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Abstract  —  Quasi-Static-Time-Series (QSTS) simulation is a 

valuable tool for evaluating the behavior of power systems through 

time. By performing daily, yearly and other time-based 
simulations, it is possible to characterize time-varying power 
conversion devices such as photovoltaic panels, storage, loads, and 

capacitors, among others within the power system. However, 
depending on the time-step resolution and simulation duration, the 
sequential simulation may require a considerable amount of 

computing time to complete. This paper describes the OpenDSS-
PM program which is the new Parallel Machine version of EPRI’s 
open-source distribution system simulator program, OpenDSS, to 

accelerate QSTS simulations using multi-core computers. 
OpenDSS-PM is used to implement temporal parallelization and 
circuit solutions with Diakoptics based on actors as techniques to 

reduce the time required in QSTS. The results reveal that these 
techniques enable a significant reduction in time using common 
computer architectures. 

I. INTRODUCTION 

Quasi-Static-Time-Series (QSTS) simulation is a valuable 

tool for evaluating the behavior of power systems through time. 

By performing daily, yearly and other time-based simulations, 

it is possible to characterize time-varying power conversion 

devices such as photovoltaic panels (PV), storage, loads, and 

capacitors, among others within the power system. Particularly 

in the case of PV systems, their proliferation as alternative 

power source has generated the need of carrying studies such as 

PV hosting capacity [1, 2], interconnection studies [3-5] and 

microgrids among others, which are QSTS based.  

However, depending on the time-step resolution and 

simulation duration, the sequential simulation may require a 

considerable amount of computing time to complete [6]. This 

paper presents the use of OpenDSS-PM (Parallel Machine), 

which is derived from EPRI’s open-source Distribution System 

Simulator, OpenDSS [7], to accelerate QSTS simulations using 

multi-core computers. OpenDSS-PM is used to implement 

temporal parallelization and Diakoptics based on actors [8, 9] 

as techniques to reduce the time required in QSTS. The results 

reveal that these techniques enable a significant reduction in 

time using common computer architectures.  Faster QSTS 

simulations will provide distribution engineers with a more 

accurate understanding of the impacts of solar variability and 

high penetrations of PV on the distribution system [10]. 

This paper is organized as follows: 

• An introduction to OpenDSS-PM 

• A brief description of the Parallelization methods 

• Simulation results using OpenDSS-PM parallelization 

• Conclusions 

II. OPENDSS-PM (PARALLEL MACHINE) 

The OpenDSS program is an open-source electric power 

Distribution System Simulator (DSS) for supporting distributed 

resource integration and grid modernization efforts. OpenDSS 

was originally developed by Electrotek Concepts, Inc. in 1997 

under the name of DSS. Since then, it has acquired an important 

number of capabilities to support the smart grid analysis, 

including a wide number of device models and simulation 

modes for this purpose. 

This simulation platform was originally built for execution in 

a single, sequential process. Each procedure/function is called 

sequentially to perform a QSTS simulation. The performance 

that can be achieved is based on the structure of the low level 

routines, the simplicity of the routines, and the efficiency of the 

compiler. 

EPRI made the program open source in 2008 to encourage 

efforts in grid modernization by providing a tool to the power 

industry capable of performing advanced studies. The 

program’s name was changed to OpenDSS to emphasize that it 

was open source. Since then, EPRI has explored several 

methods to accomplish parallel processing in OpenDSS, 

including the parallelization of the whole program using a 

different interface (the Direct DLL API), the modification of 

the solver using other programming languages, and other 

methods.  

However, these approaches demand additional complications 

in the user interface, extra effort from the user, and they will be 

always tied to a particular interface. As a consequence, the 

desired features that users are accustomed to, such as the COM 

interface, would be at risk of being deprecated for this type of 

processing. 

Modern computing architectures are characterized for 

introducing the concept of multi-core computing [11]. This 

feature allows the performance of applications to be improved 

by distributing tasks on multiple cores to work concurrently. 

This feature in modern computers created the obvious need for 

taking OpenDSS into a parallel computing simulation suite. 

EPRI has evolved OpenDSS into a more modular, flexible 

and scalable parallel processing platform we are calling 

OpenDSS-PM based with the following guidelines: 

• The parallel processing machine will be interface-

independent 

• Each component of the parallel machine should be able to 

work independently 
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• The simulation environment should deliver information 

consistently 

• The data exchange between the components of the parallel 

machine should respect the interface rules and procedures 

• The user interface for the parallel machine should be easy 

and support the already acquired knowledge of OpenDSS 

users 

 

To create the parallel machine, OpenDSS-PM uses the actor 

model [12-15]. There are several actor frameworks for the 

Delphi language proposed by various authors; however, the 

chosen framework had already been developed by the authors 

to evaluate Delphi’s tools for parallelization. Each actor is 

created by OpenDSS-PM, runs on a separate processor (if 

possible) using separate threads, and has its own assigned core 

and priority (real-time priority for the process and time critical 

for the thread). 

The interface for sending and receiving messages from other 

actors will be the one selected by the user: either the COM 

interface, the Direct DLL API, or a text script using the stand-

alone EXE version of the program. From this interface, the user 

will be able to create a new actor (instance), send/receive 

messages from these actors, and define the execution properties 

for each actor. The properties include the execution core, 

simulation mode, and circuit to be solved, among others. The 

actor parallelization concept is presented in Fig. 1. 

III. THE PARALLELIZATION TECHNIQUES 

The parallelization techniques utilize multiple independent 

computing resources to decompose the simulation complexity. 

This decomposition can be done by distributing the work in 

time or by simplifying the power flow problem complexity 

using simpler representations of it.  

As a result, the amount of time required for solving a large 

number of simulation steps is expected to be reduced. In this 

paper two methods are explored: Temporal parallelization and 

Diakoptics based on actors. The first one seeks to distribute 

temporal segments of the total simulation task into multiple 

actors to complete the whole simulation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second one decomposes the interconnected circuit into 

smaller and simpler sub-circuits, each of these systems will be 

assigned to an actor to find a partial solution that will be 

complemented in a later stage. 

A. Temporal parallelization 

Temporal parallelization is a technique that consists of 

splitting the simulation into multiple time periods with each 

period being simulated sequentially and concurrently to each 

other. Each of the multiple temporal segments will deliver 

partial results that after being concatenated will deliver a very 

close result as if the simulation was performed sequentially. 

This technique is illustrated in Fig. 2.  

In this simulation technique the circuit’s complexity remains 

intact, which means that each temporal segment requires a 

startup simulation time. The startup time is the longest time in 

a QSTS simulation and will force a non-linear acceleration 

when using this technique. When applying temporal 

parallelization, the startup simulation time can be located at the 

junction points between actors.  

Additionally, since distribution power flows are dependent 

on the previous time-step and there is no information about the 

state of the control devices at these points before starting the 

simulation, a systematic error can be introduced. Nevertheless, 

if the adequate control actions are performed during the startup 

step the systematic error can be reduced. OpenDSS-PM is 

designed to perform all the needed control actions at the  
Fig. 1.  OpenDSS-PM general description.  
  

 
Fig. 2. Temporal Parallelization concept. The top figure is the standard 

QSTS, and the bottom figure below demonstrates temporal 

parallelization of QSTS. 



 

simulation start up for each concurrent actor to minimize the 

error and maintain the simulation fidelity. 

B. Diakoptics Based on Actors 

Diakoptics Based on Actors (A-Diakoptics) is the result of 

combining two computing techniques from different fields. On 

one hand there is Diakoptics [16, 17], which is a mathematical 

method for tearing networks to create a set of independent sub-

networks. Each sub-network can be handled and solved 

independently and the size of each sub-network is smaller than 

the interconnected network.  

The Actor model is an information model for dealing with 

inconsistency robustness in parallel, concurrent, and 

asynchronous systems [12, 18]. This information model allows 

multiple processes to be executed in parallel with information 

passing through them using messages. As a result, the 

information consistency can be ensured, avoiding frequent 

issues when working with parallel processing systems, such as 

race conditions and memory sub-utilization (when working 

with multicore processors) among others.  

A basic description of A-Diakoptics is shown in Fig. 3. The 

subsystems, and their relationships can be described as a set of 

matrixes representing the subsystems (ZTT), the link branches 

between them (ZCC) and their relationship within the network 

(ZCT). As a result, by using this information and the partial 

results delivered after solving each subsystem separately and 

concurrently, it is possible to determine the voltages at the 

network’s nodes by finding a complementary answer as follows: 

 

𝐸𝑇 = 𝑍𝑇𝑇𝐼0(𝑛) − 𝑍𝑇𝐶𝑍𝐶𝐶
−1𝑍𝐶𝑇𝐼0(𝑛+𝑚)                 (1) 

 

A-Diakoptics is a technique that seeks for simplifying the 

power flow problem to perform a faster solution at each 

simulation step; in contrast, temporal parallelization remains 

the complexity of the problem. Consequently, the total time 

reduction when performing QSTS will be evident at each 

simulation step with A-Diakoptics. 

IV. RESULTS 

For evaluating the performance of OpenDSS-PM in the 

temporal parallelization, EPRI’s Test Circuit 5 [19] is used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 This circuit is shown in Fig. 4. In this circuit, there are 5 

zones where PV systems are concentrated providing a total 

peak power of 2.5MW to the system (aggregate). The temporal 

parallelization is performed by considering the number of 

available CPUs (threads) on the computer where the tests are 

performed. 

A. Temporal parallelization 

In this case the power flow is solved 8000 times using the 

time simulation mode and step size of 1h, which is equivalent 

duration of 11 months and 4 days. These quantities have been 

arbitrarily selected to present round numbers for this example. 

The script wrote using the OpenDSS-PM scripting tool is as 

follows: 

 
clearAll 
set parallel=No  ! For the compilation stage 
compile "C:\ OpenDSS\EPRI_ckt5_3437_nodes\master.dss" 
set CPU=0 
Solve 
set mode=time stepsize=1h number=2000 hour = 0 totaltime=0 
NewActor  ! Creates a new actor 
compile "C:\ OpenDSS\EPRI_ckt5_3437_nodes\master.dss" 
set CPU=2 
Solve 
set mode=time stepsize=1h number=2000 hour = 2000 totaltime=0 
NewActor   ! Creates a new actor 
Compile "C:\OpenDSS\EPRI_ckt5_3437_nodes\master.dss" 
set CPU=4 
Solve 
set mode=time stepsize=1h number=2000 hour = 4000 totaltime=0 
NewActor   ! Creates a new actor 
Compile "C:\OpenDSS\EPRI_ckt5_3437_nodes\master.dss" 
set CPU=6 
Solve 
set mode=time stepsize=1h number=2000 hour = 6000 totaltime=0 
set parallel=Yes 
SolveAll 

 
Fig. 4.  EPRI Circuit 5. 

  

 
Fig. 3. Physical interpretation of Diakoptics.  



 

 

 TABLE I. RESULTS ACHIEVED AFTER SPLITTING THE SYSTEM IN 4 

TEMPORAL SEGMENTS 

  

Actor CPU 
Initial 
time 

Iterations 
Time 
(sec) 

Time 
reduction 

(%) 

OpenDSS     0 8000 28.33   

O
p

en
D

SS
- 

P
M

 

1 0 0 2000 9.68 65.83 

2 2 2000 2000 9.43 66.71 

3 4 4000 2000 9.55 66.29 

4 6 6000 2000 9.55 66.29 

 

By using the script presented as example, four actors are 

created to split the solution time in sets of 2000 time steps (4 

temporal segments). This test was performed in a computer 

with a processor Intel core i7-2720 @ 2.2 GHz.  The errors are 

evaluated for each simulated cases (1, 2, 3 and 4 temporal 

segments) to quantify the error from temporal parallelization 

and how its magnitude could affect the results. The results are 

shown in Fig. 5 and in TABLE I.  

The voltage error magnitude is below 1.0e-3 p.u., revealing 

that the control actions performed at each actor’s startup takes 

the partial simulation variables to an acceptable set of values. 

The error magnitude becomes non-zero after the first junction 

point between the different time segments. However, this error 

is still within acceptable ranges. 

Then, using this architecture the system is solved by creating 

2, 3 and 4 temporal segments to evaluate the time reduction. 

This processor has only 2 cores in comparison with the i7 

processor used in the previous test. The aim of this test is to 

highlight the effect of running 2 actors on the same core when 

trying to perform parallel processing. The results of this test are 

shown in TABLE II. As can be seen in TABLE II, when setting 

the affinity of 2 actors to the same processor’s core the 

performance of the actor get decreased. 

This an expected result since the core needs to attend 2 

processes simultaneously, which is impossible. As a 

consequence, both actors (threads) get serialized, and the 

processing time for each one is higher than if the core were 

dedicated to a single Actor as shown in Fig. 6. 

The overhead obtained after splitting the simulation in time 

can be justified as follows: 

TABLE II. RESULTS OBTAINED WITH TEMPORAL PARALLELIZATION 

USING A SECOND ARCHITECTURE 

    

CPU Iterations 
Time 
(sec) 

Time 
reduction 

(%)   

2 temporal segments 

OpenDSS     8000 31.19     

O
p

en
D

SS
-P

M
 

Actor 1 0 4000 18.24 35.62 Core 1 

Actor 2 2 4000 17.36 38.72 Core 2 

3 temporal segments 

OpenDSS     8000 31.19     

O
p

en
D

SS
-

P
M

 

Actor 1 0 2666 14.12 50.16 Core 1 
Actor 2 2 2666 16.36 42.25 Core 2 

Actor 3 3 2666 16.27 42.57  

4 temporal segments 

OpenDSS     8000 31.19     

O
p

en
D

SS
- 

P
M

 

Actor 1 0 2000 14.64 48.32 
Core 1 

Actor 2 1 2000 13.76 51.43 

Actor 3 2 2000 13.73 51.54 Core 2 

Actor 4 3 2000 13.62 51.92  

 

1. The system’s complexity remains intact, this is, the 

size of the system is the same after and as a consequence, it will 

require a startup procedure on every tearing/starting point as 

shown in Figure 5. Depending on the startup point in time, there 

could be involved more/less control actions on each temporal 

segment to find an accurate solution. 

2. The coordination process taken between OpenDSS-

PM and other applications when an actor is launched by 

OpenDSS-PM, to give to the actor the highest priority can add 

an additional overhead for the actor startup. This process is 

performed by the Operating System (OS) and cannot be 

controlled when using standard OS. 

3. Even when the actors are running on separate cores, 

the processor’s power consumption increases due to the 

dedicated priority set for each actor. Normally the system 

motherboard takes actions to avoid the processors overheating 

and to reduce the power consumption. 

 
Fig. 6. Effects of having 1 or 2 Actors per Core when performing 

parallel processing 

 
Fig. 5. Error magnitude after separating the simulation in several 

temporal segments 
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Depending on the hardware architecture (laptop, desktop PC, 

Type of Power Supplies Units-PSU), the performance could be 

affected when running multithread dedicated applications. 

More PC architectures running with standard operating systems 

need to be evaluated. 

B. Diakoptics Based on Actors 

Similar parallelization QSTS simulations are performed 

when using the A-Diakoptics method. From previous works [2], 

a 70-80% reduction in solution time is expected; however, there 

will be some variations in time improvements based on the 

computing environment. In fact, depending on the number of 

available processor cores available and the number of actors 

created the results may change. 

The same test is performed by using another computer with a 

processor Intel i5-5200 @ 2.2 GHz CPU. At this point, both 

computers are laptop computers. 

In the case of A-Diakoptics the interconnected circuit is 

teared using 7 link branches as shown in Fig. 7.  The link 

branches were selected to generate multiple configurations and 

several balanced/unbalanced distribution of nodes. The balance 

is measured in terms of the amount of nodes handled by each 

actor. If 2 actors are handling the same amount of nodes, the 

parallel system is balanced; otherwise, the system is unbalanced 

in a certain degree.  

The first test consists of performing the simulation using 

multiple combinations of link branches to generate a multiple 

number of actors. The results are shown in TABLE III. For this 

case the simulations are performed using a co-simulation 

environment between NI LabVIEW and OpenDSS-PM. 

Depending on the balance, the system performance will be 

seriously affected. For the case presented, the system is slightly 

balanced, however, if the unbalance gets higher the solution 

times can be considerably affected.  

Another interesting finding is the fact that the overhead added 

by the co-simulation platform is significant compared with the 

performance of the OpenDSS-PM application working in 

stand-alone mode. To verify this hypothesis the time per step of 

each actor is totalized after each simulation considering the 

number of actors used to solve the system. This information is 

shown in TABLE IV. 

The results presented in TABLE IV shows that the actors are 

indeed asynchronous systems. The total simulation time will be 

the time of the slowest actor since at each iteration the actors 

need to be synchronized to perform the extra calculations. 

These results also reveal that while working with more actors, 

the total overhead added by LabVIEW becomes important. This 

difference becomes more relevant when each actor is executed 

on a separate core as shown in Fig. 8. 

For the results discussed in this report we have used an Intel® 

Xeon® CPU E5-2650 v4 @ 2.2GHz, while in [8, 9] an Intel® 

CoreTM i7-4810MQ @ 3.4 GHz was used. This means that 

working with OpenDSS-PM to perform piecewise methods 

results in an accelerated simulation experience, which can be 

used for multiple applications including Real-Time simulation. 

 

TABLE III. RESULT ACHIEVED AFTER TEARING THE SYSTEM IN 

MULTIPLE ACTORS 

Number of 
actors 

Time Elapsed (ms) 
Time reduction 

(%) 
Number of 
Cores used 

8 14848 68 4 
6 16782 64 3 
4 16934 63 2 
2 19050 59 1 
1 46684 0 1 

 
TABLE IV. SIMULATION TIMES FOR EACH OF THE ACTORS IN 

OPENDSS-PM 
# of 

Actors 

Simulation time per actor (ms) - 8760 time steps 

A1 A2 A3 A4 A5 A6 A7 A8 

8 2307 4896 4868 3870 5255 5647 4023 2264 
6 2154 2555 4434 11003 5923 3607   
4 3593 10658 9628 9958     
2 7682 14413             

 

 
Fig. 7. EPRI circuit 5 and location of the proposed link branches 

 
Fig. 8. Total simulation time per actor when allocating 1 or 2 actors 

per core 



 

TABLE V. ERRORS IN PERCENTAGE FOR EACH SIMULATION 

CASE 

Node name 
Error (%) per number of actors 

8 Actors 6 Actors 4 Actors 2 Actors 

sourcebus.1 0 0 0 0 
sourcebus.2 0 0 0 0 
sourcebus.3 0 0 0 0 
1023346.1 2.010771 2.012686 2.01203 0.807802 
1023346.2 2.0915 2.111095 2.108079 0.966332 
1023346.3 2.261792 2.253757 2.236306 1.050958 

63657.1 2.642765 2.652466 2.649035 1.039492 
63657.2 2.638333 2.667622 2.678754 1.20196 
63657.3 2.88666 2.865874 2.835851 1.35616 

816.2 2.685346 2.288218 2.120706 1.228647 
x_1103251_1.3 3.184148 2.531579 2.637314 1.568667 

28243.1 2.778495 2.108859 2.258119 1.084387 
39582.1 3.310538 3.294892 2.667483 2.642919 
39582.2 3.115652 3.106987 2.556511 2.514462 
39582.3 3.658225 3.636021 2.87142 2.83938 

x_39760_3.2 2.598807 2.586058 2.175612 1.216944 

 

To evaluate the simulation fidelity and the error introduced 

by the technique used in this report, several measurements are 

performed around the circuit. The locations of the 

measurements are selected randomly. The errors in percentage 

for each simulation case are shown in TABLE V. 

As can be seen in TABLE V, the error gets higher when more 

actors are used. However, this behavior is due to the lack of 

synchronism between the control actions and the modifications 

of the actor’s YBUS matrix. Because matrixes ZTC, ZCC and ZTC 

are calculated at the beginning of the algorithm, if the YBUS 

matrices of the actors change during the simulation, the error 

will increase. This source of error suggests that is necessary to 

investigate methods for applying the non-invasive control 

actions, avoiding the changing of the actor’s YBUS matrix, and 

thus reducing the systematic error added. 

V. CONCLUSIONS 

This paper has presented the use of EPRI’s OpenDSS-PM 

(Parallel Machine), to accelerate QSTS simulations using 

multi-core computers. Temporal parallelization and A-

Diakoptics provide new techniques to reduce the time of QSTS 

simulations without losing simulation fidelity.  The paper has 

discussed in depth the application of these techniques using the 

standard distribution test feeders that include PV generation 

with realistic irradiance profiles. With increasing penetrations 

of distributed energy resources (DER) and distributed PV, the 

ability to quickly perform QSTS simulations is a crucial aspect 

of distribution system planning and operations. 

OpenDSS-PM is an open source simulation tool available at the 

OpenDSS website at sourceforge.net. The example presented in 

this paper are available for NI LabVIEW when installing the 

OpenDSS-PM library for NI LabVIEW using the VI Package 

Manager tool [20]. 
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