

Open Source Tools for High Performance Quasi-Static-Time-Series

Simulation Using Parallel Processing

Davis Montenegro1, Roger C. Dugan1, and Matthew J. Reno2

1 EPRI, Knoxville, TN, 37923, USA
2 Sandia National Laboratories, Albuquerque, NM, 87123, USA

Abstract — Quasi-Static-Time-Series (QSTS) simulation is a

valuable tool for evaluating the behavior of power systems through

time. By performing daily, yearly and other time-based
simulations, it is possible to characterize time-varying power
conversion devices such as photovoltaic panels, storage, loads, and

capacitors, among others within the power system. However,
depending on the time-step resolution and simulation duration, the
sequential simulation may require a considerable amount of

computing time to complete. This paper describes the OpenDSS-
PM program which is the new Parallel Machine version of EPRI’s
open-source distribution system simulator program, OpenDSS, to

accelerate QSTS simulations using multi-core computers.
OpenDSS-PM is used to implement temporal parallelization and
circuit solutions with Diakoptics based on actors as techniques to

reduce the time required in QSTS. The results reveal that these
techniques enable a significant reduction in time using common
computer architectures.

I. INTRODUCTION

Quasi-Static-Time-Series (QSTS) simulation is a valuable

tool for evaluating the behavior of power systems through time.

By performing daily, yearly and other time-based simulations,

it is possible to characterize time-varying power conversion

devices such as photovoltaic panels (PV), storage, loads, and

capacitors, among others within the power system. Particularly

in the case of PV systems, their proliferation as alternative

power source has generated the need of carrying studies such as

PV hosting capacity [1, 2], interconnection studies [3-5] and

microgrids among others, which are QSTS based.

However, depending on the time-step resolution and

simulation duration, the sequential simulation may require a

considerable amount of computing time to complete [6]. This

paper presents the use of OpenDSS-PM (Parallel Machine),

which is derived from EPRI’s open-source Distribution System

Simulator, OpenDSS [7], to accelerate QSTS simulations using

multi-core computers. OpenDSS-PM is used to implement

temporal parallelization and Diakoptics based on actors [8, 9]

as techniques to reduce the time required in QSTS. The results

reveal that these techniques enable a significant reduction in

time using common computer architectures. Faster QSTS

simulations will provide distribution engineers with a more

accurate understanding of the impacts of solar variability and

high penetrations of PV on the distribution system [10].

This paper is organized as follows:

• An introduction to OpenDSS-PM

• A brief description of the Parallelization methods

• Simulation results using OpenDSS-PM parallelization

• Conclusions

II. OPENDSS-PM (PARALLEL MACHINE)

The OpenDSS program is an open-source electric power

Distribution System Simulator (DSS) for supporting distributed

resource integration and grid modernization efforts. OpenDSS

was originally developed by Electrotek Concepts, Inc. in 1997

under the name of DSS. Since then, it has acquired an important

number of capabilities to support the smart grid analysis,

including a wide number of device models and simulation

modes for this purpose.

This simulation platform was originally built for execution in

a single, sequential process. Each procedure/function is called

sequentially to perform a QSTS simulation. The performance

that can be achieved is based on the structure of the low level

routines, the simplicity of the routines, and the efficiency of the

compiler.

EPRI made the program open source in 2008 to encourage

efforts in grid modernization by providing a tool to the power

industry capable of performing advanced studies. The

program’s name was changed to OpenDSS to emphasize that it

was open source. Since then, EPRI has explored several

methods to accomplish parallel processing in OpenDSS,

including the parallelization of the whole program using a

different interface (the Direct DLL API), the modification of

the solver using other programming languages, and other

methods.

However, these approaches demand additional complications

in the user interface, extra effort from the user, and they will be

always tied to a particular interface. As a consequence, the

desired features that users are accustomed to, such as the COM

interface, would be at risk of being deprecated for this type of

processing.

Modern computing architectures are characterized for

introducing the concept of multi-core computing [11]. This

feature allows the performance of applications to be improved

by distributing tasks on multiple cores to work concurrently.

This feature in modern computers created the obvious need for

taking OpenDSS into a parallel computing simulation suite.

EPRI has evolved OpenDSS into a more modular, flexible

and scalable parallel processing platform we are calling

OpenDSS-PM based with the following guidelines:

• The parallel processing machine will be interface-

independent

• Each component of the parallel machine should be able to

work independently

SAND2017-6056C

• The simulation environment should deliver information

consistently

• The data exchange between the components of the parallel

machine should respect the interface rules and procedures

• The user interface for the parallel machine should be easy

and support the already acquired knowledge of OpenDSS

users

To create the parallel machine, OpenDSS-PM uses the actor

model [12-15]. There are several actor frameworks for the

Delphi language proposed by various authors; however, the

chosen framework had already been developed by the authors

to evaluate Delphi’s tools for parallelization. Each actor is

created by OpenDSS-PM, runs on a separate processor (if

possible) using separate threads, and has its own assigned core

and priority (real-time priority for the process and time critical

for the thread).

The interface for sending and receiving messages from other

actors will be the one selected by the user: either the COM

interface, the Direct DLL API, or a text script using the stand-

alone EXE version of the program. From this interface, the user

will be able to create a new actor (instance), send/receive

messages from these actors, and define the execution properties

for each actor. The properties include the execution core,

simulation mode, and circuit to be solved, among others. The

actor parallelization concept is presented in Fig. 1.

III. THE PARALLELIZATION TECHNIQUES

The parallelization techniques utilize multiple independent

computing resources to decompose the simulation complexity.

This decomposition can be done by distributing the work in

time or by simplifying the power flow problem complexity

using simpler representations of it.

As a result, the amount of time required for solving a large

number of simulation steps is expected to be reduced. In this

paper two methods are explored: Temporal parallelization and

Diakoptics based on actors. The first one seeks to distribute

temporal segments of the total simulation task into multiple

actors to complete the whole simulation.

The second one decomposes the interconnected circuit into

smaller and simpler sub-circuits, each of these systems will be

assigned to an actor to find a partial solution that will be

complemented in a later stage.

A. Temporal parallelization

Temporal parallelization is a technique that consists of

splitting the simulation into multiple time periods with each

period being simulated sequentially and concurrently to each

other. Each of the multiple temporal segments will deliver

partial results that after being concatenated will deliver a very

close result as if the simulation was performed sequentially.

This technique is illustrated in Fig. 2.

In this simulation technique the circuit’s complexity remains

intact, which means that each temporal segment requires a

startup simulation time. The startup time is the longest time in

a QSTS simulation and will force a non-linear acceleration

when using this technique. When applying temporal

parallelization, the startup simulation time can be located at the

junction points between actors.

Additionally, since distribution power flows are dependent

on the previous time-step and there is no information about the

state of the control devices at these points before starting the

simulation, a systematic error can be introduced. Nevertheless,

if the adequate control actions are performed during the startup

step the systematic error can be reduced. OpenDSS-PM is

designed to perform all the needed control actions at the
Fig. 1. OpenDSS-PM general description.

Fig. 2. Temporal Parallelization concept. The top figure is the standard

QSTS, and the bottom figure below demonstrates temporal

parallelization of QSTS.

simulation start up for each concurrent actor to minimize the

error and maintain the simulation fidelity.

B. Diakoptics Based on Actors

Diakoptics Based on Actors (A-Diakoptics) is the result of

combining two computing techniques from different fields. On

one hand there is Diakoptics [16, 17], which is a mathematical

method for tearing networks to create a set of independent sub-

networks. Each sub-network can be handled and solved

independently and the size of each sub-network is smaller than

the interconnected network.

The Actor model is an information model for dealing with

inconsistency robustness in parallel, concurrent, and

asynchronous systems [12, 18]. This information model allows

multiple processes to be executed in parallel with information

passing through them using messages. As a result, the

information consistency can be ensured, avoiding frequent

issues when working with parallel processing systems, such as

race conditions and memory sub-utilization (when working

with multicore processors) among others.

A basic description of A-Diakoptics is shown in Fig. 3. The

subsystems, and their relationships can be described as a set of

matrixes representing the subsystems (ZTT), the link branches

between them (ZCC) and their relationship within the network

(ZCT). As a result, by using this information and the partial

results delivered after solving each subsystem separately and

concurrently, it is possible to determine the voltages at the

network’s nodes by finding a complementary answer as follows:

𝐸𝑇 = 𝑍𝑇𝑇𝐼0(𝑛) − 𝑍𝑇𝐶𝑍𝐶𝐶
−1𝑍𝐶𝑇𝐼0(𝑛+𝑚) (1)

A-Diakoptics is a technique that seeks for simplifying the

power flow problem to perform a faster solution at each

simulation step; in contrast, temporal parallelization remains

the complexity of the problem. Consequently, the total time

reduction when performing QSTS will be evident at each

simulation step with A-Diakoptics.

IV. RESULTS

For evaluating the performance of OpenDSS-PM in the

temporal parallelization, EPRI’s Test Circuit 5 [19] is used.

 This circuit is shown in Fig. 4. In this circuit, there are 5

zones where PV systems are concentrated providing a total

peak power of 2.5MW to the system (aggregate). The temporal

parallelization is performed by considering the number of

available CPUs (threads) on the computer where the tests are

performed.

A. Temporal parallelization

In this case the power flow is solved 8000 times using the

time simulation mode and step size of 1h, which is equivalent

duration of 11 months and 4 days. These quantities have been

arbitrarily selected to present round numbers for this example.

The script wrote using the OpenDSS-PM scripting tool is as

follows:

clearAll
set parallel=No ! For the compilation stage
compile "C:\ OpenDSS\EPRI_ckt5_3437_nodes\master.dss"
set CPU=0
Solve
set mode=time stepsize=1h number=2000 hour = 0 totaltime=0
NewActor ! Creates a new actor
compile "C:\ OpenDSS\EPRI_ckt5_3437_nodes\master.dss"
set CPU=2
Solve
set mode=time stepsize=1h number=2000 hour = 2000 totaltime=0
NewActor ! Creates a new actor
Compile "C:\OpenDSS\EPRI_ckt5_3437_nodes\master.dss"
set CPU=4
Solve
set mode=time stepsize=1h number=2000 hour = 4000 totaltime=0
NewActor ! Creates a new actor
Compile "C:\OpenDSS\EPRI_ckt5_3437_nodes\master.dss"
set CPU=6
Solve
set mode=time stepsize=1h number=2000 hour = 6000 totaltime=0
set parallel=Yes
SolveAll

Fig. 4. EPRI Circuit 5.

Fig. 3. Physical interpretation of Diakoptics.

 TABLE I. RESULTS ACHIEVED AFTER SPLITTING THE SYSTEM IN 4

TEMPORAL SEGMENTS

Actor CPU
Initial
time

Iterations
Time
(sec)

Time
reduction

(%)

OpenDSS 0 8000 28.33

O
p

en
D

SS
-

P
M

1 0 0 2000 9.68 65.83

2 2 2000 2000 9.43 66.71

3 4 4000 2000 9.55 66.29

4 6 6000 2000 9.55 66.29

By using the script presented as example, four actors are

created to split the solution time in sets of 2000 time steps (4

temporal segments). This test was performed in a computer

with a processor Intel core i7-2720 @ 2.2 GHz. The errors are

evaluated for each simulated cases (1, 2, 3 and 4 temporal

segments) to quantify the error from temporal parallelization

and how its magnitude could affect the results. The results are

shown in Fig. 5 and in TABLE I.

The voltage error magnitude is below 1.0e-3 p.u., revealing

that the control actions performed at each actor’s startup takes

the partial simulation variables to an acceptable set of values.

The error magnitude becomes non-zero after the first junction

point between the different time segments. However, this error

is still within acceptable ranges.

Then, using this architecture the system is solved by creating

2, 3 and 4 temporal segments to evaluate the time reduction.

This processor has only 2 cores in comparison with the i7

processor used in the previous test. The aim of this test is to

highlight the effect of running 2 actors on the same core when

trying to perform parallel processing. The results of this test are

shown in TABLE II. As can be seen in TABLE II, when setting

the affinity of 2 actors to the same processor’s core the

performance of the actor get decreased.

This an expected result since the core needs to attend 2

processes simultaneously, which is impossible. As a

consequence, both actors (threads) get serialized, and the

processing time for each one is higher than if the core were

dedicated to a single Actor as shown in Fig. 6.

The overhead obtained after splitting the simulation in time

can be justified as follows:

TABLE II. RESULTS OBTAINED WITH TEMPORAL PARALLELIZATION

USING A SECOND ARCHITECTURE

CPU Iterations
Time
(sec)

Time
reduction

(%)

2 temporal segments

OpenDSS 8000 31.19

O
p

en
D

SS
-P

M

Actor 1 0 4000 18.24 35.62 Core 1

Actor 2 2 4000 17.36 38.72 Core 2

3 temporal segments

OpenDSS 8000 31.19

O
p

en
D

SS
-

P
M

Actor 1 0 2666 14.12 50.16 Core 1
Actor 2 2 2666 16.36 42.25 Core 2

Actor 3 3 2666 16.27 42.57

4 temporal segments

OpenDSS 8000 31.19

O
p

en
D

SS
-

P
M

Actor 1 0 2000 14.64 48.32
Core 1

Actor 2 1 2000 13.76 51.43

Actor 3 2 2000 13.73 51.54 Core 2

Actor 4 3 2000 13.62 51.92

1. The system’s complexity remains intact, this is, the

size of the system is the same after and as a consequence, it will

require a startup procedure on every tearing/starting point as

shown in Figure 5. Depending on the startup point in time, there

could be involved more/less control actions on each temporal

segment to find an accurate solution.

2. The coordination process taken between OpenDSS-

PM and other applications when an actor is launched by

OpenDSS-PM, to give to the actor the highest priority can add

an additional overhead for the actor startup. This process is

performed by the Operating System (OS) and cannot be

controlled when using standard OS.

3. Even when the actors are running on separate cores,

the processor’s power consumption increases due to the

dedicated priority set for each actor. Normally the system

motherboard takes actions to avoid the processors overheating

and to reduce the power consumption.

Fig. 6. Effects of having 1 or 2 Actors per Core when performing

parallel processing

Fig. 5. Error magnitude after separating the simulation in several

temporal segments

FeederEnd0

0.0005

0.001

2 3 4 M
o

n
it

o
r

Er
ro

r
M

a
rg

n
it

u
d

e
(%

)

Number of temporal segments

Depending on the hardware architecture (laptop, desktop PC,

Type of Power Supplies Units-PSU), the performance could be

affected when running multithread dedicated applications.

More PC architectures running with standard operating systems

need to be evaluated.

B. Diakoptics Based on Actors

Similar parallelization QSTS simulations are performed

when using the A-Diakoptics method. From previous works [2],

a 70-80% reduction in solution time is expected; however, there

will be some variations in time improvements based on the

computing environment. In fact, depending on the number of

available processor cores available and the number of actors

created the results may change.

The same test is performed by using another computer with a

processor Intel i5-5200 @ 2.2 GHz CPU. At this point, both

computers are laptop computers.

In the case of A-Diakoptics the interconnected circuit is

teared using 7 link branches as shown in Fig. 7. The link

branches were selected to generate multiple configurations and

several balanced/unbalanced distribution of nodes. The balance

is measured in terms of the amount of nodes handled by each

actor. If 2 actors are handling the same amount of nodes, the

parallel system is balanced; otherwise, the system is unbalanced

in a certain degree.

The first test consists of performing the simulation using

multiple combinations of link branches to generate a multiple

number of actors. The results are shown in TABLE III. For this

case the simulations are performed using a co-simulation

environment between NI LabVIEW and OpenDSS-PM.

Depending on the balance, the system performance will be

seriously affected. For the case presented, the system is slightly

balanced, however, if the unbalance gets higher the solution

times can be considerably affected.

Another interesting finding is the fact that the overhead added

by the co-simulation platform is significant compared with the

performance of the OpenDSS-PM application working in

stand-alone mode. To verify this hypothesis the time per step of

each actor is totalized after each simulation considering the

number of actors used to solve the system. This information is

shown in TABLE IV.

The results presented in TABLE IV shows that the actors are

indeed asynchronous systems. The total simulation time will be

the time of the slowest actor since at each iteration the actors

need to be synchronized to perform the extra calculations.

These results also reveal that while working with more actors,

the total overhead added by LabVIEW becomes important. This

difference becomes more relevant when each actor is executed

on a separate core as shown in Fig. 8.

For the results discussed in this report we have used an Intel®

Xeon® CPU E5-2650 v4 @ 2.2GHz, while in [8, 9] an Intel®

CoreTM i7-4810MQ @ 3.4 GHz was used. This means that

working with OpenDSS-PM to perform piecewise methods

results in an accelerated simulation experience, which can be

used for multiple applications including Real-Time simulation.

TABLE III. RESULT ACHIEVED AFTER TEARING THE SYSTEM IN

MULTIPLE ACTORS

Number of
actors

Time Elapsed (ms)
Time reduction

(%)
Number of
Cores used

8 14848 68 4
6 16782 64 3
4 16934 63 2
2 19050 59 1
1 46684 0 1

TABLE IV. SIMULATION TIMES FOR EACH OF THE ACTORS IN

OPENDSS-PM
of

Actors

Simulation time per actor (ms) - 8760 time steps

A1 A2 A3 A4 A5 A6 A7 A8

8 2307 4896 4868 3870 5255 5647 4023 2264
6 2154 2555 4434 11003 5923 3607
4 3593 10658 9628 9958
2 7682 14413

Fig. 7. EPRI circuit 5 and location of the proposed link branches

Fig. 8. Total simulation time per actor when allocating 1 or 2 actors

per core

TABLE V. ERRORS IN PERCENTAGE FOR EACH SIMULATION

CASE

Node name
Error (%) per number of actors

8 Actors 6 Actors 4 Actors 2 Actors

sourcebus.1 0 0 0 0
sourcebus.2 0 0 0 0
sourcebus.3 0 0 0 0
1023346.1 2.010771 2.012686 2.01203 0.807802
1023346.2 2.0915 2.111095 2.108079 0.966332
1023346.3 2.261792 2.253757 2.236306 1.050958

63657.1 2.642765 2.652466 2.649035 1.039492
63657.2 2.638333 2.667622 2.678754 1.20196
63657.3 2.88666 2.865874 2.835851 1.35616

816.2 2.685346 2.288218 2.120706 1.228647
x_1103251_1.3 3.184148 2.531579 2.637314 1.568667

28243.1 2.778495 2.108859 2.258119 1.084387
39582.1 3.310538 3.294892 2.667483 2.642919
39582.2 3.115652 3.106987 2.556511 2.514462
39582.3 3.658225 3.636021 2.87142 2.83938

x_39760_3.2 2.598807 2.586058 2.175612 1.216944

To evaluate the simulation fidelity and the error introduced

by the technique used in this report, several measurements are

performed around the circuit. The locations of the

measurements are selected randomly. The errors in percentage

for each simulation case are shown in TABLE V.

As can be seen in TABLE V, the error gets higher when more

actors are used. However, this behavior is due to the lack of

synchronism between the control actions and the modifications

of the actor’s YBUS matrix. Because matrixes ZTC, ZCC and ZTC

are calculated at the beginning of the algorithm, if the YBUS

matrices of the actors change during the simulation, the error

will increase. This source of error suggests that is necessary to

investigate methods for applying the non-invasive control

actions, avoiding the changing of the actor’s YBUS matrix, and

thus reducing the systematic error added.

V. CONCLUSIONS

This paper has presented the use of EPRI’s OpenDSS-PM

(Parallel Machine), to accelerate QSTS simulations using

multi-core computers. Temporal parallelization and A-

Diakoptics provide new techniques to reduce the time of QSTS

simulations without losing simulation fidelity. The paper has

discussed in depth the application of these techniques using the

standard distribution test feeders that include PV generation

with realistic irradiance profiles. With increasing penetrations

of distributed energy resources (DER) and distributed PV, the

ability to quickly perform QSTS simulations is a crucial aspect

of distribution system planning and operations.

OpenDSS-PM is an open source simulation tool available at the

OpenDSS website at sourceforge.net. The example presented in

this paper are available for NI LabVIEW when installing the

OpenDSS-PM library for NI LabVIEW using the VI Package

Manager tool [20].

REFERENCES

[1] S. Jothibasu and S. Santoso, "Sensitivity analysis of photovoltaic hosting
capacity of distribution circuits," in 2016 IEEE Power and Energy Society

General Meeting (PESGM), 2016, pp. 1-5.

[2] M. Rylander, J. Smith, D. Lewis, and S. Steffel, "Voltage impacts from
distributed photovoltaics on two distribution feeders," in 2013 IEEE

Power & Energy Society General Meeting, 2013, pp. 1-5.

[3] M. Rylander, J. Smith, W. Sunderman, D. Smith, and J. Glass,
"Application of new method for distribution-wide assessment of

Distributed Energy Resources," in 2016 IEEE/PES Transmission and

Distribution Conference and Exposition (T&D), 2016, pp. 1-5.
[4] M. J. Reno, K. Coogan, R. Broderick, and S. Grijalva, "Reduction of

distribution feeders for simplified PV impact studies," in 2013 IEEE 39th

Photovoltaic Specialists Conference (PVSC), 2013, pp. 2337-2342.
[5] M. J. Reno, M. Lave, J. E. Quiroz, and R. J. Broderick, "PV ramp rate

smoothing using energy storage to mitigate increased voltage regulator

tapping," in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC),
2016, pp. 2015-2020.

[6] M. J. Reno, J. Deboever, and B. Mather, "Motivation and Requirements

for Quasi-Static Time Series (QSTS) for Distribution System Analysis,"
presented at the IEEE Power Engineering Society General Meeting,

Chicago, 2017.

[7] R. C. Dugan and T. E. McDermott, "An open source platform for
collaborating on smart grid research," in 2011 IEEE Power and Energy

Society General Meeting, , 2011, pp. 1-7.

[8] D. Montenegro, G. A. Ramos, and S. Bacha, "Multilevel A-Diakoptics for
the Dynamic Power-Flow Simulation of Hybrid Power Distribution

Systems," IEEE Transactions on Industrial Informatics, vol. 12, pp. 267-
276, 2016.

[9] D. Montenegro, G. A. Ramos, and S. Bacha, "A-Diakoptics for the

Multicore Sequential-Time Simulation of Microgrids Within Large
Distribution Systems," IEEE Transactions on Smart Grid, vol. PP, pp. 1-

9, 2016.

[10] J. Deboever, X. Zhang, M. J. Reno, R. J. Broderick, S. Grijalva, and F.
Therrien, "Challenges in reducing the computational time of QSTS

simulations for distribution system analysis," Sandia National

Laboratories SAND2017-5743, 2017.
[11] J. Diaz, C. Munoz-Caro, and A. Nino, "A Survey of Parallel Programming

Models and Tools in the Multi and Many-Core Era," IEEE Transactions

on Parallel and Distributed Systems, vol. 23, pp. 1369-1386, 2012.
[12] C. Hewitt, E. Meijer, and C. Szyperski. (2012, 05-15). The Actor Model

(everything you wanted to know, but were afraid to ask). Available:

http://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-
Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-

afraid-to-ask

[13] N. Instruments. (2013, 24, 05). Actor Framework Template
documentation. Available: http://www.ni.com/white-paper/14115/en

[14] L. Jie, J. Eker, J. W. Janneck, L. Xiaojun, and E. A. Lee, "Actor-oriented

control system design: a responsible framework perspective," IEEE
Transactions on Control Systems Technology, vol. 12, pp. 250-262, 2004.

[15] D. Montenegro, "Actor's based diakoptics for the simulation, monitoring

and control of smart grids," Université Grenoble Alpes, 2015.
[16] G. Kron, Diakoptics: the piecewise solution of large-scale systems:

Macdonald, 1963.

[17] H. H. Happ, Piecewise Methods and Applications to Power Systems:
Wiley, 1980.

[18] C. Hewitt, "Actor Model of Computation: Scalable Robust Information

Systems," in Inconsistency Robustness 2011, Stanford University, 2012,
p. 32.

[19] J. Fuller, W. Kersting, R. Dugan, and S. C. Jr. (2013, 10-23). Distribution

Test Feeders. Available: http://ewh.ieee.org/soc/pes/dsacom/testfeeders/

[20] JKI. (2016, 01/06/2017). VI Package Manager. Available:

https://vipm.jki.net/

This research was supported in part by the DOE SunShot Initiative, under
agreement 30691. Sandia National Laboratories is a multimission laboratory

managed and operated by National Technology and Engineering Solutions of

Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration

under contract DE-NA0003525

	Open Source Tools for High Performance Quasi-Static-Time-Series Simulation Using Parallel Processing
	1 EPRI, Knoxville, TN, 37923, USA
	Abstract — Quasi-Static-Time-Series (QSTS) simulation is a valuable tool for evaluating the behavior of power systems through time. By performing daily, yearly and other time-based simulations, it is possible to characterize time-varying power conve...
	I. Introduction
	II. OpenDSS-PM (Parallel Machine)
	III. The Parallelization Techniques
	IV. Results
	V. Conclusions
	References

