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Motivation () &,

What is the problem?

m Multiphysics problems: application-specific with increasing
complexity through new types of physics and/or
discretizations

m No resource-efficient general black-box solver available

What can we do about this?

Flexible software framework for iterative solvers/preconditioners
m Modular design for application-specific solver layouts

m Usability through simplified user interfaces for non-experts
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Blocked linear operator Example: 3 x 3 blocked operator
m Single-field problems

represented by diagonal . ]
blocks L
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Representation of fully-coupled multiphysics problems ) .

Blocked linear operator Example: 2 x 2 blocked operator

m Single-field problems with nested 2 x 2 blocked operator

represented by diagonal . _E
blocks !

m Coupling represented by A— |__ _ _|_
off-diagonal blocks
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hierarchical dependencies —




Representation of fully-coupled multiphysics problems @ .

Blocked linear operator Example: 2 x 2 blocked operator
m Single-field problems with nested 2 x 2 blocked operator
represented by diagonal . Bt
blocks L
m Coupling represented by A— |__ _ _|_!E_| ______

off-diagonal blocks

m Nested blocked operators for
hierarchical dependencies —

How to design efficient multigrid preconditioners
for multiphysics problems?
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Multigrid method

Transfer operators + Level smoothers

m Generate coarse representations A() of fine level problem A(®)
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Idea of Algebraic Multigrid Methods @ .

Multigrid method

Transfer operators 4+ Level smoothers

m Generate coarse representations Al) of fine level problem A©)
using AUTY) = Ry, 14 1) AD P 1y

m Rectangular transfer
operators P(jy1),; and
Ri—iv1)

m Level smoothers S()
damp high-oscillatory
error modes




MueLu — The Trilinos Multigrid framework

MueLu multigrid framework:
m Extensible software layout
m Modularity:
Preconditioner layout
defined by small building
blocks
m Logic: Building blocks
connected through logical
data dependencies

m Flexible user input system
through XML files

m Designed for next-generation
HPC systems
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Example: Building blocks for
transfer operators and level
smoother

www.trilinos.org/packages/muelu
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Multigrid preconditioner layout for multiphysics .

Multigrid for multiphysics

Transfer operators + Level smoothers + Coupling

m Segregated transfer operators P and R to keep algebraic
blocks separate on coarse levels
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Multigrid preconditioner layout for multiphysics .

Multigrid for multiphysics

Transfer operators + Level smoothers + Coupling

m Segregated transfer operators P and R to keep algebraic
blocks separate on coarse levels

m Nested block
smoothers consider

coupling of different
fields
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Segregated transfer operators 4-| 3
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Transition from level i to i+ 1:
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Block smoothers (D=

Pool of block smoothers

m General n x n block systems: Blocked Gauss-Seidel smoother

m General 2 x 2 block systems: SIMPLE, Uzawa, Braess-Sarazin

m Physics-based block smoothers from the Teko package

Build your application-specific block smoother

m Consider the coupling blocks when

designing the block smoother . —

>
I
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Block smoothers (D=

Pool of block smoothers

m General n x n block systems: Blocked Gauss-Seidel smoother

m General 2 x 2 block systems: SIMPLE, Uzawa, Braess-Sarazin

m Physics-based block smoothers from the Teko package

Build your application-specific block smoother

® BGS iterati
m Consider the coupling blocks when ° SIMPILga;t:a?gtion

designing the block smoother
m Use nested block smoothers:
1 BGS (0.5)
= 1 SIMPLE (0.8) A=
m ILU(0), ov=1
m ILU(0), ov=1
= ILU(0), ov=1




Resistive Magnetohydrodynamics [ .

0 1 1
—u+u-Vu—V-uVu+Vp+V-(——B®B+—||B||2I) —0
ot ) 240
V-u=0
a—B+V><(u><B)—V><EVXB—i—Vr:O
ot Ho

V-B=0
with appropriate initial and boundary conditions.

Stabilized discretization of MHD equations using equal order
piecewise bilinear elements on hexahedrons




Sandia
Reference solver () &,

Stabilized discretization of MHD equations using equal order
piecewise bilinear elements on hexahedons

= Collocated solution unknowns (uy, uy, u,, p, Bx, B, B,,r) on each
mesh node

Reference solver

m Preconditioned GMRES (from Belos or AztecOO package)
m Fully-coupled MuelLu multigrid preconditioner

m 8 DOFs per node
m Level smoother: Additive Schwarz (overlap=1) with ILU(0)
m Non-smoothed transfer operators

P.T. Lin, J.N. Shadid, R.S. Tuminaro, M. Sala, G.L. Hennigan, R.P. Pawlowski; A parallel fully coupled algebraic
multilevel preconditioner applied to multiphysics PDE applications: Drift-diffusion, flow/transport/reaction,
resistive MHD; Int. J. Numer. Meth. Fluids, 64,1148-1179; 2010

J.N. Shadid, R.P. Pawlowski, E.C. Cyr, R.S. Tuminaro, L. Chacon, P.D. Weber; Scalable implicit incompressible
resistive MHD with stabilized FE and fully-coupled Newton-Krylov-AMG; Comput. Methods Appl. Mech. Engrg.,
304, 1-25; 2016




Block multigrid preconditioner @ .

Incompressible resistive MHD equations:

Block structure of linear systems after discretization:
. . m 2 X 2 block system with 4 DOFs
A— per node each block
. . m Solution variables: (uy, uy, u;,p)
and (By,B,,B,,r)




Block multigrid preconditioner for MHD .
Design principles:
m Preserve coincidence of MHD unknowns on coarse levels
m Reduce memory footprint by avoiding global ILU smoothers
m Performance through ILU as single-field smoothers
Solver layout:
O m Reuse aggregates A from
j Navier-Stokes part for

magnetics part

m Non-smoothed transfer ops.

m Block smoother:
n BGS(w)

m ILU(0), ov=1

= ILU(0), ov=1
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Block multigrid preconditioner for MHD B
Design principles:
m Preserve coincidence of MHD unknowns on coarse levels
m Reduce memory footprint by avoiding global ILU smoothers
m Performance through ILU as single-field smoothers
Block smoother:

m Reuse aggregates A from
Navier-Stokes part for
magnetics part

m Non-smoothed transfer ops.
m Block smoother:

n BGS(w)
= ILU(0), ov=1
m [LU(0), ov=1

@ BGS iteration




MHD generator problem ) .

m Stabilized discretization of MHD equations using equal order
piecewise bilinear elements on hexahedrons.

m 3D channel geometry of size

m No slip flow conditions at walls.
m Natural conditions for inflow and outflow.

m Dirichlet BCs for magnetic field at top and bottom
N
2z [BX

B 0
g}z/] - [%Bo(tanh(x —x0)/A — tanh(x — XF)/A)}

with xp = 4.0, xf = 6.0, A = 0.5 and By = 3.354.




MHD generator problem — results .
240 x 16 x 16 mesh on 32 processors
Iterations: TimingS: Averaged timings

after 5 runs using
same nodes on cluster

Multigrid hierarchy:

Relative linear

solver tolerance: 4 rows nnz nnz/row cratio procs | smoother

e=1-10" 0] 491,520 97,234,432 197.82 32| 1 BGS (w)
1| 23,040 3,024,896  131.29 21.33 32| 1 BGS (w)
2 1,280 95,872 7490 18.00 5 | direct




MHD generator problem — results .
240 x 16 x 16 mesh on 32 processors
Iterations: TimingS: Averaged timings

after 5 runs using
same nodes on cluster

Multigrid hierarchy:

Relative linear

solver tolerance: L rows nnz nnz/row cratio procs | smoother

e=1-10" 0| 491,520 97,234,432 197.82 32 | 2 BGS (w)
1] 23,040 3,024,896 131.29 2133 32 | 2 BGS (w)
2 1,280 95,872 7490 18.00 5 | direct
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Island coalescence problem

Stabilized discretization of MHD equations using equal order
piecewise bilinear elements on hexahedrons.

3D cube geometry of size (2,2, 2)

2 magnetic islands as initial condition
Viscosity: v = 1074

Timestep size: At € {0.05,0.025,0.0125}
Relative linear solver tolerance: ¢ = 107

Time: t = 0.0s Time: t = 2.0s Time: t = 3.0s




Island coalescing example &
| CFL = 3.2 | 32 x 32 x 32 mesh | At =0.05s

Iterations: Timings:
20

w
S

—%— FC-AMG
—— AMG(1 BGS (0.5))
—{}— AMG(2 BGS (0.5))

)
S

—
o

o

Accumulated timings per timestep [s]

Accumulated lin. it. per timestep [-]

o

| | |
10 20 30 40 50

10 20 30 40 50
Timesteps Timesteps
Multigrid hierarchy:
L rows nnz nnz/row cratio procs | smoother
0 | 246,016 52,032,384  211.50 8 | n BGS(0.5)
1| 10,736 1,855,392  172.82 22.92 8 | n BGS(0.5)
2 560 80,976  144.60 19.17 2 | direct




Island coalescing example &
| CFL = 3.2 | 64 x 64 x 64 mesh | At =10.0255 |

Iterations: Timings:
20
g

w
S

—
2

)
S

=
o

=
5
2

Accumulated timings per timestep [s]

Accumulated lin. it. per timestep [-]

o

=)

20 10 60 80 100 20 10 60 80 100
Timesteps Timesteps
Multigrid hierarchy:

14 rows nnz nnz/row cratio procs | smoother

0 | 2,032,128 434,367,360  213.75 64 | n BGS(0.5)

1 90,528 15,788,304  174.40 22.45 64 | n BGS(0.5)

2 4,768 721,728  151.37  18.99 18 | n BGS(0.5)

3 416 48,720  117.12 11.46 1| direct




Island coalescing example

Sandia
National
Laboratories

| CFL = 3.2 [ 128 x 128 x 128 mesh | At =0.01255 |
Iterations: Timings:
30 20

10

Accumulated lin. it. per timestep [-]

=)

Accumulated timings per timestep [s]
=
j=]

| | | | | | | | |
20 40 60 80 100 120 140 160 180 200

Timesteps

Multigrid hierarchy:

| | | | | |
20 40 60 80 100 120 140 160 180 200
Timesteps

4 rows nnz nnz/row cratio procs | smoother

0 | 16,516,096 3,548,896,128  214.88 512 | n BGS(0.5)
1 742,976 130,015,536  174.99 2223 512 | n BGS(0.5)
2 39,488 6,090,336  154.23 18.82 154 | n BGS(0.5)
3 4,000 511,056  127.76 9.87 15 | n BGS(0.5)
4 384 42,784  111.42 10.42 1| direct




Island coalescing example &
| CFL = 6.4 | 64 x 64 x 64 mesh | At =0.05s

Iterations: Timings:
20

w
S

)

S
—
=

—
o

o

Accumulated timings per timestep [s]
—

Accumulated lin. it. per timestep [-]

o

o

10 20 30 40 50 10 20 30 40 50
Timesteps Timesteps
Multigrid hierarchy:

l rows nnz nnz/row cratio procs | smoother

0| 2,032,128 434,367,360  213.75 64 | n BGS(0.5)

1 90,528 15,788,304 17440 22.45 64 | n BGS(0.5)

2 4,768 721,728  151.37  18.99 18 | n BGS(0.5)

3 416 48,720 117.12  11.46 1 | direct




Island coalescing example &
| CFL = 6.4 [ 128 x 128 x 128 mesh | At =10.0255 |

Iterations: Timings:
20

w
S

—¢— FC-AMG|
—— AMG(1 BGS (0.5))
—[— AMG(2 BGS (0.5))

)

S
—
2

=
2

Accumulated lin. it. per timestep [-]

Accumulated timings per timestep [s]
=
j=]

=)
o

| |
20 40 60 80 100 20 40 60 80 100

Timesteps Timesteps

Multigrid hierarchy:
4 rows nnz nnz/row cratio procs | smoother
0| 16,516,096 3,548,896,128 214.88 512 | n BGS(0.5)
1 742,976 130,015,536 17499 22.23 512 | n BGS(0.5)
2 39,488 6,090,336 154.23  18.82 154 | n BGS(0.5)
3 4,000 511,056 127.76 9.87 15 | n BGS(0.5)
4 384 42,784 111.42  10.42 1 | direct




Island coalescing example &
| CFL = 12.8 [ 128 x 128 x 128 mesh | At =0.05s |
Iterations: Timings:

= 30 B = 20

g Y o Aaects wea o o ts vos ey

Z RN DN~ ance sas )

£ 15

)

= 10

“ e w W W

Timesteps Timesteps
Multigrid hierarchy:

l rows nnz nnz/row cratio procs | smoother
0 | 16,516,096 3,548,896,128  214.88 512 | n BGS(0.5)
1 742,976 130,015,536  174.99 2223 512 | n BGS(0.5)
2 39,488 6,090,336  154.23 18.82 154 | n BGS(0.5)
3 4,000 511,056  127.76 9.87 15 | n BGS(0.5)
4 384 42,784 111.42  10.42 1 | direct
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Island coalescing — memory

64 x 64 x 64 mesh on 64 procs
12 T T T T

—_
o

o

Memory footprint [GB|
=N

—o0— FC-AMG SA ILU(1)

—x%— FC-AMG PA ILU(1)
—{1+— 1 BGS (0.4) PA

r | | I
0 0 100 200 300 400 500

Elapsed system time [s]
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User interface (D=

m Flexible framework for multiphysics

preconditioners MuelLu input deck

DRSCRE

m Modular through building blocks
m XML based input deck for defining
preconditioner layout

m Flexible modular input deck not user
friendly

= Facade Classes:
application-specific simplified user interfaces

T Lnerast il NS LNE L sl g )
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User interface (D=

m Flexible framework for multiphysics

preconditioners MuelLu input deck

DRSCRE

m Modular through building blocks
m XML based input deck for defining
preconditioner layout

m Flexible modular input deck not user
friendly

O O
= Facade Classes:
application-specific simplified user interfaces

T Lnerast il NS LNE L sl g )
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User interface

m Expert provides simplified (minimal) user MueLu |nput deck
interface in an application-specific :

FacadeClass
= =Tex]|
preconditioner --: = l
Y b oty v hav 10 change 11 0 pLu-Tptra -+

ove where you sat the preconditioner

damp)ng factor” types"double’ value='1.0"/>
els" type="int" value:

Coarse: max size  type='int’ va
verbosity" type='string” value="Higl

FacadeClass

e
Liner4 Coi 1 NS UNE AL sxarmole shortar

The FacadeClass
m takes the simpflified user parameters

St N O e g )

m expands them to a full Muelu input deck
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In collaboration with

m John N. Shadid (SNL) m Jonathan J. Hu (SNL)
m Eric C. Cyr (SNL) m Raymond S. Tuminaro (SNL)
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