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Motivation

Interested in transient response times of
plasma formation as well as steady
quantities which may be sensitive to
photonic processes.

. . . . . Pulsed helium discharge
Light emission is one of the defining ’ operating at30torr(A.g

characteristics of plasma discharges. Fierro, E. Barnat)
Another tool to make comparisons to
experiments for validation purposes. e ——
Would like to begin to quantify the effect >~
of self-produced radiation on plasma :

development and its secondary effects.

e Fast-gated imaging of
Develop a method to discretely model streamer propagation.
photons in a kinetic code that allows for
the incorporation of energy dependent
photo-processes.

A. Fierro, et al., J. Phys. D: Appl. Phys., 2012. Centerfor
A. Fierro, et al., Plasma Sources Sci. Technol., 2017, to be submitted. Predictive Control
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The Kinetic Code - Aleph

Unstructured FEM (compatible with CAD)
Massively parallel (scales up to 100k proc.)
Hybrid PIC + DSMC, also PIC-MCC
Electrostatics with fixed B Field
Advanced surface (electrode) models
Collisions, charge exchange, chemistry,
excited states, ionization

Photon transport, photoemission,
photoionization

Advanced particle weighting methods
Dynamic load balancing restart (with all
particles)
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e Simulation of

e 2D simulation of a
Langmuir probe in the
electron saturation regime
demonstrating unexpected
streaming instabilities (B.
Yee).

streamer
formation along a dielectric
surface (C. Moore).
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Radiation Transport Method

c e-+tA>A*+e-
— leads to an accumulation of A*
« for each A* evaluate:
— R <1 -etr 1 =lifetime of A*
« If evaluated to be true
A* > A+ hy
[Vonl = €, v, = isotropic
— Apn = he / (E(A*) — E(A))
» Lorentz shape
Ay = tan[(R — 0.5)7] - AN+ Ao

 Doppler shape
(c+ f’ph ’ vp)/\c

Ar =
C
« Each photon is pushed through the
computational domain and

interactions are handled with
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e Verification of the method.
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e Simulated line profiles.

traditional DSMC procedures.

Center for

Predictive Control

A. Fierro, et al., Phys. Plasmas, 2016. °f::|‘":‘;l:‘a"s‘::;;

A. Fierro, et al., Phys. Plasmas, 2014.

S

d Systems.

DOE Plasma Science Center
Control of Plasma Kinetics



Towards Validation

* With this method, we are able to generate spatially-resolved
line emission spectra that does not assume LTE.
— Can we begin to use emission spectra as a viable validation tool?
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Experimental setup focused on
capturing time-resolved optical
emission spectroscopy in the visible
regime.
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Towards Validation

« With this method, we are able to generate spatially-resolved
line emission spectra that does not assume LTE.
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Towards Validation

Voltage (kV)

« Initial comparisons to experimental data
— 10 ns camera gate, timing indicated by green window.

— Simulation spectra taken at t = 60 ns

— Working on time correlation between experiment and simulation
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 The simulation produces realistic line ratios for the He lines

shown.

« Assume pure He gas, no impurities are included.
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Application to Large Scale Simulations

How do photonic mechanisms impact near atmospheric
pressure discharges? The goal is to simulate a three-
dimensional system of a pulsed, near atmospheric pressure
discharge.

— How big of a system is capable of being simulated in reasonable time.

— What assumptions can be made to alleviate computational requirements?

— What are the numerical challenges (timestep, space step)?

— What are the computational resource challenges (memory, processors)?

Simulations at higher pressures are extremely challenging due
to the anticipated large electron densities. This results in a
smaller mesh to resolve Debye lengths and avoid numerical
heating.
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lonization Wave Simulation

Numerical parameters are
guided by experiments of
similar type discharges

— 500 torr background pressure

— 105 cm3 electron density

— 0.5 eV electron temperature

Debye length and Photon
CFL conditions (photon
does not cross more than
1 element in a time step)
set the minimum time step
and spatial step.
— dx =50 nm

— dt=2x10"s

Spatial or Time Scale

Debye Length - Ay ~150 nm
Electron Mean Free Path - A, ~200 nm
Photon Mean Free Path - y,¢, ~25 ym
Inverse plasma frequency - (w,e)! ~1x10"3s
Inverse collision frequency - (v.)' ~5x1013s
Electron CFL @ 5 x 108 m/s ~1x10"3s
Photon CFL ~2x10"s
Charged particles per element 50

« Compare 2 different cases:

— 90% Nitrogen, 10% Helium
— 10% Nitrogen, 90% Helium

Naa o

Lo, e

~58nm
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Simulation Setup

V=1500V

Note: Mesh resolution
shown at a factor 4x
increase.
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150 um

60 Hm o g
~170 million elements for only a 10 degree wedge.

To ease particle requirements, for r > 60 um, we assume vacuum. Executed
on 5120 cores on the Skybridge super computer.

In summary, this is a very challenging simulation for even modern

computers and numerical techniques.
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90% N,, 10% He

Time: 0.00 ns
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10% N,, 90% He

Time: 0.00 ns
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Results

Comparing photo-effects
each case
— Both photo-emission and

from

photo-

ionization occur earlier for 90% He
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less energy loss to vibrational or

rotational energy modes.
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Conclusion and Outlook

- Have incorporated a method to discretely track photons and include
energy-dependent photo-processes.

—— 100 torr
—0— 200 torr
« Can generate non-LTE emission ER e
spectra that is both spatially and ‘§ I ; |
temporally resolved. On-going work £ S
is comparing simulation data versus o |47 W v‘v" , ‘ Pl
: AR \s‘:}l\ ) .
experlment' 58.40 58.41 5842 58.43 5844 58.45 5846 5847
Wavelength (nm)
« Gain knowledge in simulating large-scale, near atmospheric pressure
plasmas.
- H il - Even on large super computing systems, modeling
U

larger plasma devices ( > 1 mm) at near atmospheric
pressures with a kinetic code is still very much a
challenging problem, and likely still years away with
current algorithms and hardware.
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