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Abstract—This research presents a predictive engine that
integrates into an on-line optimal control planner for electrical
microgrids. This controller models the behavior of the underlying
system over a specified time horizon and then solves for a control
over this period. In an electrical microgrid, such predictions are
challenging to obtain in the presence of errors in the sensor
information. The likelihood of instrumentation errors increases
as microgrids become more complex and cyber threats more
common. In order to overcome these difficulties, details are
provided about a predictive engine robust to errors.

I. INTRODUCTION

Before the impact of inaccurate or misleading information
on the optimal control engine can be considered, the control
algorithm in question must be specified and fixed. This paper
considers a controller that uses an optimal control algorithm
based on an on-line optimization engine with a receding-
horizon control. Each of these components is considered in
turn.

In the following discussion, the control engine employed
uses an optimal control formulation detailed in the documents
by Wilson et al. [1], [2]. Specifically, the term optimal control
is used because this control is based on an optimization
formulation that attempts to minimize a specified criteria.
Given that the formulation is not convex, the control engine
can not guarantee a global minima, but given enough time, it
can guarantee at least a local minima.

In order to specify this optimization problem, the microgrid
is modeled as a circuit using Kirchhoff’s circuit laws. In this
model, power generation is represented as either a current
or voltage source and the power/energy storage device is
represented similarly. Next, the circuit equations are solved
while optimizing a user specified metric such as minimizing
the use of the storage devices or minimizing the change in the
boost converter duty cycles. In addition to this optimization,
the behavior of the grid is constrained by requiring certain
quantities such as the current or voltage of certain components
to remain within specified amounts. For example, a high-level
overview of one such formulation can be found in Table I with
the components A, B, and C described in Figures 1, 2, and 3.

Since the optimal control problem above is highly nonlin-
ear, a hard guarantee on how long it takes for the optimizer
to solve the formulation can not be provided. Generally,
this guarantee of performance can only be provided by a

Minimize Use of storage devices
Subject to Boost converter state equations (A)

DC bus state equations (B)
DC to DC bus state equations (C)
Power and energy equations
ODE discretization
Bounds on voltages, currents, duty cycles, etc.

TABLE I. OPTIMAL CONTROL FORMULATION

Fig. 1. Boost converter (A)

linear-quadratic control, which consist of a quadratic objec-
tive function with linear equality constraints and no bounds.
When the control has a quadratic objective and linear equality
constraints, the first-order optimality conditions consist of a
single linear system that must be solved. If a direct method
is used to solve this system such as Gaussian elimination
or preferably a factorization such as an LU or a symmetric
indefinite factorization, the number of FLOPS required to
find a solution can be counted, which provides a real-time
guarantee. In the case of a nonlinear, nonconvex optimization
formulation, an appropriately designed algorithm based on
line-search or trust-region methodology can guarantee that a
solution can be found in a finite number of optimization steps.
Though, it is unknown how many steps may be required.

Fig. 2. DC bus (B)
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Fig. 3. Connector between DC buses (C)

Therefore, a control algorithm based on the above optimization
formulation is not a real-time controller. Practically speaking,
one can get a feeling of how long it takes to solve a particular
formulation with a fixed size, but this does not provide any
guarantee on the performance of the control.

Although this controller provides no real-time guarantees,
it may still be used in an on-line control. An on-line control
repeatedly solves the control problem on a system in operation
over a specified time horizon. This differs from an off-line
control that solves the control problem a priori for a system not
currently in operation. The key behind an on-line controller is
that although the state of the system depends on a collection of
unknown inputs, if the behavior of the system can be predicted
well enough over the time horizon, it can provide a useful
control.

In order to make this process of prediction and control more
robust, this controller uses a receding-horizon control, which
is also known as a model-predictive control. In a receding-
horizon control, the behavior of the system is predicted over a
specified time horizon and then a control over this time period
is determined. This is called the planning horizon. If the state
of the system diverges too far from this prediction, the current
plan is abandoned and a new control is solved for. This shorter
time window is called the execution horizon.

As an important note, given that an on-line control does not
have run-time guarantees, such controller is typically used as a
high-level control for long-term planning. For short-term plans,
one typically needs to combine the on-line control with a real-
time control that moderates rapidly changing dynamics in the
system. Although the performance of the real-time controller
is critical to the performance of the system, this paper focuses
on the longer term on-line control.

For an optimal microgrid control, an energy management
layer would incorporate both a priori information and real time
instrumentation. In this context, the energy management layer
must specify the control problem based on control objectives
and measured values, then evaluate the accuracy of the returned
solution. By monitoring measurement signals during execution,
the energy management layer determines when to recalculate
solutions and adjust the planning horizon.

Historically, optimal control algorithms based on on-line
optimization engines have been used for decades within the
chemical engineering community. For example, Jang et al.
discuss on-line controls applied to chemical processes [3]. In
addition, Biegler discusses more recent results in the appli-
cation of nonlinear model predictive controls applied to the
chemical industry [4]. This paper differs from these results by
applying these control techniques to a different problem area,
electric ships, and it explores a different method for predicting
the behavior of the system.

In the realm of electric ships, Park et al. explored the use of
a model predictive control for shipboard power management

systems [5]. There, the authors utilize an integrated pertur-
bation analysis and sequential quadratic programming (IPA-
SQP) solver [6] to find controls that dictate how power is used
within the system. This is similar to the work by Wilson et
al. [1], [2], which uses an SQP algorithm to find an on-line
optimal control. These two groups differ in that Park et al.
attempt to find a real-time controller, but sacrifice optimality
in the case where the perturbation in the initial conditions is
too large. The controller from Wilson et al. retains optimality,
but this controller provides no real-time guarantee and must
be used on-line. Each group also bases their controller on a
different model of the power system. This paper differs from
these results by exploring a method for predicting the behavior
of the power system and how that affects the control.

Aggregating the above, this paper considers a controller
that implements an optimal control algorithm based on an on-
line optimization engine that uses a receding-horizon control.
Absent errors in the optimization algorithms that implement
the control, the performance of the controller depends directly
on the predictive engine used to predict the behavior of
the system. Therefore, it is important to assess the impact
of inaccuracies or errors in the information provided to the
predictive engine. These errors can arise from either mundane
causes such as instrumentation errors or more malevolent
causes such as cyber attacks.

II. PREDICTIVE ENGINE

In order to build a predictive engine, it is assumed that one
knows the overall shape of the signal to predict, but not how
it’s scaled or time delayed. To that end, let φ : R → R be the
known signal and consider three modifications of the function

• Time shift - φ(t− T )

• Time scaling - φ(αt)

• Amplitude scaling - βφ(t)

Combining each of these produces an adaptable signal of the
form

βφ(αt− T ). (1)

It can be observed that the adaptable signal allows one to adjust
and match the actual signal in three different ways, but it does
not allow adaptation to an arbitrary signal. That’s the penalty
one must pay for predicting the future.

In order to match the adaptable signal to data, {(ti, yi)}mi=1,
the following optimization problem is solved

min
(T,α,β)∈R3

m∑
i=1

(βφ(αti − T )− yi)
2. (2)

Note, the above prediction engine requires knowledge of
what signal is to be adapted a priori. This prediction can
be extended to a finite number of signals in the following
manner. Let {φj}nj=1 be a collection of known signals. Then,
the optimization problem

min
j=1,...,n

{
min

(T,α,β)∈R3

m∑
i=1

(βφj(αti − T )− yi)
2

}
(3)

can be solved to identify the signal with the best match. In
other words, each signal in the collection is matched to the data
and the one with the best match is chosen as the prediction.



III. RESULTS

In the following section, a series of numerical experiments
are presented to quantify the robustness of the predictive
engine and control to errors from the sensors.

A. Prediction of a Spike in Load

In order to better understand how well the predictive
engine compensates for errors, consider a resistive load on
a microgrid. Given a 480 V bus, a spike in power is generated
with a base of 5 kW and a max of 15 kW by generating an
inverse exponential representing resistance since p = v2/R.
To that end, let

φ(t) =

{
a− be−t t ≥ 0
a− bet t < 0

(4)

where

• v = 480 V

• pmin = 5000 W

• pmax = 15000 W

• rmin = v2

pmin

• rmax = v2

pmax

• a = rmin

• b = rmin − rmax

The spike is shifted forward by 5 s. In order to model faulty
or corrupted sensors, generated data is created with uniformly
distributed random errors that vary between 0 and ±2 Ω over
a time interval that varies from 3 to 4.25 s. In all situations,
20 samples are collected. In order to match the curve to the
data, Optizelle [7] is used and employs an inexact trust-region
Newton algorithm. In all situations, the algorithm converged
quickly and to a locally optimal solution.

Computationally, the accuracy of these predictions can
be seen in Figures 4 and 5. Note that these predictions
become more accurate as data is collected over a broader time
period. Certainly, data collection over a smaller period can be
tolerated, but it necessitates less error.

B. Differentiating Between Different Kinds of Loads

In the previous section, a spike in load with a known profile
was considered. In the following experiment, this example is
extended with two additional kinds of spikes. In addition to
the inverse exponential, consider a quadratic spike in load of
the form

φ(t) = at2 + bt+ c (5)

where

• W = 5

• a = rmin−rmax

W 2

• b = 0 Ω

• c = rmax

and an oscillatory spike in load that follows a Ricker
wavelet

φ(t) = a+ b

(
1− t2

σ2

)
e

−t2

2σ2 (6)

where
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Fig. 4. Prediction of bus resistance following an inverse exponential with
data between 0 and 3.5 s
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Fig. 5. Prediction of bus resistance following an inverse exponential with
data between 0 and 4.25 s
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Fig. 6. Prediction of bus resistance following a quadratic with data between
0 and 3.0 s

• σ = 1

• a = rmin

• b = rmax − rmin

The goal in this experiment is to determine how accurately
the predictive engine can differentiate between different kinds
of spikes in load under the same operating conditions in the
preceding section. Namely, these experiments use the same
amount of error and samples as before.

In the first case, the true load is set to follow a quadratic
spike in load and the results are presented in Figures 6 and 7.
Here, the quadratic load is correctly predicted in all situations.
In the second case, the true load is set to follow the Ricker
wavelet and the results are presented in Figures 8 and 9.
In most situations, the predictive engine correctly identifies
the type of load. However, when the time horizon is short
and the error is high, there are a few situations where the
predictive engine incorrectly predicts the load to be an inverse
exponential. This reminds us of the limit of our predictive
power when the amount of information is small.

C. Ship Microgrid Controller

In the final example, the impact of the predictive engine
on the overall controller is considered. For this experiment,
consider a reduced order model of an electric microgrid
representing a ship in Figure 10, which is a variant of the
configuration developed by Neely et al. [8]. Using the circuit
components described in the introduction, and described in
more detail by Wilson et al. [1], [2], this can be modeled
with the components found in Figure 11. Notably, the port and
starboard generators run at 120 V, but the port and starboard
DC buses are required to remain between 220-260 V, and the
central bus is required to remain between 450-500 V. In terms
of currents, the generators are constrained to use no more that

Exact

Prediction (0.50 Ω error)

Prediction (2.00 Ω error)

Data (0.50 Ω error)

Data (2.00 Ω error)

B
u

s
 R

e
s
is

t
a
n

c
e
 (

Ω
)

−60

−40

−20

0

20

40

60

Time (s)

0 2 4 6 8 10

Fig. 7. Prediction of bus resistance following a quadratic with data between
0 and 4.25 s
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Fig. 8. Prediction of bus resistance following a Ricker wavelet with data
between 0 and 3.0 s
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Fig. 9. Prediction of bus resistance following a Ricker wavelet with data
between 0 and 4.25 s
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Fig. 10. Reduced order model of an electric microgrid representing a ship

83.3 A, which means they each produce 10,000 W at their
maximum capacity. As far as the objective of the optimal
control, the goal for this control is to satisfy the state equations
for the grid while minimizing the use of storage devices.
Finally, the control is solved for using Optizelle [7] configured
to use an inexact composite-step SQP method combined with
a primal-dual interior point method.

Before exercising the control, a spike in load is generated
on the center microgrid and information about this event is
collected over a 3 s time horizon. Then ±0.50 Ω of uniformly
distributed random error is added to the sensor readings. Based
on this setup, the true load and prediction are given in Figure
12. Note, the prediction has about a 1 s delay in when it
believes the peak of the spike in load to occur.

After solving for the control, the difference in the predicted
resistive load with and without error can be seen in Figures
13 and 14. In short, the two computed loads differ by about

Fig. 11. Representation of the electric ship microgrid using the components
described in Figures 1, 2, and 3
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Fig. 12. True vs prediction of the spike in load on the center microgrid

1 s, which correlates with the error in the prediction. This
leads to a predictable error in when the controller stores power
demonstrated in Figures 15, 16, 17, and 18. However, in both
cases, the controller always satisfy the voltage and current
requirements described above in the problem setup. This can
be seen in Figures 19, 20, 21, and 22.

In short, the controller was designed to never violate certain
operating conditions such as those that specify valid ranges for
the voltages and currents. These conditions remain valid even
in the presence of sensor error. The error in the sensors gave
rise to an inaccurate prediction in our load, which led to a
delay in when the microgrid stored power. Certainly, a lower
level controller may have had enough power to compensate for
the actual operating conditions. Nonetheless, it can clearly be
seen that error in the sensors leads to error in the prediction,
which leads to error in the controller.

IV. CONCLUSIONS

This research presented details of the design and perfor-
mance of a predictive engine integrated into an on-line opti-
mal control planner for electrical microgrids. This discussion
described how an on-line optimal control planner implements
a receding-horizon control that relies on a predictive engine
to predict the behavior of a system. Next, it was shown
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Fig. 13. Computed resistive load with exact prediction

how to produce a predictive engine for the kinds of loads
seen in a microgrid. In the computational examples, it was
observed that one could accurately predict a spike in load
given a limited amount of information with error. Further, it
was shown that the predictive engine could also differentiate
between different kinds of spikes in load as long as sufficient
information was available with high enough accuracy. Finally,
it was demonstrated how this predictive engine integrates
directly into an optimal control algorithm used to manage
the power on an electric ship. Here, it was seen that the
performance of the microgrid depends directly on the accuracy
of the predictive engine. Although the controller incurred error
in calculating when power should be stored and distributed, the
controller never violated the specified operating conditions.

In the future, this work can be extended to provide pre-
dictions for higher-dimensional data and assess the impact
of these predictions on the control infrastructure. In addition,
there’s an interaction between the predictive engine, the con-
troller, and an additional energy management layer that coor-
dinates between the two. Ultimately, this energy management
layer must decide when a prediction is adequate and when the
control’s performance has deviated too far from the optimal
control. This layer needs additional analysis to determine best
practices for improving the overall performance of the system.
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Fig. 14. Computed resistive load with error in prediction
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Fig. 15. Energy in storage with exact prediction
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Fig. 16. Energy in storage with error in prediction
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Fig. 17. Power from storage with exact prediction
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Fig. 18. Power from storage with error in prediction
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Fig. 20. Voltage with error in prediction
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Fig. 21. Current with exact prediction
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