SAND2017-1843C

Modeling for understandmg and preventm |

cascading thermal runaway in battery packs
John Hewson, Randy Shurtz
Sandia National Laboratories

2017 Energy Storage Systems Safety & Reliability Workshop
Feb.22-24, 2017, Santa Fe, NM
SAND2017-XXXX

U.S. DEPARTMENT OF
@ ENERGY .-"A' Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed

Natfonal Nuciear Socurtiy Adminiatration Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.




The drive to greater energy density and efficiency

= |ncreased energy densities and other material advances
lead to more reactive systems — greater efficiency / less
losses.

= Charged batteries include a ‘fuel’ and ‘oxidizer’ all internally.

Li-lon electrolyte,
packaging, and
other materials are
often flammable.

External heating or
internal short
circuits can lead to
thermal runaway.

Liquid electrolyte
C;H,0;, LiPF;

Electrolyte decomposes, T >100 C
LiPF, — LiF + PF;
PFs + H,0 — 2HF + POF;
C;H,0; — CO, + PEO

Cathode

Li,Co0O,
SEI growth
™ Li*+ C;H,0;

\

SEI layer
(passivation layer)
CH,CH,0CO,Li, Li,CO;

Cathode oxidizes electrolyte T >200 C
Li,Co0O, — xLiCo0, + (1-x)/3 (Co;0,4+0,)
Co0;04 — 3 CoO +0.50,

C;H,0; +2.50,— 3 CO, +2 H,0




Validated reliability and safety is one of four critical
challenges identified in 2013 Grid Energy Storage
Strategic Plan

Single Cell

~0.5-5 Ah
Failure rates as low as 1 in several \&

mi“ion, Strings and Targe
format cells

But number of cells used in ~10-200 Ah
energy storage is potentially huge

(bl”IOnS) 1000s cells

10-50 KWh
Moderate likelihood of \E

‘something’ going wrong, Stationary storage

system 1000s or more

Need to design against many individual cells
ep efege MWh+
possibilities.

www.nissan.com
www.internationalbattery.com

A single cell failure that propagates e sameund com
through the pack could lead to an www.saft.com
impact even with very low individual

failure rates




Approaches to designing in safety

The current approach is to test our way into safety?

= Large system (>1MWh) testing is difficult and
costly.

Consider supplementing testing with predictions of
challenging scenarios and optimization of mitigation.

= Develop multi-physics models to predict failure
mechanisms and identify mitigation. -
Build capabilities with A e
small/medium scale

measurements.

Still requires some testing and
validation.

. . . _ Time; 46.683046
1‘Power Grid Energy Storage Testing Part 1. Blume, P.; Lindenmuth, K.; Murray, J. EE — Evaluation Engineering. Nov. 2012.




How do we evaluate thermal runaway in realistic (g
scenarios?

e Leverage the large DOE-NNSA Investments in Sierra-Mechanics Integrated
Code simulation tools developed at Sandia National Laboratories under the
Advanced Scientific Computing (ASC) program for Science-based Stockpile
Stewardship by applying these tools to battery safety analysis

Physics:

Turbulent fluid mechanics (buoyant
plumes)
| Participating Media Radiation (PMR)
Unsaty o Reacting flow (hydrocarbon, particles,

o ,./ ‘fw;% (plume puffing)
N solids)
@ Conjugate Heat Transfer (CHT)

The simulation tool predicts the
thermal environment and object
response

Heat transfer mechanisms in a fire




Multi-physics couplings
Fluids:PMR:Conduction

nia\\

Conduction \
Heat Transfer,
Enclosure Radiation

1 DOF/node
+ chemistry

Temperature

SGT object-in-fire




From predicting fire environments to predicting =,
heat release in a battery pack

Joratories

. 2.163e+03

Time] 120.001112

Temp
7 5000e-07

2.980e+02 764 1230 2.163e+03 o
e

mass burning rate Time: 62.669048 _. : \ : :
Fire environment results in heating
0000e+00 12e-7 2.5e-7  3.8e-7 500007

Lt L L 101111 of notional battery paCk.

Now focus on what happens to
that heated battery pack.




Development of heat release models from h
calorimetry measurements
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Calorimetry measurements inform and calibrate models for heat release

rates.

Here cathode heat release models are evaluated based on literature

measurements.

These heat release models are in our codes and used in subsequent

predictions.
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Measurement from: MacNeil, D. D. and J. R. Dahn (2001). Journal of Physical Chemistry A 105(18): 4430-4439.
Models based on Spotnitz, R. and J. Franklin (2003). Journal of Power Sources 113(1): 81-100.




Development of heat release models from h
calorimetry measurements

= Calorimetry measurements inform and calibrate models for heat release
rates.

Here cathode heat release models are evaluated based on literature
measurements.

These heat release models are in our codes and used in subsequent

predicti
:: /O': SEl decomposition 2 ROCOZLi — LiZCO3 + prod \

« Cathode-electrolyte COOZ 4 (:31-14()3 _)§CO3O4 + prod
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* Electrolyte-salt
C,H,0,

A ¢ Anode-electrolyte C6Li + C3H403 — Li2C03 + prod /

=
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+ LiPE. — prod
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Measurement from: MacNeil, D. D. and J. R. Dahn (2001). Journal of Physical Chemistry A 105(18): 4430-4439.
Models based on Spotnitz, R. and J. Franklin (2003). Journal of Power Sources 113(1): 81-100.




Modeling thermal runaway in lithium ion cells

Evolution simulated using calorimetry-derived heating rates and
lumped thermal mass.

Consider SEl decomposition, cathode-electrolyte reaction, electrolyte

If you have good low-temperature calorimetry for your specific

chemistry and can adequately model the heat transfer, predictions of
initial runaway are achievable.
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Thermal runaway occurs if
heat release exceeds heat losses

- [—-—-Mn204, Tinf=150 C :
Mn204, Tinf=240 C i i
_ / { Chemical heat

" { release

Note multi-step
heat release with
minima at
intermediate temp
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Cell max temp [C]
* Predicted heating rates based on ARC measurements.
* Higher environment temperature leads to thermal runaway.

« Low temperature degradation occurs in both cases.




Thermal runaway occurs if
heat release exceeds heat losses

- —-‘—-Mn2‘O4, Ti‘nf=15(‘)C | | | | 4

Mn204, Tinf=240 C i .
/ { Chemical heat
/ release

But, if the temperature

dependence is strong,

sensitivity to scale and
losses  pegat osses is small.

o

dT/dt [C/s]

-- Active mitigation
- increases heat losses, ' Focus mitigation on

| ;_“‘_ralses ignition temperature | shallow-sloped regions!
4‘0 6‘0 8‘0 160 150 14‘fO 1é0 150 260 zﬁo

Cell max temp [C]

 Criterion for self heating:

QAe E/RT +(V2 /R)

>heﬁA(T—TOO)

internal




Increasing scale increases temperature
inhomogeneities

- [—-—-Mn204, Tinf=150 C :
Mn204, Tinf=240 C i i
_ / { Chemical heat

" { release

Increasing battery
scale reduced
heat losses,
lowers ignition
temperature

bt
o
N

o

dT/dt [C/s]

80 100 120 140 160 180 200 220

Cell max temp [C]

LT

Can be important at 10+ cm.
a dt.

Depends on thermal diffusivity:




Impact of SOC on Runaway — Josh Lamb Expts.
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Results show a nearly linear relationship between total heat release (kJ) and cell SOC — similar to
data for cell size this suggests that failure enthalpy is based largely on the stored energy
available

Heat release rates (e.g. runaway reaction kinetics) follow an almost exponential relationship
with cell SOC - again this is traditionally thought to cause a greater risk of thermal runaway
Could a runaway still occur with large numbers of low SOC cells or cells in well insulated
conditions?




Increasing stored energy (SOC) leads to
exponentially faster heat release rates

1.E+01

1.6

1.E+00

Fully charged cells observed to undergo
more violent exothermic reactions.
Charged fraction of cathode and anode
are reactive component.

* CoO, vs LiCoO,; LiCg vs Cg

1.E-01

=
N

1.E-02

Max dT/dt (K/s)

1.E-03

=
(=]

1.E-04

1.E-05

Max dT/dt (K/s)

o
(<]

0% 20% 40% 0% 80% 100%

Greater heat release associated with :
greater fractions of active material
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o greater heat release due to
Arrhenius rate constants.

C6LI0.25

Temperature (K)

~——C6Li0.15
C6LI0.05
—C6Li0.01

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (sec)




Relating short circuits to the oven test

Oven test: Determine the transition to thermal runaway based on an
environment temperature.

Heat release from short circuit has a mild temperature dependence
and can be related to environment temperature:

r,=1,+P/h,A
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Relating short circuits to the oven test-2

Loy

=1 +P/h A

Oven test, 100% SOC.
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Equivalent oven tests
need reduced SOC
because energy is
discharged to heat cells.
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——Short Circuit at Ambient Temperature, Varying Resistance
¢ Oven Matching Cathode and Teff of Shorted Cell at Runaway Onset




Required cooling for a given short circuit

Free Forced Forced
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in Air in Air in Water
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100000

18650 cells,
homogeneous
heating: internal
temperature
fluctuations will
be worse for
large format
systems and
localized shorts.

100% SOC, but
energy required
for heating is
unavailable for
runaway.




Required cooling for a given short circuit
2
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Failure of a single cell can propagate to rest of pack

Experimental propagation in
5 stacked pouch cells
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Lamb, J., et al. (2015). Journal of Power Sources 283: 517-523.




Cascading propagation across multiple (5) cells

* Prediction and mitigation of cell-to-cell
propagation is key to addressing risk.
Here simulating propagation across
series of pouch cells.

Accurate measurements of highest
temperature kinetics unavailable and
need to be calibrated to get
agreement.
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Cascading propagation across multiple (5) cells

* Prediction and mitigation of cell-to-cell
propagation is key to addressing risk.
Here simulating propagation across
series of pouch cells.

Accurate measurements of highest
temperature kinetics unavailable and
need to be calibrated to get
agreement.
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Sensitivity of propagation rate to high-T kinetics

e Multiply low and high temperature rates by 10x.
* Accelerated low-T rates has negligible effect.
* Accelerated high-T rates has first-order effect (anode Li-
electrolyte reaction).
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Pulsating Propagation at large scales

Extend modeling to large
scales at small cost relative
to measurements.

Here predictions include .

multi-step mechanism B G e 0 1 e o e et
involving anode, cathode, '

electrolyte reactants.
Pulsating front speed
observed.

Mesh Spacing = 0.0001 m

N —
1.0E+00
* Propagation across a
large pack (128 cells
here) exhibits pulsating
instabilities.
Note heating rate varies
1.0E-03

5000 10000 15000 20000 25000 30000 by 1OOX (Iog Scale)

time (sec)

Average Temperature Progress Variable
Average Heating Rate Progress




Pulsating Propagation at large scales

Extend modeling to large

scales at small cost relative

to measurements.

Here predictions include :

multi-step mechanism , 300 876 452 529 605
involving anode, cathode, “Time: 12000 sec .

electrolyte reactants. - /

Pulsating front speed
observed.

Mesh Spacing = 0.0001 m

L

— sy ' , ]
e - = \ ——— =
1 A y — Pl v
1.0E+00 B |l ; b e :
= . = L ok

2011 Chevy Volt Latent Battery Fire
at DOT/NHTSA Test Facility

* Note heating rate varies

1.0E-03

10000 15000 20000 25000 30000 by 1OOX (Iog Scale).

time (sec)

Average Temperature Progress Variable




The mechanism of pulsating propagation

Heat released is conducted upstream of reaction front, increasing the total
enthalpy (sum of sensible and chemical enthalpy) H =cpT+YrAHr

ToT

Front propagates rapidly through preheated region with larger H;;.
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reaction front.




Parameter studies of propagation at large scales
are possible with models
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In closing i

Thermal runaway is a risk and potential barrier to development
and acceptance.

Heat release rates are moderate relative to potential dissipation.

Heat release rates scale exponentially with SOC — net heat
release.

Identification of thermal ignition criterion and sensitivity to low
temperature rates.

Identified relationship between short-circuit failure and required
heat dissipation.

Cell-to-cell propagation along homogenized pack structures
exhibits pulsating behavior, depending on total enthalpy
transport.

Quality measurements are key to parameter identification. 23
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Thermal Test Complex

A q / - -
FLAME and RADIANT HEAT

Required size for validation
Radiant heat w/convective control

=

Additional
40-sq.-ft. Radiant
Heat Test Cell

Crosswind Test Facility (X)

" | Controlled Crosswind Configuration




