SAND XXXXX
SAND2017- 1906PE

Multiscale optimization under
uncertainty

Bart van Bloemen Waanders
m Sandia National Laboratories
RAPID OPTIMIZATION LIBRARY Opt|m|zat|0n & UQ Org 1441

Collaborators: T. Wildey, D. Seidl (SNL), H. Li (MIT)
February, 2017

@ ENERGY #VS
Mational Nuclear Securfly Adminietration
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-XXXXP




PDE-constrained optimization

min f(u,z) subjectto c(u,z) =20

U, T

where u is the state, x are the control variables,




Objective function formulations )
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Equality constraints
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Solution strategy ) 2=,
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Risk averse optimization

min F(u(€),z) = o [||F(u(©),2)|I*] + Sl
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s.t. c(u(é),x) =0

where u is the state, x are the control variables,

¢ are stochastic components, and o is a risk measure




Trilinos packages

Linear Algebra

Epetra
EpetraExt
Tpetra
Jpetra
Kokkos

Preconditioners
ML
Ifpack

Teko

Mesh Partitioning /

DD
Claps
Moertel
Isorropia

Zoltan

Solvers

AztecOO
Belos
Pliris
Komplex
Amesos
NOX
LOCA
ROL

Piro
Rythmos
TriKota
Globipack
Optipack

Anasazi

PDE Tools

Phalanx
Intrepid
Shards
Panzer

Tools

Teuchos
SEACAS
STK
Sacado
Stokhos

Interfaces

Thyra

PyTrilinos
Stratimikos




Trilinos packages WE=S

Linear Algebra PDE Tools
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Multi scale/physics Interface for Large scale Optimization
(MILO)
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Example use cases L}

Inversion acoustics / elasticity.

Estimating basal friction of ice sheets.
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Calibration of electrical device models.
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Note:
Region of interest is stochastic

Parameterized with KL expansion

Region around the speakers are stochastic
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Solution (real part)
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Scalability in the stochastic dimension = ===
dim PDE Solves CPob; CPgraa  Obj. Value
42 11,543 145 145 5.2542
44 32,739 233 481 5.2637
46 60,617 243 1,453 5.2641
48 79,221 247 2,961 5.2641
50 90,157 251 4,569 5.2641
60 100,911 271 7,621 5.2641
70 103,979 291 8,233 5.2641
80 105,607 311 8,253 5.2641
Scalable performance as dim is increased!
D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders , “Inexact Objective Function Evaluations
in a Trust-Region Algorithm for PDE-Constrained Optimization under Uncertainty”, SIAM Journal on Scientific
Computing, 2014, Vol. 36, No. 6, 13




Key Points

» State-of-the-art PDE constrained optimization

* Finite element based framework that automates the
necessary optimization objects and interfaces

« Complete range of optimization formulations

* Optimization under uncertainty via risk averse methods




Application to Hydraulic Fracturing

* Map uncertainty from reconstructed material properties to control
under uncertainty

* FWI and EM inversion for material properties
* Fracture inversion using peridynamics

* Control of operating conditions to steer towards optimal fracture
patterns

* Optimal experimental design to guide data acquisition

e Develop real time feedback control




Challenges

Coupled physics: Non-Newtonian fluid flow, peridynamics
Multiscale inversion/control
Quantification of uncertainties

Implement inversion/control with real data and operating conditions

Real time will require reduced order modeling and feedback control
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Inversion and control
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Anthropogenic and biospheric sources

f(x) = sexp((x —m)' X7 (z — m))

. Anthropogenic Sources and Sensors for ¢; . Biospheric Sources and Sensors for ¢;
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Inversion of biospheric sources

Biospheric Sources and Sensors for ¢;

e 100 Gaussian kernels
e constant initial guess

X ) 2 4
e Gaussian noise o° =10

* two temporal measurements for > 0.5
each of 16 sensors

* noisy solution: few sensors,
noisy data, sparse source terms

0
0 0.5 1 1.5 2
X
. Mean of Inferred Sources . Variance of Inferred Sources
’ - #
- 4> .
.
> 0.5 » - > 0.5
0 J

0 0.5 1 1.5 2 0




Sandia
m National
Laboratories

Control problem

e constant spatial subregion and single temporal targets
* 50 spatial control points with three temporal periods

e evaluate risk neutral and CVaR




Differences between RN and CVaR controls
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