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Abstract — Quasi-Static-Time-Series (QSTS) simulation is a
valuable tool for evaluating the behavior of power systems through
time. By performing daily, yearly and other time-based
simulations, it is possible to characterize time-varying power
conversion devices such as photovoltaic panels, storage, loads, and
capacitors, among others within the power system. However,
depending on the time-step resolution and simulation duration, the
sequential simulation may require a considerable amount of
computing time to complete. This paper describes the OpenDSS-
PM program which is the new Parallel Machine version of EPRI’s
open-source distribution system simulator program, OpenDSS, to
accelerate QSTS simulations using multi-core computers.
OpenDSS-PM is used to implement temporal parallelization and
circuit solutions with Diakoptics based on actors as techniques to
reduce the time required in QSTS. The results reveal that these
techniques enable a significant reduction in time using common
computer architectures.

I. INTRODUCTION

Quasi-Static-Time-Series (QSTS) simulation is a valuable
tool for evaluating the behavior of power systems through time.
By performing daily, yearly and other time-based simulations,
it is possible to characterize time-varying power conversion
devices such as photovoltaic panels (PV), storage, loads, and
capacitors, among others within the power system. Particularly
in the case of PV systems, their proliferation as alternative
power source has generated the need of carrying studies such as
PV hosting capacity [1, 2], interconnection studies [3-5] and
microgrids among others, which are QSTS based.

However, depending on the time-step resolution and
simulation duration, the sequential simulation may require a
considerable amount of computing time to complete [6]. This
paper presents the use of OpenDSS-PM (Parallel Machine),
which is derived from EPRI’s open-source Distribution System
Simulator, OpenDSS [7], to accelerate QSTS simulations using
multi-core computers. OpenDSS-PM is used to implement
temporal parallelization and Diakoptics based on actors [8, 9]
as techniques to reduce the time required in QSTS. The results
reveal that these techniques enable a significant reduction in
time using common computer architectures. Faster QSTS
simulations will provide distribution engineers with a more
accurate understanding of the impacts of solar variability and
high penetrations of PV on the distribution system [10].

This paper is organized as follows:

An introduction to OpenDSS-PM

A brief description of the Parallelization methods
Simulation results using OpenDSS-PM parallelization
Conclusions

II. OPENDSS-PM (PARALLEL MACHINE)

The OpenDSS program is an open-source electric power
Distribution System Simulator (DSS) for supporting distributed
resource integration and grid modernization efforts. OpenDSS
was originally developed by Electrotek Concepts, Inc. in 1997
under the name of DSS. Since then, it has acquired an important
number of capabilities to support the smart grid analysis,
including a wide number of device models and simulation
modes for this purpose.

This simulation platform was originally built for execution in
a single, sequential process. Each procedure/function is called
sequentially to perform a QSTS simulation. The performance
that can be achieved is based on the structure of the low level
routines, the simplicity of the routines, and the efficiency of the
compiler.

EPRI made the program open source in 2008 to encourage
efforts in grid modernization by providing a tool to the power
industry capable of performing advanced studies. The
program’s name was changed to OpenDSS to emphasize that it
was open source. Since then, EPRI has explored several
methods to accomplish parallel processing in OpenDSS,
including the parallelization of the whole program using a
different interface (the Direct DLL API), the modification of
the solver using other programming languages, and other
methods.

However, these approaches demand additional complications
in the user interface, extra effort from the user, and they will be
always tied to a particular interface. As a consequence, the
desired features that users are accustomed to, such as the COM
interface, would be at risk of being deprecated for this type of
processing.

Modern computing architectures are characterized for
introducing the concept of multi-core computing [11]. This
feature allows the performance of applications to be improved
by distributing tasks on multiple cores to work concurrently.
This feature in modern computers created the obvious need for
taking OpenDSS into a parallel computing simulation suite.

EPRI has evolved OpenDSS into a more modular, flexible
and scalable parallel processing platform we are calling
OpenDSS-PM based with the following guidelines:

e The parallel processing machine will be interface-
independent

e Each component of the parallel machine should be able to
work independently



e The simulation environment should deliver information
consistently

o The data exchange between the components of the parallel
machine should respect the interface rules and procedures

e The user interface for the parallel machine should be easy
and support the already acquired knowledge of OpenDSS
users

To create the parallel machine, OpenDSS-PM uses the actor
model [12-15]. There are several actor frameworks for the
Delphi language proposed by various authors; however, the
chosen framework had already been developed by the authors
to evaluate Delphi’s tools for parallelization. Each actor is
created by OpenDSS-PM, runs on a separate processor (if
possible) using separate threads, and has its own assigned core
and priority (real-time priority for the process and time critical
for the thread).

The interface for sending and receiving messages from other
actors will be the one selected by the user: either the COM
interface, the Direct DLL API, or a text script using the stand-
alone EXE version of the program. From this interface, the user
will be able to create a new actor (instance), send/receive
messages from these actors, and define the execution properties
for each actor. The properties include the execution core,
simulation mode, and circuit to be solved, among others. The
actor parallelization concept is presented in Fig. 1.

III. THE PARALLELIZATION TECHNIQUES

The parallelization techniques utilize multiple independent
computing resources to decompose the simulation complexity.
This decomposition can be done by distributing the work in
time or by simplifying the power flow problem complexity
using simpler representations of it.

As a result, the amount of time required for solving a large
number of simulation steps is expected to be reduced. In this
paper two methods are explored: Temporal parallelization and
Diakoptics based on actors. The first one seeks to distribute
temporal segments of the total simulation task into multiple

actors to complete the whole simulation.
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Fig. 1. OpenDSS-PM general description.
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Fig. 2. Temporal Parallelization concept. The top figure is the standard
QSTS, and the bottom figure below demonstrates temporal
parallelization of QSTS.

The second one decomposes the interconnected circuit into
smaller and simpler sub-circuits, each of these systems will be
assigned to an actor to find a partial solution that will be
complemented in a later stage.

A. Temporal parallelization

Temporal parallelization is a technique that consists of
splitting the simulation into multiple time periods with each
period being simulated sequentially and concurrently to each
other. Each of the multiple temporal segments will deliver
partial results that after being concatenated will deliver a very
close result as if the simulation was performed sequentially.
This technique is illustrated in Fig. 2.

In this simulation technique the circuit’s complexity remains
intact, which means that each temporal segment requires a
startup simulation time. The startup time is the longest time in
a QSTS simulation and will force a non-linear acceleration
when using this technique. When applying temporal
parallelization, the startup simulation time can be located at the
junction points between actors.

Additionally, since distribution power flows are dependent
on the previous time-step and there is no information about the
state of the control devices at these points before starting the
simulation, a systematic error can be introduced. Nevertheless,
if the adequate control actions are performed during the startup
step the systematic error can be reduced. OpenDSS-PM is
designed to perform all the needed control actions at the



simulation start up for each concurrent actor to minimize the
error and maintain the simulation fidelity.

B.  Diakoptics Based on Actors

Diakoptics Based on Actors (A-Diakoptics) is the result of
combining two computing techniques from different fields. On
one hand there is Diakoptics [16, 17], which is a mathematical
method for tearing networks to create a set of independent sub-
networks. Each sub-network can be handled and solved
independently and the size of each sub-network is smaller than
the interconnected network.

The Actor model is an information model for dealing with
inconsistency  robustness in parallel, concurrent, and
asynchronous systems [12, 18]. This information model allows
multiple processes to be executed in parallel with information
passing through them using messages. As a result, the
information consistency can be ensured, avoiding frequent
issues when working with parallel processing systems, such as
race conditions and memory sub-utilization (when working
with multicore processors) among others.

A basic description of A-Diakoptics is shown in Fig. 3. The
subsystems, and their relationships can be described as a set of
matrixes representing the subsystems (Zrr), the link branches
between them (Zcc) and their relationship within the network
(Zct). As a result, by using this information and the partial
results delivered after solving each subsystem separately and
concurrently, it is possible to determine the voltages at the

network’s nodes by finding a complementary answer as follows:

Er = Zrrlomy — ZrcZec Zerlomam) ey

A-Diakoptics is a technique that seeks for simplifying the
power flow problem to perform a faster solution at each
simulation step; in contrast, temporal parallelization remains
the complexity of the problem. Consequently, the total time
reduction when performing QSTS will be evident at each
simulation step with A-Diakoptics.

IV. RESULTS

For evaluating the performance of OpenDSS-PM in the
temporal parallelization, EPRI’s Test Circuit 5 [19] is used.
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Fig. 3. Physical interpretation of Diakoptics.
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Fig. 4. EPRI Circuit 5.

This circuit is shown in Fig. 4. In this circuit, there are 5
zones where PV systems are concentrated providing a total
peak power of 2.5MW to the system (aggregate). The temporal
parallelization is performed by considering the number of
available CPUs (threads) on the computer where the tests are
performed.

A. Temporal parallelization

In this case the power flow is solved 8000 times using the
time simulation mode and step size of 1h, which is equivalent
duration of 11 months and 4 days. These quantities have been
arbitrarily selected to present round numbers for this example.
The script wrote using the OpenDSS-PM scripting tool is as
follows:

clearAll

set parallel=No ! For the compilation stage

compile "C:\ OpenDSS\EPRI_ckt5_3437_nodes\master.dss"

set CPU=0

Solve

set mode=time stepsize=1h number=2000 hour = 0 totaltime=0
NewActor | Creates a new actor

compile "C:\ OpenDSS\EPRI_ckt5_3437_nodes\master.dss"

set CPU=2

Solve

set mode=time stepsize=1h number=2000 hour = 2000 totaltime=0
NewActor I Creates a new actor

Compile "C:\OpenDSS\EPRI_ckt5 3437_nodes\master.dss"

set CPU=4

Solve

set mode=time stepsize=1h number=2000 hour = 4000 totaltime=0
NewActor | Creates a new actor

Compile "C:\OpenDSS\EPRI_ckt5_3437_nodes\master.dss"

set CPU=6

Solve

set mode=time stepsize=1h number=2000 hour = 6000 totaltime=0
set parallel=Yes

SolveAll
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Fig. 5. Error magnitude after separating the simulation in several
temporal segments

TABLE |. RESULTS ACHIEVED AFTER SPLITTING THE SYSTEM IN 4

TEMPORAL SEGMENTS
e " Time
Actor CPU In.|t|a| Iterations Time reduction

time (sec)
(%)

OpenDSS 0 8000 28.33
& 1 0 0 2000 9.68 65.83
é s 2 2 2000 2000 9.43 66.71
L o 3 4 4000 2000 9.55 66.29
o 4 6 6000 2000 9.55 66.29

By using the script presented as example, four actors are
created to split the solution time in sets of 2000 time steps (4
temporal segments). This test was performed in a computer
with a processor Intel core i7-2720 @ 2.2 GHz. The errors are
evaluated for each simulated cases (1, 2, 3 and 4 temporal
segments) to quantify the error from temporal parallelization
and how its magnitude could affect the results. The results are
shown in Fig. 5 and in TABLE I.

The voltage error magnitude is below 1.0e-3 p.u., revealing
that the control actions performed at each actor’s startup takes
the partial simulation variables to an acceptable set of values.
The error magnitude becomes non-zero after the first junction
point between the different time segments. However, this error
is still within acceptable ranges.

Then, using this architecture the system is solved by creating
2, 3 and 4 temporal segments to evaluate the time reduction.
This processor has only 2 cores in comparison with the i7
processor used in the previous test. The aim of this test is to
highlight the effect of running 2 actors on the same core when
trying to perform parallel processing. The results of this test are
shown in TABLE II. As can be seen in TABLE II, when setting
the affinity of 2 actors to the same processor’s core the
performance of the actor get decreased.

This an expected result since the core needs to attend 2
processes simultaneously, which is impossible. As a
consequence, both actors (threads) get serialized, and the
processing time for each one is higher than if the core were
dedicated to a single Actor as shown in Fig. 6.

The overhead obtained after splitting the simulation in time
can be justified as follows:

TABLE Il. RESULTS OBTAINED WITH TEMPORAL PARALLELIZATION
USING A SECOND ARCHITECTURE

Time Time
CPU Iterations (sec) reduction
(%)
2 temporal segments
OpenDSS 8000 31.19
>
a Actor 1 0 4000 18.24 35.62 Core 1
2
c
g Actor 2 2 4000 17.36 38.72 Core 2
o
3 temporal segments
OpenDSS 8000 31.19
A Actor 1 0 2666 14.12 50.16 Core 1
A s Actor 2 2 2666 16.36 42.25 Core 2
c
o o
8— Actor 3 3 2666 16.27 42.57
4 temporal segments
OpenDSS 8000 31.19
= Actor 1 0 2000 14.64 48.32
o Core 1
A Actor 2 1 2000 13.76 51.43
Ufé Actor 3 2 2000 13.73 51.54 Core 2
(9]
8— Actor 4 3 2000 13.62 51.92
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Fig. 6. Effects of having 1 or 2 Actors per Core when performing
parallel processing

1. The system’s complexity remains intact, this is, the
size of the system is the same after and as a consequence, it will
require a startup procedure on every tearing/starting point as
shown in Figure 5. Depending on the startup point in time, there
could be involved more/less control actions on each temporal
segment to find an accurate solution.

2. The coordination process taken between OpenDSS-
PM and other applications when an actor is launched by
OpenDSS-PM, to give to the actor the highest priority can add
an additional overhead for the actor startup. This process is
performed by the Operating System (OS) and cannot be
controlled when using standard OS.

3. Even when the actors are running on separate cores,
the processor’s power consumption increases due to the
dedicated priority set for each actor. Normally the system
motherboard takes actions to avoid the processors overheating
and to reduce the power consumption.



Fig. 7. EPRI circuit 5 and location of the proposed link branches

Depending on the hardware architecture (laptop, desktop PC,
Type of Power Supplies Units-PSU), the performance could be
affected when running multithread dedicated applications.
More PC architectures running with standard operating systems
need to be evaluated.

B. Diakoptics Based on Actors

Similar parallelization QSTS simulations are performed
when using the A-Diakoptics method. From previous works [2],
a 70-80% reduction in solution time is expected; however, there
will be some variations in time improvements based on the
computing environment. In fact, depending on the number of
available processor cores available and the number of actors
created the results may change.

The same test is performed by using another computer with a
processor Intel i5-5200 @ 2.2 GHz CPU. At this point, both
computers are laptop computers.

In the case of A-Diakoptics the interconnected circuit is
teared using 7 link branches as shown in Fig. 7. The link
branches were selected to generate multiple configurations and
several balanced/unbalanced distribution of nodes. The balance
is measured in terms of the amount of nodes handled by each
actor. If 2 actors are handling the same amount of nodes, the
parallel system is balanced; otherwise, the system is unbalanced
in a certain degree.

The first test consists of performing the simulation using
multiple combinations of link branches to generate a multiple
number of actors. The results are shown in TABLE II1. For this
case the simulations are performed using a co-simulation
environment between NI LabVIEW and OpenDSS-PM.

Depending on the balance, the system performance will be
seriously affected. For the case presented, the system is slightly
balanced, however, if the unbalance gets higher the solution
times can be considerably affected.

Another interesting finding is the fact that the overhead added
by the co-simulation platform is significant compared with the
performance of the OpenDSS-PM application working in
stand-alone mode. To verify this hypothesis the time per step of
each actor is totalized after each simulation considering the
number of actors used to solve the system. This information is
shown in TABLE IV.

The results presented in TABLE IV shows that the actors are
indeed asynchronous systems. The total simulation time will be
the time of the slowest actor since at each iteration the actors
need to be synchronized to perform the extra calculations.

These results also reveal that while working with more actors,
the total overhead added by LabVIEW becomes important. This
difference becomes more relevant when each actor is executed
on a separate core as shown in Fig. 8.

For the results discussed in this report we have used an Intel®
Xeon® CPU E5-2650 v4 @ 2.2GHz, while in [8, 9] an Intel®
CoreTM i7-4810MQ @ 3.4 GHz was used. This means that
working with OpenDSS-PM to perform piecewise methods
results in an accelerated simulation experience, which can be
used for multiple applications including Real-Time simulation.

6000

0 II || || || ‘| ‘l |‘ II ‘|

Actor 1 Actor2 Actor3 Actor4 Actor5 Actor6 Actor7 Actor8 Max
time

v
(=]
Q
o

IS
(=]
Q
o

Total simulation time (ms)
N w
o o
Q Q
o o

=
(=]
Q
o

B 2 Actors per Core
Fig. 8. Total simulation time per actor when allocating 1 or 2 actors
per core

B 1 Actor per Core

TABLE Ill. RESULT ACHIEVED AFTER TEARING THE SYSTEM IN
MULTIPLE ACTORS

Number of Time Elapsed (ms) Time reduction Number of
actors (%) Cores used
8 14848 68 4
16782 64 3
4 16934 63 2
2 19050 59 1
1 46684 0 1

TABLE IV. SIMULATION TIMES FOR EACH OF THE ACTORS IN
OPENDSS-PM

# of Simulation time per actor (ms) - 8760 time steps

Actors Al A2 A3 A4 A5 A6 A7 A8

8 2307 4896 4868 3870 5255 5647 4023 2264

6 2154 2555 4434 11003 5923 3607
4 3593 10658 9628 9958
2 7682 14413




TABLE V. ERRORS IN PERCENTAGE FOR EACH SIMULATION

CASE
Error (%) per number of actors
Node name

8 Actors 6 Actors 4 Actors 2 Actors

sourcebus.1 0 0 0 0

sourcebus.2 0 0 0 0

sourcebus.3 0 0 0 0
1023346.1 2.010771  2.012686 2.01203 0.807802
1023346.2 2.0915 2.111095 2.108079 0.966332
1023346.3 2.261792  2.253757 2.236306 1.050958
63657.1 2.642765 2.652466 2.649035 1.039492
63657.2 2.638333 2.667622 2.678754  1.20196
63657.3 2.88666  2.865874 2.835851  1.35616
816.2 2.685346  2.288218 2.120706 1.228647
x_1103251_1.3 3.184148 2.531579 2.637314 1.568667
28243.1 2.778495 2.108859 2.258119 1.084387
39582.1 3.310538 3.294892 2.667483 2.642919
39582.2 3.115652 3.106987 2.556511 2.514462
39582.3 3.658225 3.636021  2.87142 2.83938
x_39760_3.2 2.598807 2.586058 2.175612 1.216944

To evaluate the simulation fidelity and the error introduced
by the technique used in this report, several measurements are
performed around the circuit. The locations of the
measurements are selected randomly. The errors in percentage
for each simulation case are shown in TABLE V.

As can be seen in TABLE V, the error gets higher when more
actors are used. However, this behavior is due to the lack of
synchronism between the control actions and the modifications
ofthe actor’s YBUS matrix. Because matrixes Zrc, Zcc and Ztc
are calculated at the beginning of the algorithm, if the YBUS
matrices of the actors change during the simulation, the error
will increase. This source of error suggests that is necessary to
investigate methods for applying the non-invasive control
actions, avoiding the changing of the actor’s YBUS matrix, and
thus reducing the systematic error added.

V. CONCLUSIONS

This paper has presented the use of EPRI’s OpenDSS-PM

(Parallel Machine), to accelerate QSTS simulations using
multi-core computers. Temporal parallelization and A-
Diakoptics provide new techniques to reduce the time of QSTS
simulations without losing simulation fidelity. The paper has
discussed in depth the application of these techniques using the
standard distribution test feeders that include PV generation
with realistic irradiance profiles. With increasing penetrations
of distributed energy resources (DER) and distributed PV, the
ability to quickly perform QSTS simulations is a crucial aspect
of distribution system planning and operations.
OpenDSS-PM is an open source simulation tool available at the
OpenDSS website at sourceforge.net. The example presented in
this paper are available for NI LabVIEW when installing the
OpenDSS-PM library for NI LabVIEW using the VI Package
Manager tool [20].
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