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INTRODUCTION

UQ in computational modeling and simulation

quantifying uncertainties is a foundational component of predictive simulation
= development and analysis of many UQ methods

e random sampling,
e stochastic collocation

e stochastic Galerkin
° ...
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INTRODUCTION

UQ in computational modeling and simulation

quantifying uncertainties is a foundational component of predictive simulation
= development and analysis of many UQ methods

e random sampling,

e stochastic collocation
e stochastic Galerkin

° ...

in large-scale scientific computing

e high-dimensional uncertain input spaces
e localized and/or non-smooth behavior

= research on reducing the number of samples

e adaptive sampling methods

e compressed sensing, tensor methods
e multi-level methods

° ...
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INTRODUCTION

not enough!

the bottleneck is in the sample evaluation: applying these methodologies
to large-scale scientific computing problems is often prohibitively expensive
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INTRODUCTION

not enough!

the bottleneck is in the sample evaluation: applying these methodologies
to large-scale scientific computing problems is often prohibitively expensive

our goal: reduce the cost of the evaluation of each sample

= propagate together multiple samples through a computational
simulation: embedded ensemble propagation

E. Phipps, MD, H.C. Edwards, M. Hoemmen, J. Hu, S. Rajamanickam, Embed-
ded Ensemble Propagation for Improving Performance, Portability and Scala-

bility of Uncertainty Quantification on Emerging Computational Architectures,
SIAM Journal of Sci Comp, 2017

idea: sample-dependent scalars in the code are replaced with small arrays

= the cost of assembling and solving the ensemble linear system is
substantially smaller compared to the sequential case
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INTRODUCTION

what can go wrong?

the total number of linear solver iterations for ensemble systems may be
strongly influenced by which samples comprise the ensemble

= critical to the success is the grouping of samples into ensembles
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INTRODUCTION

what can go wrong?

the total number of linear solver iterations for ensemble systems may be
strongly influenced by which samples comprise the ensemble

= critical to the success is the grouping of samples into ensembles

contribution

e analyze a case study where the linear solver iterations significantly
vary from sample to sample

e design grouping strategies that maximize the computational gain
brought by the ensemble propagation

MD, H.C. Edwards, J. Hu, E. Phipps, S. Rajamanickam, Ensemble Grouping
Strategies for Embedded Stochastic Collocation Methods Applied to Anisotropic
Diffusion Problems, submitted, 2016
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Outline

(brief) Introduction to Stochastic Collocation methods

Background: Embedded Ensemble Propagation

Grouping strategies

Case study: a highly anisotropic diffusion problem

Future work




Introduction to Stochastic Collocation methods

Based on M. Gunzburger, C. Webster, G. Zhang. Stochastic finite
element methods for partial differential equations with random
input data. Acta Numerica (2014), pp. 521-650, 2014




PROBLEM SETTING

A stochastic elliptic PDE

e D CRY(d=1,2,3): bounded domain with boundary 8D
o (2, F,P): complete probability space

Find u : D x Q such that almost surely

{E(a)u = f xeD
Bu = g x€0D,

where

e L — elliptic operator defined on D and parametrized by a(x,w)
o f(x,w) — forcing term with & € D and w € (2

e B — boundary operator

e g(x,w) — boundary data with € 0D and w € ()

M. D'Elia — mdelia@sandia.gov



PROBLEM SETTING

Assumptions on the parameters

A. f(x,w) and g(x,w) are not affected by uncertainty
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PROBLEM SETTING

Assumptions on the parameters

A. f(x,w) and g(x,w) are not affected by uncertainty

B. a(x,w) is bounded from above and below with probability 1

C. a(x,w) can be written as
a(x,w) =a(x,y(w)) inD xQ  where

y(w) = (y1(w)...yn(w)) € RY random vector, uncorr. components
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PROBLEM SETTING

Random parameter satisfying B and C:

truncated Karhunen-Loeve (KL) expansion of the random field

Mercer’s theorem: the second—order correlated random field a(x,w)
with continuous covariance function cov(x,«’) can be written as

(@) = Ela(@. )] + 3 VA, b @)y ().

A eigenvalues, in decreasing order, of cov
b,,: corresponding eigenfunctions

yn(w) €ER: uncorrelated random variables
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PROBLEM SETTING

Random parameter satisfying B and C:

truncated Karhunen-Loeve (KL) expansion of the random field

Mercer’s theorem: the second—order correlated random field a(x,w)
with continuous covariance function cov(x,«’) can be written as

(@) = Ela(@. )] + 3 VA b @)y ().

A eigenvalues, in decreasing order, of cov
b,,: corresponding eigenfunctions

yn(w) €ER: uncorrelated random variables

Truncated KL expansion: truncation of the summation to the N-th term:

ofa0) % Bz, )+ 2 3 () ()
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PROBLEM SETTING

Goal of Uncertainty Quantification

determine statistical information about an output of interest
that depends on the solution, i.e. a functional G(y)

1
Examples: o G(y) = ﬁ/ u(x,y)dr
D

* G(y) = maxu(z,y)

Quantity of interest: moments of G(y)

e.5. QOT = E[G(y)] = /F G(y)o(y) dy
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STOCHASTIC COLLOCATION METHODS

Stochastic collocation (SC) methods:
nonintrusive stochastic sampling methods based on decoupled deterministic solves
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STOCHASTIC COLLOCATION METHODS

Stochastic collocation (SC) methods:
nonintrusive stochastic sampling methods based on decoupled deterministic solves

SC methods in a nutshell:

e let up(+,y) be the semi-discrete approximation of u(x,y) for y € T'

e main idea: e collocate uy(+,y) on a suitable set of samples {y,, }M_, C T, i.e.
determine M semi-discrete solutions

e use those solution to construct a global polynomial to represent
the fully discrete approximation up, y(x,y)
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STOCHASTIC COLLOCATION METHODS

Stochastic collocation (SC) methods:
nonintrusive stochastic sampling methods based on decoupled deterministic solves

SC methods in a nutshell:

e let up(+,y) be the semi-discrete approximation of u(x,y) for y € T'

e main idea: e collocate uy(+,y) on a suitable set of samples {y,, }M_, C T, i.e.
determine M semi-discrete solutions

e use those solution to construct a global polynomial to represent
the fully discrete approximation up, as(x,y)

e polynomial: interpolatory

set of points {y,,}m_, + basis functions {¢n, (y)}¥_; € P,)(T)

M
— fully discrete approximation wup pr(x,y) = Z Cm () (y).

m=1

M. D'Elia — mdelia@sandia.gov




STOCHASTIC COLLOCATION METHODS

Fully discrete approximation

up, v (2, y) = %i: Crn () Ym (Y)

m=1

for Lagrange interpolation

. Up, (wv ym)wm (y)

cm(x) =up(x,y,,) = upu(x,y) =

P M=
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GENERALIZED SPARSE GRIDS

One-dimensional approximation

e [ € N, : one-dimensional level of approximation

° {y,i}zl:(? : sequence of one-dimensional interpolation points

e m(l): number of collocation points at level [

1D interpolation operator: for a continuous function v
m(1) , ,
Il[v](y) — kz /U(yk)wk:(y)) [ = 17 27 s
=1

! : Lagrange fundamental polynomial of degree p; = m(l) — 1

M. D'Elia — mdelia@sandia.gov




GENERALIZED SPARSE GRIDS

Multi-dimensional approximation
e 1=(l; ... ly) € NY: a multi-index

e L € N, : total level of the sparse grid approximation
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GENERALIZED SPARSE GRIDS

Multi-dimensional approximation
e 1=(l; ... ly) € NY: a multi-index

e L € N, : total level of the sparse grid approximation

N-dimensional operator at level [: tensor product of 1D operators

N-dimensional sparse grid operator: sum of all operators for [ =1,2,...L
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GENERALIZED SPARSE GRIDS

Adaptive grid generation (1D)

eji;: error estimate at (x;,y;;)=(j-th DOF, i-th sample at level /)

7: user-defined error tolerance

Algorithm

at each successive interpolation level
1. evaluate ¢j;
IF max,; |€jlz" Z T

2. refine the grid around y;; adding the two neighbor points

M. D'Elia — mdelia@sandia.gov



GENERALIZED SPARSE GRIDS

Adaptive grid generation (1D)

Yo.0 o,
0

Ui

CEN 3.3 3.5 Ya,r

4 Y4.5 Ya,7

5 Ys,0 #Ys, 119 Ys, 139 Ys,15

man |€jli| Z T
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GENERALIZED SPARSE GRIDS

Adaptive grid generation (1D)

eji;: error estimate at (x;,y;;)=(j-th DOF, i-th sample at level /)

7: user-defined error tolerance

Algorithm

at each successive interpolation level
1. evaluate ¢;
IF max, |€jli‘ Z T

2. refine the grid around y;; adding the two neighbor points

N-dimensional case: same procedure! (keeping in mind that every point in
the sample space has N neighbors)

M. D'Elia — mdelia@sandia.gov



GENERALIZED SPARSE GRIDS

PROS:

e complete decoupling of spatial and probabilistic discretizations
e very easy to implement (codes for PDEs used as black boxes)

e embarassingly parallelizable
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GENERALIZED SPARSE GRIDS

PROS:

e complete decoupling of spatial and probabilistic discretizations
e very easy to implement (codes for PDEs used as black boxes)

e embarassingly parallelizable

CONS:

e perform well only when u(x,y) is smooth wrt y

e fail to approximate solutions that have an irregular dependence
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GENERALIZED SPARSE GRIDS

PROS:

e complete decoupling of spatial and probabilistic discretizations
e very easy to implement (codes for PDEs used as black boxes)

e embarassingly parallelizable

CONS:

e perform well only when u(x,y) is smooth wrt y

o fail to approximate solutions that have an irregular dependence

LOCAL SC methods:

the basis functions are locally supported piecewise polynomials

{4, }M_ | is a piecewise hierarchical polynomial basis

M. D'Elia — mdelia@sandia.gov



Numerical solution via ENSAMBLES

E. Phipps, MD, H.C. Edwards, M. Hoemmen, J. Hu, S. Rajamanickam,
Embedded Ensemble Propagation for Improving Performance, Portability and
Scalability of Uncertainty Quantification on Emerging Computational

Architectures, SIAM Journal on Sci Comp, 2017

M. D'Elia — mdelia@sandia.gov



A NEW STRATEGY

a few considerations:

e problem: in large-scale, high-performance scientific computing, the dom-
inant cost is solving the PDE at each interpolation point

the cost of each sample evaluation can be so large that stochastic collocation
for a little more than a handful of random variables vy, is intractable!
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A NEW STRATEGY

a few considerations:

e problem: in large-scale, high-performance scientific computing, the dom-
inant cost is solving the PDE at each interpolation point

the cost of each sample evaluation can be so large that stochastic collocation
for a little more than a handful of random variables vy, is intractable!

e idea: improve the performance of the method “opening up the box”
and exploiting the structure within each PDE evaluation.

EMBEDDED ENSEMBLE PROPAGATION
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A NEW STRATEGY

EMBEDDED ENSEMBLE PROPAGATION

note: in scientific simulations there is a huge amount of data and computation that
is the same for each realization of the uncertain input data (e.g. the mesh)

idea: reuse this information by propagating multiple samples (ensembles) at a
time exploiting features of modern and emerging computer architectures

M. D'Elia — mdelia@sandia.gov



ENSEMBLE PROPAGATION in finite element simulations

Finite element discretization

e continuous problem L(a)u = f

o discretization: fory,,, m=1,... M

(%) L,U,, =F, L, eR> U, ¢R’/ FcR’,

J: number of spatial degrees of freedom

M. D'Elia — mdelia@sandia.gov



ENSEMBLE PROPAGATION in finite element simulations

Finite element discretization

e continuous problem L(a)u = f

o discretization: fory,,, m=1,... M

(%) L.,U,, =F, L, ceR> U, eR/ FecR’,

J: number of spatial degrees of freedom

e given an ensemble size S, solve (x) for S samples y,,, ... y,,.:

L, Uy, =F, ... L, Uy, =F

or equivalently

S S S
(Z eie;‘;r ® Lmz> <Z e; ® Umz> = Zei QR F

1=1 1=1 =1

ei: i'" column of the S x S identity matrix

M. D'Elia — mdelia@sandia.gov



ENSEMBLE PROPAGATION in finite element simulations

A mathematically equivalent formulation

S S S
(Z eie,LT ® Lm¢> <Z e; ® Umi> — Zei QR F

i=1 1=1 1=1
| ’/ W\ 1’ v
T, i 7NN all spatial DOF for a given sample y,,,_
15 S R | .
" ! UNNGL T are ordered consecutively
25 ..'.. | \ 1so0 - TR \ '- ]
y ....' 2000 "“;\; v:\\:‘—

M. D'Elia — mdelia@sandia.gov



ENSEMBLE PROPAGATION in finite element simulations

A mathematically equivalent formulation

S S S
<Z eie? ® Lmi> (Z e; ® Umi> — Z e; F
i=1 i=1 i=1

‘. o~

5 ". \ 4/ - EEI—
. '/ 500 ! / o . .

T i 7NN all spatial DOF for a given sample y,,,_
" . 10000 %, £ 1 .
" 1 CONNC T are ordered consecutively
i .,... \\1500— - i - N -
30 .'._. :\'. \\

DOF for all samples are ordered
consecutively for a given spatial DOF




ENSEMBLE PROPAGATION in finite element simulations

Advantage: the new formulation can be solved efficiently by replacing each sample-
dependent quantity with a length-S array
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ENSEMBLE PROPAGATION in finite element simulations

Advantage: the new formulation can be solved efficiently by replacing each sample-
dependent quantity with a length-S array

Consequences: e Sample independent quantities automatically reused

(e.g. mesh, matrix graph, etc) = reduction of

computation, memory usage, memory traffic

because they are

computed, stored, loaded once per ensemble
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ENSEMBLE PROPAGATION in finite element simulations

Advantage: the new formulation can be solved efficiently by replacing each sample-
dependent quantity with a length-S array

Consequences: e Sample independent quantities automatically reused

(e.g. mesh, matrix graph, etc) = reduction of

computation, memory usage, memory traffic

because they are

computed, stored, loaded once per ensemble

e Random memory accesses of sample-dependent quantities replaced

by contiguous accesses of ensemble arrays.

Example: this effect, combined with reuse of the sparse matrix graph
can result in 50% reduction in cost of matrix-vector products

M. D'Elia — mdelia@sandia.gov




ENSEMBLE PROPAGATION in finite element simulations

Consequences: o arithmetic on ensemble arrays can be naturally mapped to fine-
grained vector parallelism (present in most computer architectures
today)

e # of distributed memory communication steps of sample-dependent
information: reduced by a factor of S

e size of each communication message: increased by a factor of S

M. D'Elia — mdelia@sandia.gov




ENSEMBLE PROPAGATION: performance results

Results for ISOTROPIC diffusion: SPEED-UP for different ensemble size S

Cray XK7 Multigrid Preconditioned CG Solve
(64x64x64 Mesh/Node)

3.4

3.2

3.0 , 7 <@=Ensemble Size=4
L <.

L'A-% Ensemble Size= 16
222 gy :
2.0 =

\/E Ensemble Size= 32
1.8

1-6 [ | | | [ 1
1 4 16 64 256 1024

Compute Nodes

7/ =t=Ensemble Size=8
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ENSEMBLE PROPAGATION in finite element simulations

Note: in the previous tests the number of CG iterations is
independent of the sample value

= the number of CG iterations for each ensemble is
independent of the choice of samples grouped together
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ENSEMBLE PROPAGATION in finite element simulations

Note: in the previous tests the number of CG iterations is
independent of the sample value

= the number of CG iterations for each ensemble is
independent of the choice of samples grouped together

This is unlikely for more realistic problems: the way samples are
grouped into ensembles has a strong effect on the performance
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ENSEMBLE PROPAGATION in finite element simulations

This is unlikely for more realistic problems, e.g. anisotropic diffusion

Preconditioned Solver Iterations
1 1 1 1 1

1400 .
= = Scalar
1200 + + Ensemble T
.-
1000} n .
n
S
= 800 o) T
o e
o " o=
£ 600 g i
9 . =
400 T
n -
-1 LI
200 o 5o
0 I I ’__
0 300 400 500 600 700

Sample Index
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ENSEMBLE PROPAGATION in finite element simulations

Note: in the previous tests the number of CG iterations is
independent of the sample value

= the number of CG iterations for each ensemble is
independent of the choice of samples grouped together

This is unlikely for more realistic problems: the way samples are
grouped into ensembles has a strong effect on the performance

= it is necessary to develop grouping strategies to maximize the
performace improvement brought by the ensemble propagation
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Grouping strategies

MD, H.C. Edwards, J. Hu, E. Phipps, S. Rajamanickam, Ensemble
Grouping Strategies for Embedded Stochastic Collocation Methods
Applied to Anisotropic Diffusion Problems, submitted, 2016
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SOME CONSIDERATIONS

Facts: e the convergence of the linear solver is almost always affected by the
spectral properties of the matrices L,,

e spectra of FE matrices are strongly related to quantities such as
— condition number
— spatial variations of the parameters (total variation, magnitude

of the gradient, strength of the anisotropy, etc.)
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SOME CONSIDERATIONS

Facts: e the convergence of the linear solver is almost always affected by the
spectral properties of the matrices L,,

e spectra of FE matrices are strongly related to quantities such as
— condition number
— spatial variations of the parameters (total variation, magnitude

of the gradient, strength of the anisotropy, etc.)

e different quantities affect different solvers:
— CG is strongly affected by the condition number
— stretched and irregular grids affect the behavior of AMG
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SOME CONSIDERATIONS

Facts: e the convergence of the linear solver is almost always affected by the
spectral properties of the matrices L,,

e spectra of FE matrices are strongly related to quantities such as

— condition number

— spatial variations of the parameters (total variation, magnitude
of the gradient, strength of the anisotropy, etc.)

e different quantities affect different solvers:
— CG is strongly affected by the condition number
— stretched and irregular grids affect the behavior of AMG

e regardless of the rearrangement of rows and columns, the spectra of
the ensemble matrices are the union of the spectra of the matrices
within each ensemble
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SOME CONSIDERATIONS

Facts: e the convergence of the linear solver is almost always affected by the
spectral properties of the matrices L,,

e spectra of FE matrices are strongly related to quantities such as

— condition number

— spatial variations of the parameters (total variation, magnitude
of the gradient, strength of the anisotropy, etc.)

e different quantities affect different solvers:
— CG is strongly affected by the condition number
— stretched and irregular grids affect the behavior of AMG

e regardless of the rearrangement of rows and columns, the spectra of
the ensemble matrices are the union of the spectra of the matrices
within each ensemble

e the convergence of the ensemble solver is in general poorer
than that of the solver applied to each sample individually

. A . National
M. D'Elia — mdelia@sandia.gov / Laboratories




SOME CONSIDERATIONS

Question: how to minimize the deterioration of the convergence?

Strategy: group together samples whose FE matrices have similar spectral
properties, i.e. that require a similar number of iterations
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SOME CONSIDERATIONS

Question: how to minimize the deterioration of the convergence?

Strategy: group together samples whose FE matrices have similar spectral
properties, i.e. that require a similar number of iterations

Challenge: find indicators for predicting which samples feature a similar
convergence behavior
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Highly anisotropic diffusion problems

MD, H.C. Edwards, J. Hu, E. Phipps, S. Rajamanickam, Ensemble
Grouping Strategies for Embedded Stochastic Collocation Methods
Applied to Anisotropic Diffusion Problems, submitted, 2016

MD, M. Ebeida, E. Phipps, A. Rushdi Surrogate-based Ensemble
Grouping Strategies for Embedded Stochastic Collocation Methods,
in preparation.
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SOME CONSIDERATIONS

Diffusion equation:

{ Lia(y)u=-V - -(A(,y)Vu)=f xecDyel
Bu=u=0 x € 0D

forcing term: f € L?(D):
diffusivity tensor: A(x,-) = diag(a(x,y), @) (in 2D)

a(x,y): truncated KL approximation of a random field, i.e.

N
CL(LE, y) = Qmin T anP { Z V )\nbn(w)yn}
n=1

M. D'Elia — mdelia@sandia.gov



SOME CONSIDERATIONS

Facts: e the FE matrix corresponding to A(x,y,,,) is always spd

= the discretized problem has a unique solution
= it is suitable for an iterative solver based on CG

Sandia
. A . National
M. D'Elia — mdelia@sandia.gov Laboratories




SOME CONSIDERATIONS

Facts: e the FE matrix corresponding to A(x,y,,) is always spd

= the discretized problem has a unique solution
= it is suitable for an iterative solver based on CG

e the convergence of CG depends on the condition number
(very slow when L,, has a widespread spectrum)

= use preconditioned CG (PCGQG)
AMG are often the preconditioner of choice for diffusion problems
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SOME CONSIDERATIONS

Facts: e the FE matrix corresponding to A(x,y,,) is always spd

= the discretized problem has a unique solution
= it is suitable for an iterative solver based on CG

e the convergence of CG depends on the condition number
(very slow when L,, has a widespread spectrum)

= use preconditioned CG (PCGQG)

AMG are often the preconditioner of choice for diffusion problems

e even for SPD matrices a variety of issues can hamper the
effectiveness of AMG algorithm, e.g.

— mesh stretching and irregular meshes
— highly anisotropic problem coeflicients
— choice of discretization, etc.

M. D'Elia — mdelia@sandia.gov



GROUPING STRATEGIES

A. PARAMETER-BASED: the grouping depends on the values, in space, of the
diffusion tensor in correspondence of a single sample

[1] MD, H.C. Edwards, J. Hu, E. Phipps, S. Rajamanickam,
Ensemble Grouping Strategies for Embedded Stochastic Collocation
Methods Applied to Anisotropic Diffusion Problems, submitted, 2016
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GROUPING STRATEGIES

A. PARAMETER-BASED: the grouping depends on the values, in space, of the
diffusion tensor in correspondence of a single sample

Indicator: I(y)=|r(x,y)||cc where r(x,y)=

r: ratio between max and min eigenvalues of the diffusion tensor
= intensity of the anisotropy at each point in the spatial domain

max of r over D: measure of the anisotropy associated with y

(o) = A4 D) _ale.D)

[1] MD, H.C. Edwards, J. Hu, E. Phipps, S. Rajamanickam,
Ensemble Grouping Strategies for Embedded Stochastic Collocation
Methods Applied to Anisotropic Diffusion Problems, submitted, 2016
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GROUPING STRATEGIES

Grouping: — order the samples according to increasing values of

— divide the samples into groups of size S

order

divide

Sandia
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GROUPING STRATEGIES

B. SURROGATE-BASED|2]: the grouping depends on a sparse grid surrogate
for the number of iterations associated with a new sample

G(y): exact QOI
@@) predicted QOI,

@() surrogate for QOI (sparse grid approximation)

I(y): exact #its

N

I(y): predicted #its
')

AN

I(-): surrogate for #its

[2] MD, M. Ebeida, E. Phipps, A. Rushdi Surrogate-based Ensemble Grouping
Strategies for Embedded Stochastic Collocation Methods, in preparation.
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GROUPING STRATEGIES

B. SURROGATE-BASED|2]: the grouping depends on a sparse grid surrogate
for the number of iterations associated with a new sample

G(y): exact QOI can be computed for the current and past levels
é@) predicted QOI,

@() surrogate for QOI (sparse grid approximation)

I(y): exact #its can be computed for the current and past levels

N

I(y): predicted #its
')

AN

I(-): surrogate for #its

[2] MD, M. Ebeida, E. Phipps, A. Rushdi Surrogate-based Ensemble Grouping
Strategies for Embedded Stochastic Collocation Methods, in preparation.
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GROUPING STRATEGIES

B. SURROGATE-BASED|2]: the grouping depends on a sparse grid surrogate
for the number of iterations associated with a new sample

G(y): exact QOI can be computed for the current and past levels
@@) predicted QOI,

@() surrogate for QOI (sparse grid approximation)

I(y): exact #its can be computed for the current and past levels

N

I(y): predicted #its
')

AN

I(-): surrogate for #its

Advantage: does not require a lot of computational effort and does not
assume any knowledge of the parameters or of the SPDE itself

[2] MD, M. Ebeida, E. Phipps, A. Rushdi Surrogate-based Ensemble Grouping
Strategies for Embedded Stochastic Collocation Methods, in preparation.
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GROUPING STRATEGIES

B. SURROGATE-BASED

Algorithm

given Npax (sample budget), S (ensemble size) and 7 (error tolerance)

A. generate )y (initial sample set)
B. group the samples in the order they are generated

C. iterate until we reach the budget or satisfy the tolerance
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GROUPING STRATEGIES

B. SURROGATE-BASED

Algorithm

given Npax (sample budget), S (ensemble size) and 7 (error tolerance)

A. generate ), (initial sample set)
B. group the samples in the order they are generated

C. iterate until we reach the budget or satisfy the tolerance

1. solve the PDEs and evaluate G(y;) and I(y;) Yy, €Y, (current sample set)

2. build the surrogates Gand T

3. determine a candidate sample set for grid refinement

IF the conditions of the stopping criterion are not satisfied, use G and T to

4. select Y1 (new sample set )

5. group the samples in ensembles
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Numerical tests

MD, H.C. Edwards, J. Hu, E. Phipps, S. Rajamanickam, Ensemble
Grouping Strategies for Embedded Stochastic Collocation Methods
Applied to Anisotropic Diffusion Problems, submitted, 2016

MD, M. Ebeida, E. Phipps, A. Rushdi Surrogate-based Ensemble

Grouping Strategies for Embedded Stochastic Collocation Methods,
in preparation.
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PROBLEM SETTING

Domains: D =10, 1] x ' = [-1, 1]°

0

o)
Covariance function: exponential: cov(x,x") = ogexp {_ lz — 2| } :
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. . . @ Natiolnal
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PROBLEM SETTING

Quantity of Interest: |[ul|>

Sparse Grid generation:
— technique: adaptive refinement, local piecewise linear basis

—software: TASMANIAN http://tasmanian.ornl.gov, by M. Stoyanov
robust libraries for high dimensional integration and interpolation
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PROBLEM SETTING

Quantity of Interest: |[ul|>

Sparse Grid generation:
— technique: adaptive refinement, local piecewise linear basis

—software: TASMANIAN http://tasmanian.ornl.gov, by M. Stoyanov
robust libraries for high dimensional integration and interpolation

Solver:

— FE assembling: Intrelab, Matlab interface of the Trilinos package In-
trepid

— FE linear solver: ML (Matlab interface), AMG preconditioned CG

M. D'Elia — mdelia@sandia.gov




PROBLEM SETTING

Indicators of computational savings

K
S Iy
k=1 . .
R = total increase in work over all levels

K
Z I(ykz)

k=1:1=1

I.: # its for the kth
I(yy, ;): # its for ith sample in the kth ensemble
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PROBLEM SETTING

Indicators of computational savings

K
Sy Iy
k=1 . .
R = total increase in work over all levels

K
Z I(ykz)

k=11=1

I.: # its for the kth
I(yy, ;): # its for ith sample in the kth ensemble

achieved speed-up:

speed-up(ensemble prop)
R
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SQUARED EXPONENTIAL COVARIANCE

400 350

L] l *
. -'-b']_ll'l‘OgEl-tC'- E_. ;; ~surrogate
: * j e ol ) -
BB e e +:,ét 18 1 3001 A '. ................................................................. . +# its
e |l -' i S
I .
n - L]
0] 0] ] EETRE—————— E.l “{ : “i b

. e :F » DEQf-referet T e ? ...............

e s § ': : : bt ol ] 0] —— t}.; ............................................................. '.* ...... , ........................ LI
b e e e e e e s ) * '_' L . . [ ] ?, '. | ]
200 ] ] 1e i L ul | ?

150_ ................................................................................................. I S !"

X
hs
TR
0y

o~

%
L3

[ ]
150 %t

el W | o | ™
PP o L 00 . e | Fove
100_ ............. ............................. § f.’ . 3 ‘{ [

50_ .............................................

'-.'5-"- r__._ 4 ' 0t | tn o] I— e - .ﬁ =J ........... | f ..... ut- “‘

400

T T 90 T T
-surrogate ~surrogate 1 1
35004 - its - goLI=# its

300 _’. ................................................... |

e
e

250 U O SO S | S H

J | 60 -
200 | ;.-' ..... F. .................................. - b | . i .

| = o 50 i | i L
150 T T S e . _ . ..l' ¥ . | 4 i
. 'l H l' 'l a4 | . 40 1 . - 3 | | 4
100 J E ST -'. ............. ) :E_:_" '. .- . | T . ' .“_l
. . $imo. P s 3 . | ' I
Bt .. SRR U 8 U SRS N | L i 30 P T Gt *

50 § .'ﬂr:i..-"- > @ -

20 40 60 80 100 120 140 10 20 30 40 50 60



SQUARED EXPONENTIAL COVARIANCE - R

N |§ | parameter @ exact its surrogate its No ordering
3 8 |1.445 1.447 1.543 1.791
3 16 | 1.580 1.589 1.691 2.146
3 32 | 1.895 1.912 2.044 2.806
N |'§  parameter @ exact its surrogate its | No ordering
6 1.991 2.012 2.185 2.630
6 |16 | 2.230 2.198 2.421 3.071
6 |32 |2.403 2.433 2.780 3.604

initial level in the adaptive grid generation: [ = 4
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SQUARED EXPONENTIAL COVARIANCE - R

16
32

o oo =

parameter
1.445
1.580

1.895

parameter
1.991
2.230
2.403

exact its
1.447
1.589
1.912

exact its
2.012
2.198
2.433

surrogate its = No ordering

1.543 1.791
1.691 2.146
2.044 2.806

surrogate its = No ordering

2.185 2.630
2.421 3.071
2.780 3.604

initial level in the adaptive grid generation: [ = 4

note: at the initial level no ordering performed

= loss of efficiency ™ idea: start from level [ =1
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SQUARED EXPONENTIAL COVARIANCE - R

...idea: start from level [ = 1

N '§ | exactits surrogate its = No ordering
3 8 |1.509 1.521 1.813
3 16 | 1.622 1.640 2.177
3 32 1 2.014 2.019 2.809

M. D'Elia — mdelia@sandia.gov

Sandia
National
Laboratories




RATIONAL QUADRATIC COVARIANCE
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RATIONAL QUADRATIC COVARIANCE - R

N ' § | parameter @ exact its surrogate its = No ordering
3 8 1.348 1.350 1.485 1.752
3 16 | 1.436 1.473 1.671 2.203
3 32 | 1.721 1.738 1.966 2.734
N |'§  parameter @exact its surrogate its | No ordering
6 |8 1.827 1.847 2.011 2.366
6 |16 | 1.891 1.990 2.230 2.762
6 |32 | 2.200 2.177 2.483 3.173

initial level in the adaptive grid generation: [ = 4
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Future work
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LOOKING FOR(WARD TO) NEW INDICATORS

new idea: points in the sparse grid can be represented in a tree structure

= we expect children of the same parent to generate similar uncertain
parameters

= keep track of the family history and group together samples with the
same ancestors

M. D'Elia — mdelia@sandia.gov



Thank you
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Hierarchical basis

From M. Gunzburger, C. Webster, G. Zhang.
Stochastic finite element methods for partial

differential equations with random input data.
Acta Numerica (2014), pp. 521650, 2014

05F 1
) ) ) ) ) ) 0 ! ® |
Piecewise linear hierarchical basis 1 g1 05 0 05 1
. ) T 1 I ’ T 1
W5 4 W53
1 L —
05 4
0 ® PY
-1 -05 0 05 1
15 T T 1 T
W3 1 W33 W35 W37
1 L —
0.5F .

Piecewise linear nodal basis
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