	1.543	1.791
3	16	1.580	1.589	1.691	2.146
3	32	1.895	1.912	2.044	2.806

N	S	parameter	exact its	surrogate its	No ordering
6	8	1.991	2.012	2.185	2.630
6	16	2.230	2.198	2.421	3.071
6	32	2.403	2.433	2.780	3.604

initial level in the adaptive grid generation: $l = 4$

SQUARED EXPONENTIAL COVARIANCE – R

N	S	parameter	exact its	surrogate its	No ordering
3	8	1.445	1.447	1.543	1.791
3	16	1.580	1.589	1.691	2.146
3	32	1.895	1.912	2.044	2.806

N	S	parameter	exact its	surrogate its	No ordering
6	8	1.991	2.012	2.185	2.630
6	16	2.230	2.198	2.421	3.071
6	32	2.403	2.433	2.780	3.604

initial level in the adaptive grid generation: $l = 4$

note: at the initial level no ordering performed

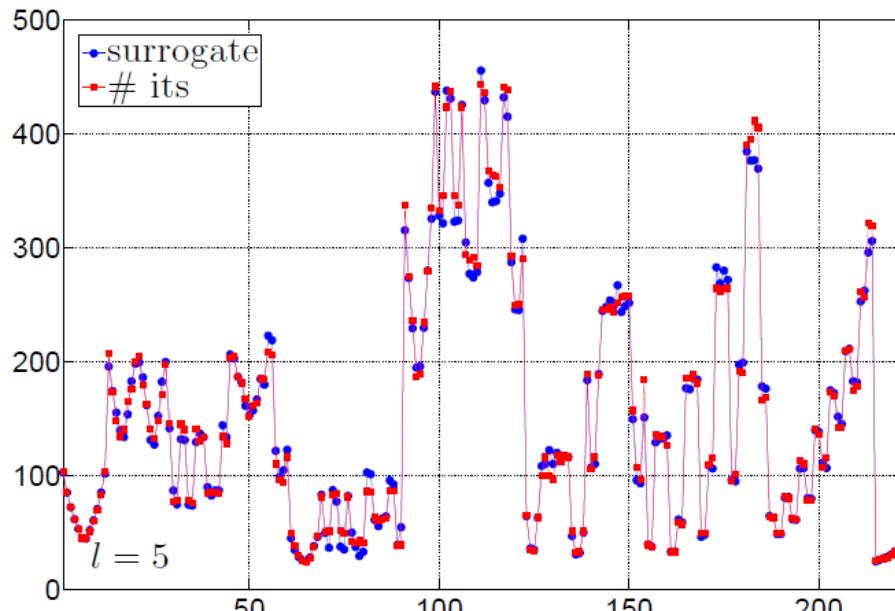
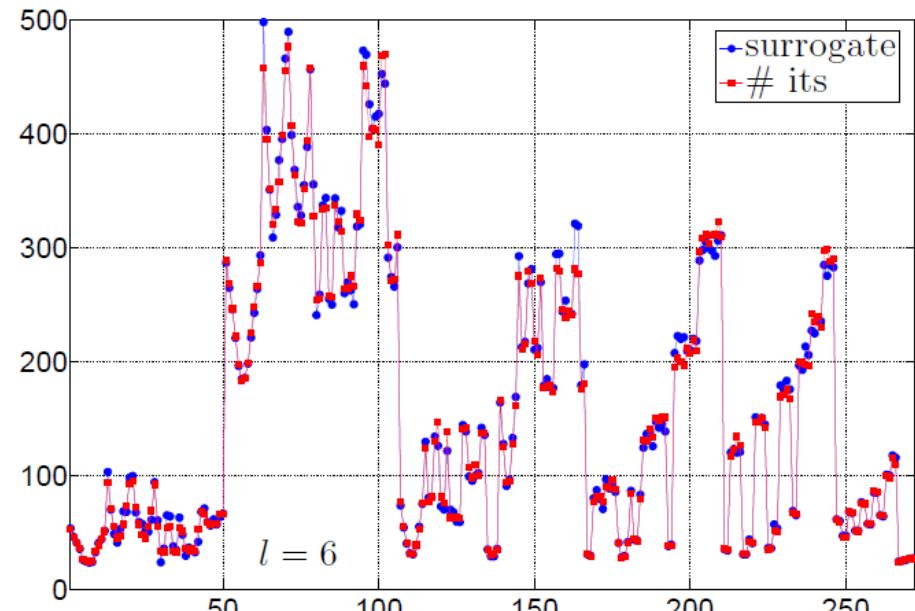
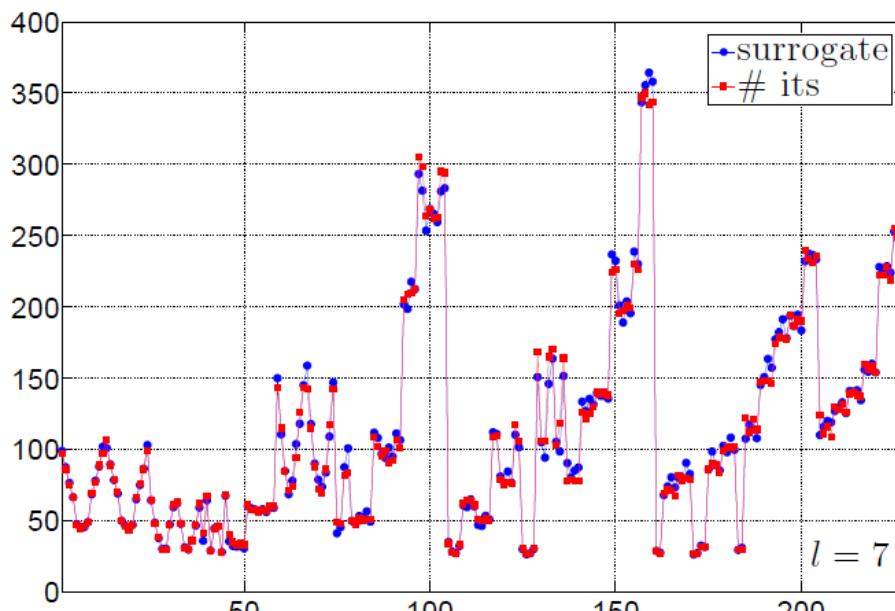
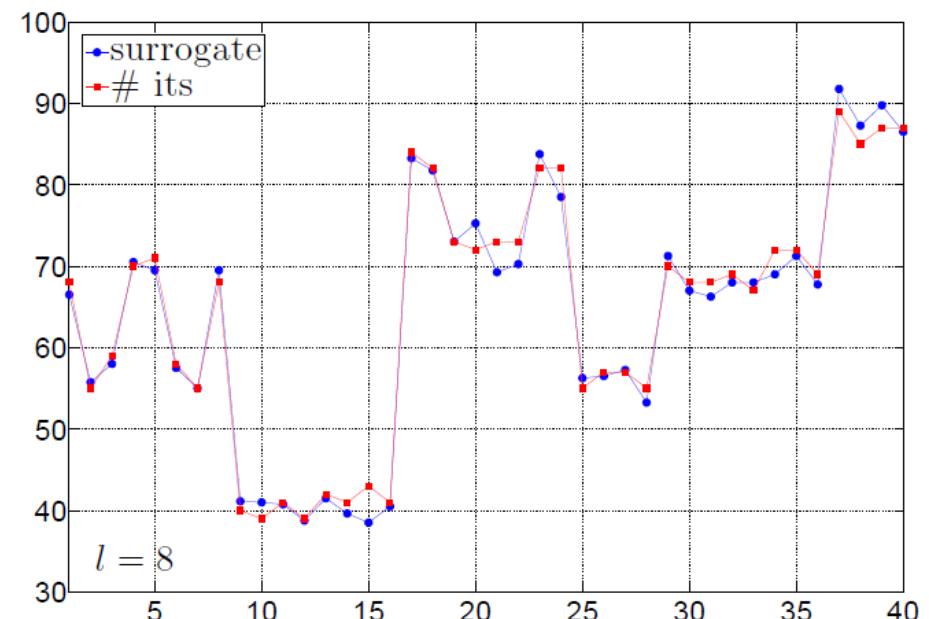
→ loss of efficiency → **idea:** start from level $l = 1$

SQUARED EXPONENTIAL COVARIANCE – R

...**idea:** start from level $l = 1$

N	S	exact its	surrogate its	No ordering
3	8	1.509	1.521	1.813
3	16	1.622	1.640	2.177
3	32	2.014	2.019	2.809

RATIONAL QUADRATIC COVARIANCE



RATIONAL QUADRATIC COVARIANCE – R

N	S	parameter	exact its	surrogate its	No ordering
3	8	1.348	1.350	1.485	1.752
3	16	1.436	1.473	1.671	2.203
3	32	1.721	1.738	1.966	2.734

N	S	parameter	exact its	surrogate its	No ordering
6	8	1.827	1.847	2.011	2.366
6	16	1.891	1.990	2.230	2.762
6	32	2.200	2.177	2.483	3.173

initial level in the adaptive grid generation: $l = 4$

Future work

LOOKING FOR(WARD TO) NEW INDICATORS

new idea: points in the sparse grid can be represented in a tree structure

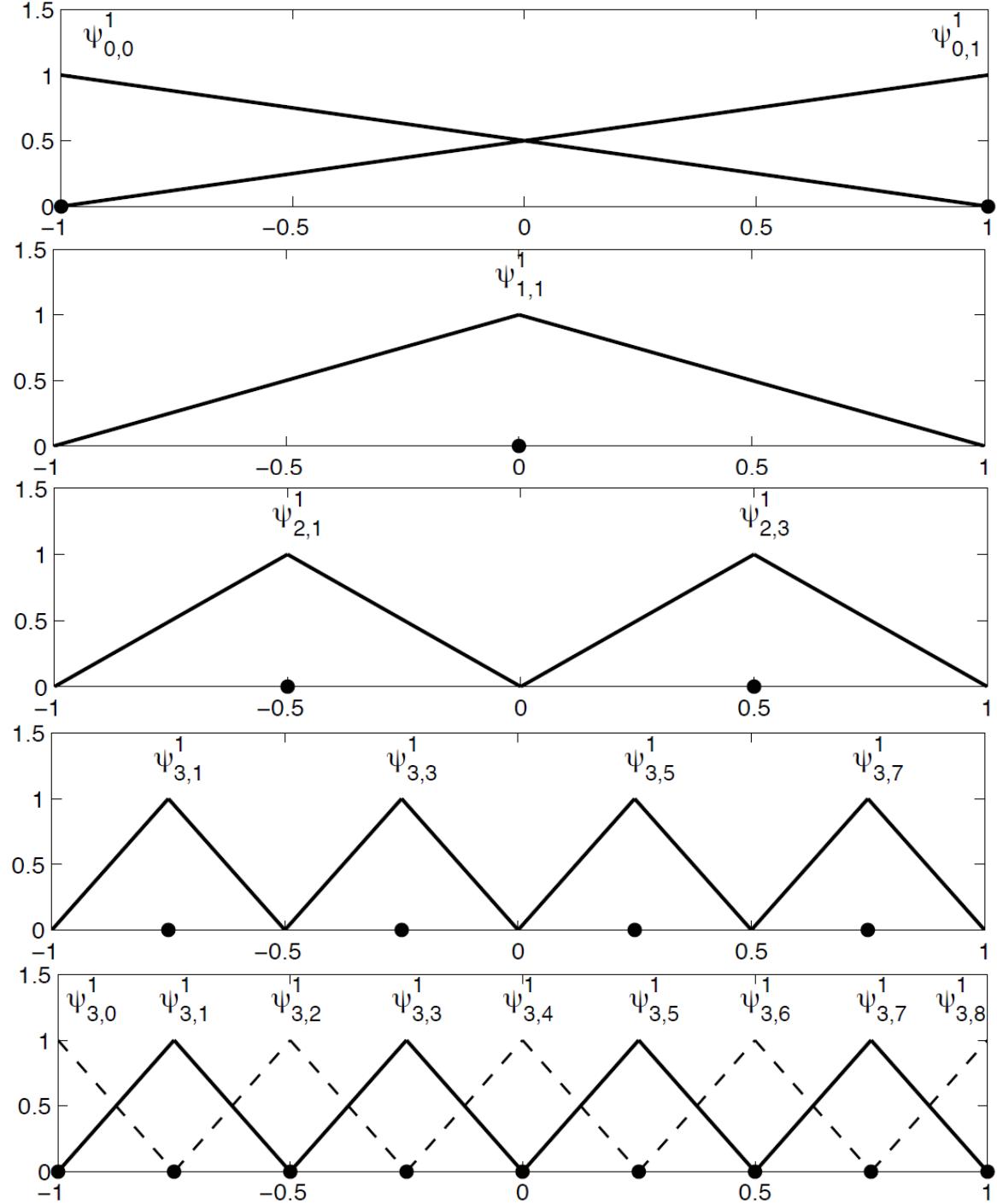
- we expect children of the same parent to generate similar uncertain parameters
- keep track of the family history and group together samples with the same ancestors

Thank you

Hierarchical basis

From M. Gunzburger, C. Webster, G. Zhang.
Stochastic finite element methods for partial differential equations with random input data.
Acta Numerica (2014), pp. 521650, 2014

Piecewise linear hierarchical basis



Piecewise linear nodal basis