
Unveiling the Interplay Between
Global Link Arrangements and Network

Management Algorithms on Dragonfly Networks
Fulya Kaplan⇤, Ozan Tuncer⇤, Vitus J. Leung†, Scott K. Hemmert†, and Ayse K. Coskun⇤

⇤ Boston University, Boston, MA – {fkaplan3, otuncer, acoskun}@bu.edu
† Sandia National Laboratories, Albuquerque, NM – {vjleung, kshemme}@sandia.gov

Abstract—Network messaging delay historically constitutes a
large portion of the wall-clock time for High Performance
Computing (HPC) applications, as these applications run on
many nodes and involve intensive communication among their
tasks. Dragonfly network topology has emerged as a promising
solution for building exascale HPC systems owing to its low
network diameter and large bisection bandwidth. Dragonfly
includes local links that form groups and global links that connect
these groups via high bandwidth optical links. Many aspects of
the dragonfly network design are yet to be explored, such as the
performance impact of the connectivity of the global links, i.e.,
global link arrangements, the bandwidth of the local and global
links, or the job allocation algorithm.

This paper first introduces a packet-level simulation frame-
work to model the performance of HPC applications in detail.
The proposed framework is able to simulate known MPI (message
passing interface) routines as well as applications with custom-
defined communication patterns for a given job placement algo-
rithm and network topology. Using this simulation framework,
we investigate the coupling between global link bandwidth
and arrangements, communication pattern and intensity, job
allocation and task mapping algorithms, and routing mechanisms
in dragonfly topologies. We demonstrate that by choosing the
right combination of system settings and workload allocation
algorithms, communication overhead can be decreased by up
to 44%. We also show that circulant arrangement provides
up to 15% higher bisection bandwidth compared to the other
arrangements; but for realistic workloads, the performance
impact of link arrangements is less than 3%.

I. INTRODUCTION

In HPC systems, network communication efficiency and
delay play important roles in determining performance and
scalability [1]. When scaling up to tens of thousands of nodes,
traditional topologies such as toroidal meshes increase the
network energy consumption up to 50% of the overall system
energy [2] and introduce large communication overhead as
messages need to travel tens of network hops on average [3].

Recent technological advances have enabled new topology
designs to overcome these energy and performance limitations.
First, owing to increased-radix routers [4], a larger number of
ports can be connected to a router, allowing lower-diameter
networks that reduce the number of hops a packet needs
to travel. A reduced number of network hops translates to
shorter messaging delays as well as lower energy consumption.
Second, the availability of cost- and energy-efficient optical
switches [5] enables higher link bandwidth compared to elec-

Fig. 1: A dragonfly group with all-to-all local connections.
Boxes are routers, circles are nodes, solid lines are electrical
local links, and dashed lines are optical global links.

trical links. Optical links also provide longer physical distance
traveled per network hop.

Dragonfly network topology [6] exploits these technology
advances mentioned above to achieve high bisection band-
width1 and high scalability. A Dragonfly network has a two-
level hierarchy, where the elements in each level are closely
connected, resulting in a low network diameter. Variations of
Dragonfly topology are currently used in Cray XC [7], Cray
Cascade [8] and IBM PERCS [9].

The Dragonfly topology’s two-level hierarchy is composed
of local links forming groups and global links connecting
these groups via optical links. Within a group, the routers are
connected in an all-to-all or a flattened-butterfly fashion using
electrical links. Overall, each router has ports connecting them
to (i) the compute nodes, (ii) the other routers in the group,
and (iii) the other groups in the network. Figure 1 illustrates
a single group consisting of 4 routers, where each router is
connected to 2 nodes, 3 other routers within the group, and 2
routers in other groups [6].

The existing literature on dragonflies focuses on analyzing
the impact of routing [10], [11], [12] and job allocation
algorithms [13], [14], [15] on performance. One aspect of
Dragonfly network topologies that has not yet been extensively
studied is the global link arrangements, which define the
connectivity of each router in a group to the other groups.
Recent work proposes three specific link arrangements to con-
nect the groups to each other: absolute, relative and circulant-
based [16]. Hastings et al. provide a theoretical study on these
arrangements and analyze how the system bisection bandwidth
changes with respect to the global and local link bandwidths
[17]. Existing work, however, does not investigate the coupling

1Bisection bandwidth is the minimum bandwidth between two equally-sized
parts of the system.

SAND2017-1767C

G0

G1

G2

G3

G4 G5

G6

G7

G8

(a) Absolute

G0

G1

G2

G3

G4 G5

G6

G7

G8

(b) Relative

G0

G1

G2

G3

G4 G5

G6

G7

G8

(c) Circulant-based

Fig. 2: Dragonfly networks adopting different global link arrangements: a) absolute, b) relative, c) circulant-based arrangement.
Each configuration uses g = 9, a = 4, h = 2, and all-to-all local connections. The boxes represent routers.

of these arrangements with routing mechanisms, job allocation
algorithms, or communication patterns.

This paper studies the impact of global link arrangements
on network performance in tandem with routing mechanisms,
job placement algorithms, and application communication
patterns. To enable such analysis, we design a packet-level
simulation framework that unifies network design parameters
with communication patterns and accurately models wall-clock
time of HPC applications. Our specific contributions are as
follows:

• We introduce a packet-level simulation framework based
on the Structural Simulation Toolkit (SST) [18]. Our
framework estimates the performance of HPC appli-
cations with consideration of the underlying network
topology by closing the gap between job allocation/task
mapping and detailed network simulation. This frame-
work allows simulating the combined impact of alloca-
tion/mapping decisions as well as network and applica-
tion properties on the performance of HPC applications.

• Using our framework, we evaluate the performance of
global link arrangements considering a set of job allo-
cation and routing mechanisms for various communica-
tion patterns, and demonstrate that circulant global link
arrangement provides up to 15% lower communication
overhead compared to the other arrangements when the
network is highly loaded, owing to its higher bisection
bandwidth. We also show that the impact of global
arrangements on application performance can be limited
for common MPI patterns.

• We show that task mapping can substantially impact
application running time, and the level of this impact is
also affected by the routing mechanism and the network
load. In our experiments with selected applications, we
show that task mapping affects application running time
by up to 11%.

• We demonstrate that the combined impact of the job
allocation and routing mechanism highly depends on the

bandwidth ratio of the global links over the local links.
For high bandwidth ratios, our analysis shows up to 44%
difference in communication overhead between the best
and worst performing {routing, allocation} pairs.

The rest of the paper starts with providing background
on dragonfly networks. Section III presents the details of
our proposed simulation framework together with our target
HPC machines and workload assumptions. In Section IV,
we provide the results of our performance analysis regarding
different aspects of dragonfly networks. Section V describes
the prior work on dragonfly and Section VI concludes the
paper.

II. BACKGROUND ON DRAGONFLY NETWORKS

Dragonfly topology [6] is a two-level hierarchical direct
network based on high-radix routers. We use the parameters
presented in Table I to describe a dragonfly topology.

In the first hierarchical level, a routers constitute a group
and are connected by local electrical links, typically with
an all-to-all or a flattened-butterfly network topology. Each
router is connected to p compute nodes and has h optical
links that form an inter-group network. The routers in a group
collectively act as a virtual router with a · p connections to
compute nodes and a · h connections to other groups. The
second hierarchical level consists of g of these virtual routers,
typically connected with an all-to-all topology.

The rest of this section describes the link arrangements,
routing mechanisms, and job placement strategies we use in
our study of global link arrangements.

c Number of cores per node
p Number of nodes connected to a router
a Number of routers in a group
g Number of groups
h Number of optical links on a router

TABLE I: Notation for the dragonfly parameters.

A. Link Arrangements
There are two link groups in a dragonfly network: global

and local. Global links refer to the optical inter-group cables,
whereas local links connect routers within a single group.

1) Global: We use three different global link arrangements and
comply with the terminology used by Hastings et al. [17].

Absolute arrangement: In the absolute arrangement, the
first available port in group 0 is connected to the first available
port in the group 1. Then, the next available port in group 0 is
connected to the first available port in group 2. This continues
until group 0 is linked to all other groups. We apply the same
procedure to the remaining groups in order. As a result, port
i of group j is connected to group i if i < j, and to group
i+ 1 otherwise. Figure 2(a) depicts an absolute arrangement.

Relative arrangement: All groups have identical relative
connections in this arrangement. As shown in Figure 2(b), in
each group, port 0 is connected to the next group, port 1 is
connected to the second next group, and so on. In other words,
port i of group j is connected to group (i + j + 1) mod g,
where g is the total number of groups.

Circulant-based arrangement: With the circulant-based
arrangement, in each group, port 0 is connected to the next
group, and port 1 is connected to the previous group. Port 2
is connected to the second next, and port 3 is connected to
the second previous group, and so on. In other words, port i
of group j is connected to group (i/2 + j + 1) mod g if i is
even, and to group (�bi/2c+ j � 1) mod g if i is odd. This
arrangement assumes that each router has an even number of
optical links, and it is depicted in Figure 2(c).

2) Local: In dragonfly architectures, local links are typically
arranged as a flattened-butterfly (e.g., Cray Cascade [8]) or
as an all-to-all network (e.g., IBM PERCS [9]). In this paper,
we assume all-to-all local link arrangements with a uniform
local link bandwidth to isolate the impact of global link
arrangements. We define the bandwidth difference between
local and global links by:
↵ = global link bandwidth/local link bandwidth.

B. Routing
A routing strategy defines the paths of message traversal

through the network. Routing has been shown to play an
important role in the system performance in Dragonflies [10],
[11]. While a shortest-path routing strategy reduces the mes-
sage latency in a dragonfly with low network utilization, it
can lead to hot-spots on the global links when two groups
intensively communicate with each other over a few links.
In this work, we use two static routing strategies to study
the impact of routing on different global link arrangements:
Minimal and Valiant.

1) Minimal: Minimal routing can be described as follows:
Define the source and destination groups as GS and GD; the
source and destination routers as RS and RD, respectively.
If GS 6= GD, then select an intermediate router, Ra, which
is inside GS and has a direct link to GD. Next, use the

direct link from Ra to Rb (which is the router in GD). If
Rb 6= RD, use the shortest-path to RD inside GD. The longest
communication distance with this mechanism is 3 router-to-
router hops as we use all-to-all local connections.

2) Valiant [19]: Valiant routing aims to spread the traffic
among the network to avoid hot-spots. If GS 6= GD, this
mechanism sends the message first to a randomly-selected
intermediate group, then to RD, using minimal routing. If
GS = GD, a random intermediate router is selected within the
group. All messages travel at most 5 hops in Valiant routing
as we use all-to-all local connections.

C. Allocation

Allocation refers to the placement of incoming jobs to
the available machine nodes. Studies have shown that allo-
cation has a significant impact on application performance
on dragonflies, but there is no consensus in the community
on which allocation algorithm maximizes the performance of
dragonflies [13], [14], [15], [20]. In order to study the impact
of global link arrangements in presence of a comprehensive
set of workload management algorithms, we consider three
allocation techniques that are shown to have fundamentally
different characteristics [13]: Cluster, spread, and random.

1) Cluster: Cluster first fills the available nodes in a single
dragonfly group in order. Once there is no available node left,
it continues with the next group.

2) Spread: This allocation strategy aims to spread a given job
uniformly among groups by filling routers in a round robin
manner. It first uses all nodes in router 0 of group 0, then
continues with the nodes in router 0 of group 1, and so on.
Once all router 0s are occupied in all groups, it continues with
router 1.

3) Random: This strategy simply selects random nodes from
the set of all available nodes in the system.

D. Task Mapping

Task mapping refers to the mapping of the MPI ranks of
a single job onto the compute cores located in the nodes
selected by the allocation algorithm. The aim of task mapping
is to place closely-communicating MPI ranks next to each
other to reduce the communication overhead and network
load. As HPC infrastructures typically do not have access to
the communication pattern of incoming jobs, task mapping
is performed by the HPC application once the job starts
executing.

Commonly known task mapping strategies include graph-
based approaches and linear mapping, which assigns the MPI
ranks to the cores in a linear order. In this work, we would like
to minimize the performance impact of task mapping so as to
isolate the effect of global link arrangements. Thus, for each
application, we select the task mapping algorithm that suits
the communication pattern best. Task mapping algorithms we
use are as follows:

1) Random: This task mapper randomly places application’s
MPI ranks onto the allocated nodes. We use random task
mapper to average out the impact of the messaging order in
applications with uniform communication (e.g., all-to-all and
bisection pattern; refer to Section III-C for further detail).

2) Recursive Graph Bisection [21]: This algorithm recursively
splits the application’s communication graph and the network
topology graph into equal halves using minimum weighted
edge-cuts. At the end of the recursion, the remaining MPI
rank is placed in the remaining compute core. We use this
task mapper for the 3D stencil pattern as it has been shown
to perform better than linear task mapping [21].

III. EXPERIMENTAL METHODOLOGY

Network links in real HPC machines are statically con-
nected, and thus, it is not easy to experiment with differ-
ent link connections without having an entire HPC system
specifically allocated for this purpose. Hence, we use packet-
level simulations (instead of experiments on real machines) in
order to compare network performance under different design
assumptions.

Our proposed simulation framework enables users to evalu-
ate the combined performance impact of various design param-
eters such as the global link arrangements, allocation/mapping
algorithms, and application communication patterns. To im-
plement our framework, we extend the Structural Simulation
Toolkit (SST), which has been developed by Sandia National
Laboratories to assist in the design, evaluation and optimiza-
tion of HPC architectures and applications [18]. We add to
SST the ability to perform packet-level simulations for custom
dragonfly topologies along with dragonfly-specific routing and
job allocation algorithms. Using those features we add in SST,
we simulate workloads with various communication patterns to
evaluate the impact of global link arrangements under different
scenarios. The rest of this section explains our simulation
framework, the HPC machines we study, and the workloads
we use in detail.

A. Simulation Framework

SST simulator has been widely used by researchers in both
academic and industrial institutions. The accuracy of SST has
been validated in publications and by hardware vendors [22],
[23], [24]. SST incorporates individual elements to model
specific aspects of a modern data center in detail, such as a
scheduler and job allocator, a network simulator and a message
passing simulator.

In the original version of SST, the scheduler element is a
standalone module and is not connected to the detailed net-
work simulator. It estimates the wall-clock time of applications
through an average hop distance-based model using empirical
data. The standalone scheduler module with hop distance-
based performance model is good for estimating the relative
performance improvement of new allocation/mapping strate-
gies, but it is not sufficient in evaluating the more complex
behavior that depends on network link bandwidths, message

JOB$TRACE$FILE$

Arrival$
Time$

#ofProcs$
Required$

Applica>on$
Communica>on$

Pa@ern$

0" 144" App1.phaseFile"

10" 256" App2.phaseFile"

..." ..." ..."

..." ..." ..."

Applica>on$phaseFile$
All2to2all,"itera7ons"="1,"msgSize"="1MB"
Stencil,"itera7ons"="5,"msgSize"="100KB"
Allreduce"...."
..."

Alloca7on/Mapping"Info"

INPUT$PYTHON$FILEfor
SCHEDULER$

Alloca7on"algorithm"
Task"mapping"algorithm"
Network"topology"
Number"of"nodes"
...."

Scheduler$Element$

Scheduler" Allocator" Task"
Mapper"

Merlin$&$Ember$Elements$

Merlin"NIC"model"
"&"Link"Control"

Ember"MPI"
Generator"&"

Mo7fs"

INPUT$PYTHON$FILEfor
MERLIN$&$EMBER$

Network"topology"
Global"link"arrangement"
Link"bandwidths"
Rou7ng"algorithm"
Packet/flit"size"
...." Wall2Clock"Time"&"Network"Sta7s7cs"

Fig. 3: Proposed simulation framework developed in SST,
which integrates scheduling and network elements.

sizes and routing strategies. In addition, the existing detailed
network simulator is unaware of the job allocation/task map-
ping algorithms and it requires the user to manually define the
nodes allocated for each job.

We propose a unified simulation framework that closes the
gap between the scheduler and network simulation elements to
have a holistic and accurate evaluation of the HPC data center
performance. Our simulation framework is illustrated in Figure
3. We assume a job trace where jobs are defined by their arrival
time, required number of processors, and the application com-
munication pattern. We define the application communication
patterns using application phase files. A phase file may include
a single communication pattern (e.g., all-to-all), or a successive
set of communication patterns representing the phases of an
application. The scheduler element schedules the jobs (i.e.,
decides on when to start running the job), allocates nodes for
the jobs, and maps individual tasks of a job onto the allocated
nodes, depending on the selected scheduling, allocation, and
mapping policies. The scheduler element includes advanced
allocation/mapping algorithms that are applicable to various
network topologies such as 2D/3D mesh and torus. In addition,
we implement the dragonfly topology along with dragonfly-
specific job allocation algorithms (i.e., cluster, spread, random)
in the scheduler element.

After the jobs are allocated and tasks are mapped onto
the nodes, ember and merlin elements simulate the network
timing for sending/receiving packets from one end point in
the network to another. Ember models the MPI routines used
in current HPC applications, such as boundary exchange (i.e.,
stencil), all-to-all, all-reduce. These MPI routines are named in
SST as ember motifs. Using the motifs, ember implements the
message traffic between the tasks of an application. We also
add the functionality to ember that allows the user to simulate

custom defined communication patterns. The Merlin element
works in cooperation with ember and models the behavior
of routers, network interface cards (NICs), and the network
routing algorithms. Merlin can capture the transient network
behavior resulting from congestion, stalls, and routing in a
cycle accurate manner. We implement the dragonfly network
model, which accounts for the global link arrangements, in
merlin. Apart from the link arrangements described in Section
II-A, we provide the user the flexibility to define custom link
arrangements. We can also define bandwidths separately for
(i) the links to the hosts, (ii) the local links within the group,
and (iii) the global links across groups.

Communication between the scheduler and merlin & ember
elements is provided through a file interface in SST. The
scheduler dumps the job allocation/task mapping information
into a file. A python script then converts this information into
the input format that ember can use.

Scalability of the SST framework to simulate exascale
systems has been demonstrated in recent work [25]. In their
work, Groves et al. analyze the impact of the number of
global links and link bandwidths on performance and power
consumption of dragonfly networks without considering al-
location, task mapping, and global link arrangements. They
model a dragonfly machine with 96 groups, 48 routers per
group and 24 nodes per router, which corresponds to a total
of 100,592 nodes. In this work, we experiment with machines
with smaller intra-group networks in order to focus on the
impact of global link arrangements.

B. Target HPC Machines
We study global link arrangements in 3 different target

dragonfly machines. For all of our machines, we use h = 2
optical links per router. We change the parameter a (the
number of routers per group), p (the number of nodes per
router) and c (the number of compute cores per node, where
each core runs a single application task), to experiment with
different machine sizes. Our small machine uses the same
dragonfly parameters used in the theoretical study of global
link arrangements by Hastings et al. [17]: a = 4, p = 2, c = 2,
and g = 9, corresponding to a total of 72 nodes and 144 cores.
For our medium-size machine, we use a = 8, p = 2, c = 2,
g = 17, corresponding to a total of 272 nodes and 544 cores.
As the large machine, we use a = 8, p = 4, c = 4, g = 17,
which adds up to a total of 544 nodes and 2, 176 cores.

We set the bandwidth of each link that is connected to the
hosts and other routers within a group (i.e., local links) to
1GB/s. We define the bandwidth ratio of the global links over
the local links as ↵, and sweep ↵ from 0.5GB/s to 4GB/s in
0.5GB/s steps to analyze the impact of global link bandwidths.
In order to isolate the effect of crossbar bandwidth from the
simulation results, we set the crossbar bandwidth to the sum
of the maximum link bandwidths connected to a router.

C. Workloads
We focus on three communication patterns: all-to-all, bi-

section, and 3D stencil. We select bisection pattern as it

represents the bisection bandwidth of the network. All-to-all
and 3D stencil patterns are commonly observed in real HPC
applications [26].

All-to-all: It is a commonly known pattern where each
task communicates with every one of the other tasks in an
application. Fast Fourier Transform (FFT) is an example ap-
plication with uniform all-to-all communication [27]. During
our simulations, we observed that task mapping has an impact
on the performance even for all-to-all communication pattern
due to the ordering of messages. To average out the impact
of task mapping, we run all-to-all workloads 15 times with
random task mapping and select the case with the median
running time for analysis.

Bisection: We use this communication pattern to account
for the bisection bandwidth of the dragonfly network and to
compare our results against the theoretical analysis from prior
work by Hastings et al. [17]. In this pattern, the tasks are
divided into two equal-sized groups (group #1 and #2), where
a task from group #1 communicates with every task in group
#2 and none of the tasks in group #1. In order to achieve the
minimum bisection bandwidth between groups #1 and #2, we
use the network cuts provided by Hastings et al. for the small
machine size. These network cuts are also called minimum
cuts meaning that the resulting application running time is
a good representation of the bisection bandwidth. Once we
decide on which group of tasks occupy which nodes based
on the minimum cuts, we run bisection workload 15 times
with random task mapping using those nodes. We select the
case with maximum running time for analysis as the bisection
bandwidth represents the worst case.

For other machine sizes for which the minimum cuts are
not readily available, we use the cut that takes the first half of
the nodes in order, starting from node #0. Similarly, we apply
random task mapping using these nodes and select the case
with maximum running time.

3D Stencil: This messaging pattern is observed in a large
portion of the HPC applications and is explicitly supported
by MPI [28]. Examples of real-life applications with 3D
stencil communication include multi-dimensional shock-wave
analysis [29] and molecular dynamics [30]. In this pattern,
application tasks exchange messages with their six nearest
Cartesian neighbors (i.e., in the x, y, z directions). In SST,
we use the Halo3D motif in ember, which models the 3D-
stencil MPI routine. As the running time of stencil jobs
significantly depends on task mapping [21], we use recursive
graph bisection to efficiently place application tasks.

For each of these communication patterns, we specify
parameters such as the message size, the number of iterations,
and the compute time per iteration. In order to focus on the
communication overhead, we set the compute time to zero.
We set the number of iterations for each application such that
we allow enough time for the network to reach steady state.
In our experiments, we experiment with 3 different message
sizes: 100KB, 1000KB, and 4000KB.

We assume single job and multi-job cases, where all jobs
collectively occupy 100% of the dragonfly machine. High

Fig. 4: Running time of bisection communication pattern using
different global link arrangements with minimal routing. All
results are normalized to absolute arrangement at ↵ = 0.5.

system utilization is a common case in HPC and also makes
it easier to observe how different conditions (communication
patterns, message size, etc.) lead to network congestion. In
the multi-job case, we assume two jobs of the same com-
munication pattern are running simultaneously with each job
occupying 50% of the machine. We focus on single-run of
the jobs instead of job traces, which means that all jobs arrive
and get allocated at the same time.

IV. ANALYSIS ON GLOBAL LINK ARRANGEMENTS

This section presents our results on the impact of global link
arrangements along with our findings on the coupling between
link arrangements, communication patterns, routing, and job
placement. We start our analysis using a single job that utilizes
the entire machine to avoid the impacts of job allocation and
inter-job interference, and continue with using multiple jobs.

A. Single Job Analysis

Here, we analyze the impact of global link arrangements on
the communication overhead when the entire HPC machine is
allocated to a single job. First, we validate the theoretical study
of Hastings et al. [17] on how bisection bandwidth changes
with link arrangements, and then focus on communication
patterns that are commonly seen in HPC applications.

1) Bisection Bandwidth: In the bisection communication pat-
tern, the first half of the dragonfly communicates with the
second half. When used with minimal routing, the running
time of this pattern is a good representation of system’s
bisection bandwidth where the network hot-spots are also
taken into account.

Hastings et al. [17] have theoretically shown that the bi-
section bandwidth of the absolute global link arrangement
falls behind the other two global arrangements as the ratio
of global to local link bandwidth, ↵, is increased above 1.25.
Between ↵ = 1.25 and ↵ = 4, circulant-based arrangement
provides the highest bisection bandwidth; and at ↵ = 4,
both circulant-based and relative arrangements have the same
bisection bandwidth.

Fig. 5: Running time of bisection communication pattern using
different global link arrangements with Valiant routing. All
results are normalized to absolute arrangement at ↵ = 0.5.

Our results demonstrate a similar pattern as shown in
Figure 4 for 1000KB message size. We report all results in
terms of normalized running time. Running time with circulant
arrangement is 5-15% shorter than the other two arrangements
for ↵ > 1.5. Circulant arrangement provides better perfor-
mance with increasing ↵ values. For all ↵ values, performance
difference between absolute and relative arrangements is very
small within 4%.

The impact of global link arrangements on running time
decreases slightly when we use Valiant routing. As shown in
Figure 5, circulant-based arrangement leads to 3-7% shorter
running time in comparison to absolute arrangement. The trend
for bisection bandwidth is similar for other message sizes.

The reason why circulant arrangement performs better lies
behind how balanced the bisection bandwidth cuts are across
the groups. A cut is a balanced cut if equal number of routers
lie on each side of the cut in each group. For groups with a
multiple of four routers, with circulant arrangement at ↵ =
4, the minimum bisection cut is completely balanced across
all the groups (i.e., 2 routers per group). Moreover, circulant
arrangement achieves that balanced cut for a lower ↵ than
relative arrangement, while absolute arrangement never does.

2) Realistic Workloads: The above results use bisection pat-
tern, which is not typical in HPC workloads. This section
presents our results with all-to-all and stencil communication
patterns.

Unlike bisection pattern, global link arrangements do not
have a significant impact on running time for all-to-all and
stencil patterns. Figure 6 shows that the running time differ-
ence due to link arrangements is below 1% for any given ↵
for all-to-all communication.

In Figure 7, we show the same trend for stencil pattern. As
stencil pattern injects less messages into the network compared
to bisection and all-to-all patterns, we present results with
4000KB message size which achieves a similar network load.
The performance difference between global link arrangements
is less than 3% for all ↵ values.

The independence of all-to-all pattern’s running time from

Fig. 6: Running time of all-to-all communication pattern using
different global link arrangements with minimal routing. All
results are normalized to absolute arrangement at ↵ = 0.5.

Fig. 7: Running time of stencil communication pattern using
different global link arrangements with minimal routing for
4000KB message size. All results are normalized to absolute
arrangement at ↵ = 0.5.

global link arrangements is also valid for different message
sizes and routing algorithms as shown in Figure 8. However,
we observe that the routing mechanism has a significant impact
on running time. For small message sizes such as 100KB,
Valiant routing effectively spreads network traffic and avoids
bottlenecks. Thus, for 100KB message size, Valiant reduces
running time by 15%. On the other hand, Valiant routing
increases the average traffic as it does not use the minimum
path. As a result, for larger message sizes, Valiant routing
introduces new network bottlenecks and results in up to 5%
longer running time compared to minimal routing.

Another interesting observation of our study is regarding
the impact of task mapping. As mentioned in Section III-C,
our results on all-to-all pattern belongs to the case with the
median running time among 15 simulations with random task
mapping. In Figure 9, we present the variation in running time
among these 15 simulations as a percentage of the median run-
ning time for ↵ = 0.5. While the variation is between 3-11%
with minimal routing depending on the specific task mapping
used by the random task mapper, it is below 2.5% with Valiant
routing. As Valiant routing has an inherent randomization for
intermediate router/group selection, it minimizes the impact of
task mapping by randomly spreading traffic. For ↵ = 4, our
results show that the variation reduces below 5% with minimal

Fig. 8: Running time of all-to-all workload with different {link
arrangement, routing algorithm} pairs and ↵ = 4. For each
message size, the results are normalized to {absolute-minimal}
of the corresponding message size.

Fig. 9: Maximum running time variation of all-to-all communi-
cation pattern under random task mapping with different {link
arrangement, routing algorithm} pairs and ↵ = 0.5. Variation
is relative to the median value.

routing due to the increased network bandwidth, whereas the
variation stays below 2% with Valiant routing.

3) Medium and Large Machines: For the medium machine
with 17 groups, we repeat our analysis on the global link
arrangements with bisection pattern. Figure 10 shows similar
trend for bisection bandwidth, where we observe 2-8% shorter
running time with circulant arrangement in comparison to the
absolute arrangement. For medium machine size, relative ar-
rangement starts to perform closer to the circulant arrangement
than the absolute arrangement, indicating that the performance
difference among global link arrangements is not specific to
the small machine size.

For the large machine with 17 groups and 2,176 cores, we
carry out simulations with all-to-all and bisection patterns to
analyze the impact of increasing the number of tasks per local
router on the resulting application running time. The results
are consistent with the small and medium-size machines: The
performance of all-to-all pattern shows negligible difference
across the global link arrangements (less than 2%). Similarly,
for bisection pattern, we observe that the circulant arrangement
provides 3-10% shorter running time compared to the absolute
arrangement.

Fig. 10: Running time of bisection communication pattern
using different global link arrangements with minimal routing
for 100KB message size on the large system. All results are
normalized to absolute arrangement at ↵ = 0.5.

B. Multiple Job Analysis

We now explore the dependency of performance on various
network parameters when two jobs are running together.
When considering multiple jobs, an important aspect comes
into the picture, namely, job allocation algorithm. We focus
on three main job allocation strategies: cluster, spread, and
random allocation (See Section II-C). For this analysis, we
use the small machine and stencil communication pattern, and
consider two jobs with the stencil pattern running together
(e.g., a common example HPC scenario is when users submit
the same stencil job with different inputs). We report the
running time of the slower job.

In the previous results, we showed that the circulant ar-
rangement provides slightly shorter running time for stencil
application. Thus, in our next analysis, we focus on circulant
arrangement. Figure 11 compares the running time for each
{routing, allocation} algorithm pair over different ↵ values.
The results are normalized to {minimal, cluster} case at their
corresponding ↵ value. An interesting observation is that how
good a {routing, allocation} pair performs is a function of the
bandwidth ratio ↵. At ↵ = 0.5, valiant and minimal routing
behave rather similarly, with {minimal, random} being the best
choice. As ↵ increases, the pairs involving Valiant algorithm
start to perform poorly. The reason is that global links become
less congested with increasing ↵. When ↵ is large, local
link congestion becomes the bottleneck; and Valiant routing
amplifies this effect by increasing the overall network traffic.
This results in around 44% performance difference between
the best and worst pairs ({minimal, spread} and {valiant,
random}, respectively) at ↵ = 4.

C. Summary of Our Key Findings

Our performance analysis on dragonfly networks consider-
ing various aspects has led to the following key findings:

• Detailed network simulation closely follows the theory
regarding the impact of global link arrangements on
bisection bandwidth. We show that circulant arrangement
provides up to 15% shorter running time compared to

Fig. 11: Running time of stencil communication pattern using
circulant arrangements with {routing, allocation} algorithm
pairs. Results are normalized to {minimal, cluster} at their
corresponding ↵ value.

absolute arrangement for bisection pattern with minimal
routing.

• In contrast to the bisection communication pattern, global
link arrangements do not have a significant impact on
performance (<3%) for realistic patterns such as all-to-
all and 3D stencil.

• We show that task mapping can significantly impact the
application running time even for all-to-all pattern due to
the scheduling order of the messages. We observe up to
11% performance variation for all-to-all jobs due to task
mapping.

• For realistic workloads, the choice of {routing, alloca-
tion} algorithm pair has a larger impact compared to the
link arrangements. The selection of the best performing
pair depends on ↵. As ↵ increases, traffic on local links
becomes a bottleneck. As Valiant routing creates more
traffic on all links, it results in up to 44% longer running
time in comparison to minimal routing at ↵ = 4.

V. RELATED WORK

As dragonfly network topologies [6] gain popularity due to
their high bisection bandwidth and low diameter, researchers
have investigated how to improve the performance of dragon-
flies. Most of these studies use simulators to easily experiment
with different dragonfly settings with a clear visibility on
the system. A group of existing literature utilizes high-level
simulators, where the performance evaluation metrics are
based on the link usage [31], [32]. Low-level simulators exist,
but they either do not model different global link arrangements
[33] or focus on network packet delays without considering job
placement algorithms [34]. In our work, we propose a unified
simulation framework that is able to simulate the combination
of such factors.

Based on these simulators, various techniques have been
proposed to improve dragonfly performance. Prisacari et
al. [10] introduce dragonfly-specific hierarchical all-to-all ex-
change patterns that reduce all-to-all communication time
by up to 45%. Fuentes et al. [11] focus on traffic patterns
that portray real use cases and study the network unfairness
caused by existing routing mechanisms with relative global
link arrangement. Yébenes et al. [12] introduce a packet

queuing scheme to reduce message stalls with minimal-path
routing. These works specifically target improving routing-
related issues in dragonflies.

Researchers have identified a strong coupling between rout-
ing and job allocation in dragonflies. Bhatele et al. [13] con-
duct a study on a IBM PERCS architecture [9] and conclude
that default MPI rank-ordered allocation leads to significant
network congestion when used together with minimal-routing.
They claim that (1) indirect routing obviates the need for
intelligent job allocation and (2) random allocation gives the
best performance when direct routing is used. Following up
on this work, Chakaravarthy et al. [14] show that transpose
communication patterns [35] benefit from direct routing, and
Prisacari et al. [15] demonstrate that random allocation with
minimal-routing is consistently outperformed by Cartesian job
placement with indirect routing for stencil communication pat-
terns. These works focus on allocation and routing strategies
but do not consider different global link arrangements.

Several studies investigate global links in dragonflies.
Bhatele et al. [32] investigate the impact of changing the
number of router links on performance. Groves et al. [25]
explore the effect of the number of global links and link
bandwidths on the performance and power consumption of
dragonfly networks considering only one arrangement. Ca-
marero et al. [16] introduce the three global link arrange-
ments we use in this paper; however, they do not provide
performance comparison between them and they focus on the
impact of the routing mechanisms. Hastings et al. [17] conduct
a theoretical analysis on these link arrangements and show
that the commonly-used absolute link arrangement leads to
a smaller bisection bandwidth when the ratio of global/local
link bandwidths is larger than 1.25. Wen et al. [36] propose
Flexfly, a re-configurable network architecture for the global
links using low-radix optical switches. Flexfly modifies inter-
group connections based on the observed network traffic to
mitigate the need for indirect routing. However, it requires
knowledge on application traffic patterns, which are not easy
to extract because application type is typically unknown to
HPC systems and traffic patterns may depend on application
input.

To the best of our knowledge, our work is the first to
experimentally evaluate the impact of different global link
arrangements on performance in tandem with link bandwidths,
communication patterns, job placement algorithms, and rout-
ing mechanisms.

VI. CONCLUSION

In this paper, we present a thorough analysis on the unex-
plored aspects of the dragonfly networks. For this purpose,
we first propose a simulation framework that is able to
evaluate the combined impact of global link arrangements,
link bandwidths, job allocation and routing algorithms on the
application running time. We then compare the performance
of several known global link arrangements and show that
circulant arrangement provides up to 15% reduction in com-
munication time for the bisection communication pattern. We

demonstrate that for common MPI communication patterns,
the impact of global link arrangements is of less significance.
On the other hand, for the same MPI patterns, we find that
the choice of job allocation and routing algorithm is highly
important, leading up to 44% difference in communication
overhead, and that the best choice depends on the bandwidth
ratio between global and local links. Finally, we show that
task mapping in dragonfly can result in up to 11% variation in
the application running time even for all-to-all communication
pattern due to the scheduling order of the messages.

ACKNOWLEDGMENT

This work has been partially funded by Sandia National
Laboratories. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for
the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

REFERENCES

[1] J. Dongarra et al., “The international exascale software project
roadmap,” Int. J. High Perform. Comput. Appl., vol. 25, no. 1, pp. 3–60,
Feb. 2011.

[2] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy
proportional datacenter networks,” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, ser. ISCA ’10,
2010, pp. 338–347.

[3] M. Besta and T. Hoefler, “Slim fly: A cost effective low-diameter
network topology,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’14, 2014, pp. 348–359.

[4] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta, “Microarchitecture of
a high-radix router,” in Proceedings of the 32nd Annual International
Symposium on Computer Architecture, ser. ISCA ’05, 2005, pp. 420–
431.

[5] P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen,
“Monolithic silicon photonic integrated circuits for compact 100+ gb/s
coherent optical receivers and transmitters,” IEEE Journal of Selected
Topics in Quantum Electronics, vol. 20, no. 4, pp. 150–157, July 2014.

[6] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in 35th International Symposium on Com-
puter Architecture, 2008. ISCA ’08., June 2008, pp. 77–88.

[7] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray XC series
network,” Tech. Rep., 2012, Cray, Inc., White paper.

[8] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,
T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard, “Cray cascade:
A scalable hpc system based on a dragonfly network,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), Nov 2012, pp. 1–9.

[9] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup,
T. Hoefler, J. Joyner, J. Lewis, J. Li, N. Ni, and R. Rajamony, “The
PERCS high-performance interconnect,” in 2010 18th IEEE Symposium
on High Performance Interconnects, Aug 2010.

[10] B. Prisacari, G. Rodriguez, and C. Minkenberg, “Generalized hierar-
chical all-to-all exchange patterns,” in 2013 IEEE 27th International
Symposium on Parallel Distributed Processing (IPDPS), May 2013, pp.
537–547.

[11] P. Fuentes, E. Vallejo, C. Camarero, R. Beivide, and M. Valero,
“Throughput unfairness in dragonfly networks under realistic traffic
patterns,” in 2015 IEEE International Conference on Cluster Computing,
Sept 2015, pp. 801–808.

[12] P. Yébenes, J. Escudero-Sahuquillo, P. J. Garcı́a, and F. J. Quiles,
“Straightforward solutions to reduce hol blocking in different dragonfly
fully-connected interconnection patterns,” The Journal of Supercomput-
ing, pp. 1–23, 2016.

[13] A. Bhatele, W. D. Gropp, N. Jain, and L. V. Kale, “Avoiding hot-spots on
two-level direct networks,” in 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), Nov
2011, pp. 1–11.

[14] V. T. Chakaravarthy, M. Kedia, Y. Sabharwal, N. P. K. Katta, R. Ra-
jamony, and A. Ramanan, “Mapping strategies for the PERCS archi-
tecture,” in 2012 19th International Conference on High Performance
Computing (HiPC), Dec 2012, pp. 1–10.

[15] B. Prisacari, G. Rodriguez, P. Heidelberger, D. Chen, C. Minkenberg,
and T. Hoefler, “Efficient task placement and routing of nearest neigh-
bor exchanges in dragonfly networks,” in Proceedings of the 23rd
International Symposium on High-performance Parallel and Distributed
Computing, ser. HPDC ’14, 2014, pp. 129–140.

[16] C. Camarero, E. Vallejo, and R. Beivide, “Topological characterization
of hamming and dragonfly networks and its implications on routing,”
ACM Trans. Archit. Code Optim., vol. 11, no. 4, pp. 39:1–39:25, Dec.
2014.

[17] E. Hastings, D. Rincon-Cruz, M. Spehlmann, S. Meyers, A. Xu, D. P.
Bunde, and V. J. Leung, “Comparing global link arrangements for
dragonfly networks,” in 2015 IEEE International Conference on Cluster
Computing, Sept 2015, pp. 361–370.

[18] A. Rodrigues, E. Cooper-Balis, K. Bergman, K. Ferreira, D. Bunde, and
K. S. Hemmert, “Improvements to the structural simulation toolkit,” in
Proceedings of the 5th International ICST Conference on Simulation
Tools and Techniques, ser. SIMUTOOLS ’12, 2012, pp. 190–195.

[19] L. G. Valiant and G. J. Brebner, “Universal schemes for parallel com-
munication,” in Proceedings of the Thirteenth Annual ACM Symposium
on Theory of Computing, ser. STOC ’81, 1981, pp. 263–277.

[20] N. Jain, A. Bhatele, X. Ni, N. J. Wright, and L. V. Kale, “Maximizing
throughput on a dragonfly network,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp.
336–347. [Online]. Available: http://dx.doi.org/10.1109/SC.2014.33

[21] T. Hoefler and M. Snir, “Generic topology mapping strategies for
large-scale parallel architectures,” in Proceedings of the International
Conference on Supercomputing, ser. ICS ’11, 2011, pp. 75–84.

[22] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. CooperBalls, and
B. Jacob, “The structural simulation toolkit,” SIGMETRICS Perform.
Eval. Rev., vol. 38, no. 4, pp. 37–42, Mar. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1964218.1964225

[23] M.-y. Hsieh, A. Rodrigues, R. Riesen, K. Thompson, and W. Song, “A
framework for architecture-level power, area, and thermal simulation and
its application to network-on-chip design exploration,” SIGMETRICS
Perform. Eval. Rev., vol. 38, no. 4, pp. 63–68, Mar. 2011. [Online].
Available: http://doi.acm.org/10.1145/1964218.1964229

[24] K. D. Underwood, M. Levenhagen, and A. Rodrigues, “Simulating red

storm: Challenges and successes in building a system simulation,” in
2007 IEEE International Parallel and Distributed Processing Sympo-
sium, March 2007, pp. 1–10.

[25] T. Groves, R. E. Grant, S. Hemmer, S. Hammond, M. Levenhagen,
and D. C. Arnold, “(sai) stalled, active and idle: Characterizing power
and performance of large-scale dragonfly networks,” in 2016 IEEE
International Conference on Cluster Computing (CLUSTER), Sept 2016,
pp. 50–59.

[26] K. Antypas, “Nersc-6 workload analysis and benchmark selection pro-
cess,” Lawrence Berkeley National Laboratory, 2008.

[27] J. Meng, E. Llamosı́, F. Kaplan, C. Zhang, J. Sheng, M. Herbordt,
G. Schirner, and A. K. Coskun, “Communication and cooling aware
job allocation in data centers for communication-intensive workloads,”
J. Parallel Distrib. Comput., vol. 96, no. C, pp. 181–193, Oct. 2016.
[Online]. Available: http://dx.doi.org/10.1016/j.jpdc.2016.05.016

[28] W. Gropp, T. Hoefler, R. Thakur, and E. Lusk, Using Advanced MPI:
Modern Features of the Message-Passing Interface. MIT Press, Nov.
2014.

[29] E. S. Hertel, Jr., R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I.
Kerley, J. M. Mcglaun, S. V. Petney, S. A. Silling, P. A. Taylor, and
L. Yarrington, “Cth: A software family for multi-dimensional shock
physics analysis,” in in Proceedings of the 19th International Symposium
on Shock Waves, held at, 1993, pp. 377–382.

[30] S. Plimpton, “Fast parallel algorithms for short-range molecular
dynamics,” J. Comput. Phys., vol. 117, no. 1, pp. 1–19, Mar. 1995.
[Online]. Available: lammps.sandia.gov

[31] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. V. Kalé, “Simulation-
based performance prediction for large parallel machines,” International
Journal of Parallel Programming, vol. 33, no. 2, pp. 183–207, 2005.

[32] A. Bhatele, N. Jain, Y. Livnat, V. Pascucci, and P.-T. Bremer, “Evaluating
system parameters on a dragonfly using simulation and visualization,”
Tech. Rep., July 2015, technical Report.

[33] M. Garcia, P. Fuentes, M. Odriozola, E. Vallejo, and R. Beivide.
FOGSim interconnection network simulator. [Online]. Available:
http://fuentesp.github.io/fogsim/

[34] P. Yebenes, J. Escudero-Sahuquillo, P. J. Garcia, and F. J. Quiles,
“Towards modeling interconnection networks of exascale systems with
omnet++,” in 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, Feb 2013, pp. 203–207.

[35] P. Luszczek, J. J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas,
J. Kepner, J. Mccalpin, D. Bailey, and D. Takahashi, “Introduction to
the HPC challenge benchmark suite,” Tech. Rep., 2005.

[36] K. Wen, P. Samadi, S. Rumley, C. P. Chen, Y. Shen, M. Bahadori,
J. Wilke, and K. Bergman, “Flexfly: Enabling a reconfigurable drag-
onfly through silicon photonics,” in International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), Nov
2016.

