SAND2017-5973C

Algorithmic Aspects of a Commercial-Grade Distribution System Load
Flow Engine

Francis Therrienl, Marc Belletétel, Jean-Sébastien Lacroixl, and Matthew J. Reno?

' CYME International T&D, St-Bruno, QC, J3V 3P8, Canada
2 Sandia National Laboratories, Albuquerque, NM, 87185, USA

Abstract — The increasing penetration of PV requires more
and more load flow calculations to assess the corresponding
impact on planning and operation of distribution systems, e.g.,
during high-resolution quasi-static time-series calculations. There
is therefore a strong incentive to optimize the speed of
distribution load flow engines as much as possible without
compromising on solution accuracy. This paper details the
structure of a commercial-grade topology-independent Newton-
Raphson distribution load flow engine, the reasoning behind some
of its design choices, and recent improvements made to three
rarely discussed aspects: initialization, calculation and
discretization of tap changer positions, and solution of linear
equations. Computer studies demonstrate the reduction in
computational time on various distribution systems, allowing for
faster interconnection studies with high PV penetration.

1. INTRODUCTION

The large amount of distributed energy resources (DERs)
and especially PV now found at the low- and medium-voltage
levels require rethinking the planning and operation of
distribution grids. Distribution system analysis tools are
becoming more important than ever, as they can assess the
various impacts of DERs on operating constraints, protection
schemes, losses, and so on [1]. While it is now recognized that
precise electromagnetic transient (EMT) studies are sometimes
needed at the distribution level, load flow calculations remain
ubiquitous, whether in “standalone” mode or within quasi-
static time-series (QSTS) studies [2]. Improving the speed of
load flow engines will therefore facilitate the execution of
more comprehensive studies with PV, such as year-long high-
resolution QSTS studies [2].

Traditional distribution system load flow engines often use
the ladder iterative method (often known as backward-forward
sweep), which is tailored for radial and passive systems.
While the ladder iterative method can be adapted to handle
meshes [3] and voltage-controlled nodes [4], its efficiency
decreases quickly as the number of loops and DERSs in voltage
control mode increases. In fact, ladder iterative methods will
rarely converge in urban meshed networks .

Modern commercial-grade load flow engines often use
matrix-based methods. Some of these engines are based on a
full Newton-Raphson approach [5]-[8], while others use a
fixed point scheme [8]-[10]. Full Newton-Raphson
approaches can naturally handle continuous controls by
integrating them in the constraint vector, and typically

converge in a few iterations; however, they require matrix re-
factorizations, which are typically considered as computational
bottlenecks. Fixed point schemes keep the same matrix factors,
and therefore are considered faster; however, they may have
more difficulty converging. The use of a smaller external
sensitivity matrix can improve convergence in fixed point
techniques [10], but its calculation and solution may require
non-negligible computational effort when the number of
control devices is large.

The CYME power engineering software has two load flow
engines for unbalanced distribution systems: Voltage Drop
Unbalanced (VDU, based on the ladder iterative approach),
and the more recent Newton-Raphson Unbalanced (NRU,
based on a full Newton-Raphson scheme). This paper first
gives an overview of NRU, which is built on the work set forth
in [8]. We discuss in detail three aspects of NRU that are often
overlooked in the literature but that can have a significant
impact on computational speed: the initialization method, the
calculation and discretization of load tap changer (LTC)
positions, and the solution of the resulting system of linear
equations. Specifically, we present the advantages and
disadvantages of initializing NRU with a fixed point (FP) or
flat start (FS) approach, and briefly describe how to generate
the FS profile considering NRU’s modified nodal formulation.
The benefits of integrating the control variables within NRU’s
set of equations are also discussed. Two LTC position
normalization approaches are then presented. Finally, we
challenge the often-held belief that constant-matrix engines are
necessarily faster than full Newton-Raphson ones unless the
former requires many more iterations. A brief discussion on
two linear solvers, PARDISO [11] and KLU [12], is also
included. Computer studies on various distribution systems are
then presented to support the claims and hypotheses made
throughout this paper.

II. LoAD FLOW FORMULATION AND ALGORITHMIC ASPECTS

A. Fundamentals

Using the principle of modified nodal analysis (MNA,
sometimes referred to as modified augmented nodal analysis
[8]), the main load flow constraints can be described by

i, =f,(v,.i,.x.) (1)

vy =t,(v,.i,.x,.) 2
Y. = fc (Vn’id’xc) (3)

where f,, f;, and f. are — potentially nonlinear — functions
enforcing Kirchhoff’s current law at every node, Kirchhoff’s
voltage law for ideal components (voltage sources, switches,
and branch-dependent devices such as transformers and
regulators), and additional network/component constraints,
respectively; v, , i,, and x,. are state vectors comprising the
nodal voltages, the currents of the ideal components, and the
additional state variables (e.g., the equivalent admittance of
DERs), respectively; and i,, v,, and y,. are nodal injection
currents, voltages of ideal voltage sources, and the desired
values of the additional network constraints. Complex values
are represented using rectangular components. A multiphase
framework is considered to model unbalanced conditions and
topologies typical of North American distribution systems.

Since some of the constraints are nonlinear, (1)—(3) must be
solved iteratively, herein using a full Newton-Raphson
approach. Writing the Taylor series of (1)—(3) and truncating it
therefore yields the main NRU equation

Y, " Di Ci|Avy| |y | [f)
D; Sy Cg | Aig |=|vy|~|fs)
Ci Ch Cy|Axg| |yi| [t
or, written in compact form,
JEAxF =pk -k, (5)

In the above, the superscript k& indicates the iteration count;
Y.f, Df, DY, sk, ck Lk,)L €, and CF oare
submatrices of the system Jacobian J . and the A operator
indicates the difference between a given vector at the present
and past iterations (e.g., AV]; = Vﬁ —vﬁ_l). Additional
information regarding the formulation of the Jacobian matrix
and the right-hand side vectors b* and £* can be found in
[8], [13]. In particular, Y,* is a modified version of the
standard admittance matrix, which accounts for state-variable-
dependent equivalent current injections (see Section II-B).
Following the Newton-Raphson approach, (4) or (5) is
solved iteratively until the largest normalized voltage
mismatch has fallen below a user-specified tolerance, while
ensuring that all dependent and independent variables are
within their physical boundaries (e.g., minimum and maximum

tap positions, reactive power capabilities, ...).
B. Current Injections vs. Additional Network Constraints

Due to the flexibility of MNA, loads can be included either
as equivalent current injections in f,’f [5], or through
additional network constraints in f Lk [7], [8]. On one hand, the
former approach does not increase the system dimension, but
its partial derivatives added in Y,:k are fairly involved when
voltage-sensitive load models are used [5]. On the other hand,
the latter approach increases the system size (the load currents

are added to Xf), but only a few straightforward elements
must be added to Cfl and CZ (e.g., 8 for a single-phase wye-
grounded load) [7], [8]. Moreover, Cf.l acts as an adjacency
matrix for loads, and therefore its only non-zero values will be
1s and potentially —1s.

Tests on various networks have shown that no approach is
unequivocally faster, owing in part to the high efficiency of
modern linear solvers. However, it was noted that the
equivalent current injection approach converged more
robustly, likely due to its more linear formulation. The
robustness of the equivalent current injection approach was
further improved by representing loads using a fixed
admittance in Y,:k and a small current in i’; compensating for
the difference between the desired power and the power
consumed by the fixed admittance. For a constant impedance
load, the load equation becomes fully linear as the current
injection is always equal to 0.

Other types of power injections or network constraints, such
as DERs in voltage control mode, cannot be formulated
linearly or quasi-linearly. In this case, their control equations
are added to f Lk along with the corresponding states in xf. [7],

[8].
C. Initialization

The Newton-Raphson approach is not self-starting: its initial
state vector x° must be defined to solve (4) or (5). The FS
approach remains the initialization method of choice in
traditional transmission-level load flow engines, as the state
vector is only comprised of nodal voltages in polar
coordinates, and the phase shift of transformers is typically
ignored. Initialization is more complicated in NRU, as its
formulation includes state variables that are not nodal voltages
(see (4)), and transformer phase shifts are considered.
Moreover, the selected transformer modeling approach [14]
involves internal nodes, whose equivalent FS voltage is not
always trivial to define.

Due to the above reasons, NRU was originally initialized
using a single-iteration FP solution [7], [8]. Therein, all power
injection devices are represented using equivalent admittances.
The initial reactive power must be guessed for generators in
voltage control mode, which can be problematic in some
transmission systems. All load tap changers (LTCs, see
Section II-D) are fixed. Vector f° is filled with 0s, C% and
C?z are empty matrices, and Cg is an identity matrix. This
creates a linear equivalent to (4), allowing the computation of
an initial guess of the state vector. Moreover, if the
linearization is accurate, x" will be closer to the final solution
than a FS, possibly reducing the number of iterations. To
increase speed, the FP matrix is padded with “hard” Os
wherever the Jacobian J* might have non-zeros.
Consequently, J ¥ can be built upon the structurally identical
FP matrix, thereby significantly reducing CPU time since
matrices are stored in a compressed sparse format [15].

The main caveat of this approach is that it requires two
successive symbolic factorizations (for the FP solution and the
first Newton-Raphson iteration), which are costly operations.
More detail on this subject is given in Section II-E. To reduce
the number of symbolic factorizations and hopefully the CPU
time, an augmented FS approach is proposed. It makes use of a
network-model iterator, which computes the complex nominal
voltage at each node. For transformers, the internal nodal
voltages are initialized based on the corresponding external
nodal voltages and winding configuration. Vector ig can be
set to 0, since the corresponding equations are almost always
linear; whereas the values of X? are set using the desired
power injection and the corresponding FS voltage.

D. LTC Discretization

There are two main methods to calculate LTC positions in
load flows: between iterations (externally, sometimes referred
to as the error-feedback approach), or by adding tap positions
as state variables (internally) [16]. The former approach
usually fits well into constant-matrix solutions [17], [18], but
requires the external calculation of a sensitivity factor
(empirically or through a more sound analysis [10]). Hunting
between different LTCs may also occur [16]. In the latter
approach, the LTC voltage set point is added to the constraint
vector (e.g., in ff in NRU). When using a Newton-Raphson
approach, the solution usually converges to the desired set
point in a few iterations. The main challenge is that the LTC
positions are treated as continuous variables, whereas only
discrete positions are physically feasible.

Since NRU does not have a constant matrix, and for the sake
of simplicity, LTC positions are included in xf. along with the
corresponding voltage set-point constraint in ff . Another
benefit of this approach is that it meshes naturally with
CYME’s “infinite taps” mode, where LTC positions are
considered as continuous variables. This mode allows planners
to overcome the well-known problem of the multiplicity of
load flow solutions due to LTC bandwidths, which cannot
guarantee a worst-case solution. By using the lower bandwidth
value as the voltage set point along with continuous LTC
positions, planners can obtain under-voltages that are lower or
equal to the worst physically possible under-voltage, and thus
plan their network safely and reliably. This approach can be
easily tweaked to study over-voltages arising due to high PV
penetration and reverse power flow.

Since many distribution engineers require feasible (discrete)
LTC positions, a normalization scheme is also needed. A “step
discretization” approach was first developed in NRU. Based
on the fact that downstream voltage regulators/transformers
have little impact on the upstream voltage, after initial
convergence, LTCs were discretized one by one following a
downstream path. The main disadvantages of this approach are
twofold. First, it is numerically costly for networks with many
LTCs, since two extra iterations are usually needed per LTC.
Second, for meshed networks, the discretization order is not

always obvious. To overcome these problems, this paper
presents a “joint discretization” approach. After the first
convergence, all LTCs are normalized at once. Due to the
concurrent discretization, the controlled voltage of some LTCs
may end up outside of the specified bandwidth. A detection-
correction step has been devised. It checks if all constraints are
respected. When it is not the case, the corresponding LTC
positions are changed by 1. This is repeated until all
constraints are respected. A break condition is added if
hunting is detected, but this is unlikely on real customer
networks. Finally, the transformer LTC position (primary or
secondary) and the regulator operating mode (e.g., bi-
directional, co-generation [19], ...) must be considered to
choose whether the LTC positions must be incremented or
decremented to move towards the bandwidth.

E. Solution of Linear Systems

Roughly speaking, efficient numerical solution of (4) or (5)
using sparse methods includes permuting and pre-ordering the
unsymmetric indefinite Jacobian matrix to reduce fill-ins
(symbolic factorization), calculating the L and U factors
(numerical factorization), and solving using backward-forward
substitution. When considering matrix-based load flows, it has
become almost axiomatic to say that the solution of the linear
equations is the “main computational bottleneck [11]”.
Consequently, since factorization is costlier than backward-
forward substitution, it is pretty much accepted that methods
with constant matrices (therefore requiring only one
factorization) will be more efficient than load flows with
changing matrices, unless they require significantly more
iterations. For instance, in the 1970s, the Fast Decoupled
formulation was shown to be around 5 times faster per
iteration than the full Newton-Raphson formulation [16].

However, in view of today’s highly efficient linear solvers
such as KLU [12] and PARDISO [11], and based on our
practical experience, we make the two following claims: 1) in
complex commercial-grade packages such as CYME, the
percentage of time of a full Newton-Raphson load flow spent
on factorization is relatively small (this will be quantified in
Section III-D); and 2) numerical factorization is
computationally cheap. Since the same symbolic factorization
can be reused from iteration to iteration when the matrix non-
zero pattern remains constant, based on the ond claim, a full
Newton-Raphson approach can nowadays be competitive with
constant-matrix methods, and sometimes even faster if it
requires fewer iterations. This is especially true when care is
taken to avoid symbolic factorizations as much as possible, for
instance by discretizing all taps jointly as explained in Section
II-D. In that approach, the corrective steps do not require
additional symbolic factorizations since only the numerical
values change.

PARDISO [11], which is included in Intel MKL, was
initially used as NRU’s solver. It is a general-purpose package
that calls different solvers depending on the matrix properties

(e.g., real or complex numbers, symmetric or unsymmetric,
positive (semi-)definite or indefinite, ...). This is an interesting
feature for a wide-ranging distribution system analysis
program such as CYME, as the matrices generated by different
modules often have different properties. KLU [12] was
recently tested as it is designed for circuit matrices, which,
according to [12], are extremely sparse. This is especially true
of the Jacobian of radial systems, but less so for urban meshed
networks. The performance of PARDISO and KLU for
different test systems are presented in Section III-D.

III. CASE STUDIES

The numerical performance of NRU for each pair of
proposed initialization methods, discretization techniques, and
solvers are tested on 6 different networks [20]-[21]. The
salient features of these test systems are presented in Table I.
In particular, the IEEE 342 and Utill test systems are urban
meshed networks, the latter being extremely large for
distribution systems. In addition to having several inline
voltage regulators, the Util2 and Util3 test systems also have
high PV penetration. The number of nodes reported in Table I
differ from those of the official IEEE test feeders; this is due
to a different (and inconsequential) way of counting nodes.
Moreover, to provide additional insight, the detailed CPU
timings for one of these systems is provided, and a comparison
between the numerical efficiency of NRU and VDU serves as
a closing statement.

All tests are executed on a special version of CYME 7.2
used in the course of the Department of Energy-sponsored
“Rapid QSTS Project”. This version runs on a dedicated
benchmark machine (3.4 GHz i7-2600 CPU with 8 GB of
RAM). A tolerance of 0.01% on the voltage mismatch is used
as the stopping criterion.

A. Initialization

NRU’s numerical efficiency using the FP and FS
initialization methods is presented in Table II for the subject
test systems (all LTCs are operating in “infinite taps” mode
and PARDISO is used). The CPU time is presented in
normalized form with respect to the FP approach. For two
networks, an additional iteration is required with the FS
approach; whereas for the other four, the iteration count is
identical with both initialization procedures. This is explained
by the fact that the FP approach typically yields a state vector
that is closer to the final solution. This can be observed in Fig.
1, where the voltage mismatch of four of the test systems is
plotted as a function of the iteration. Fig. 1 also demonstrates
that both approaches converge almost quadratically. Only the
IEEE 342 system converges slower near the end, due to its
ungrounded nature and the resulting ill-conditioned matrix.
Whether an additional iteration is required or not, the solution
time remains smaller with the FS method, ranging from 83% to
92.7% of the CPU time of the FP approach.

TABLE I
MAIN PROPERTIES OF THE TEST SYSTEMS.

Network Nb. Nodes Nb. Loops Nb. LTCs
CKTS5 [9] 3003 0 0
IEEE 342 [20] 390 71 0
IEEE 8500 [21] 4875 0 4
Utill 28425 3180 14
Util2 2370 1 10
Util3 4066 0 14

TABLEII

NUMBER OF ITERATIONS AND NORMALIZED CPU TIME FOR A LOAD FLOW
SOLUTION USING FIXED POINT AND FLAT START INITIALIZATION.

Fixed Point Init. Flat Start Init.
Network Nb. Iter. | CPU Time | Nb. Iter. | CPU Time
CKT5 2 100% 3 92.7%
IEEE 342 2 100% 2 83.0%
IEEE 8500 3 100% 4 90.6%
Utill 5 100% 5 90.6%
Util2 3 100% 3 86.8%
Util3 3 100% 3 88.9%
T ™ =T
iczh —mCKT5-FP |
| —4—CKT5-FS
— M - IEEE 390 - FP
3? — & —IEEE390-FS
- W UtI2-FP
£ 100t ¢ Uti2-FS]
£ ; —- - UtiI3 -FP
] A £
= ~._—@-UtI3-FS
@ N '_H
@ i :
g '\-\. M
S 1072} T N) 1
o) g \\.
__ ~.
by G \, *
\ R B, N
10-4 | - e LS L5 ‘ % |
1 2 3
Iteration

Fig. 1. Convergence pattern of four of the test systems using the fixed point
(FP — blue square markers) and flat start (FS — red diamonds markers)
initialization approaches.

To verify the generalization of these results, the NRU load
flow is executed on all the distribution systems of an entire
region of a large utility (657 feeders for a total of 73
independent networks). The majority of these networks are fed
by Yg-Delta transformers with a grounding transformer on the
secondary side, and the peak load scenario is considered. The
combination of these two conditions often causes problems to
distribution load flow engines (in fact, 2 of the networks do
not converge after 200 iterations when using CYME’s robust
VDU engine with a relaxed tolerance of 0.1%). With NRU, all
networks converge independently of the initialization
approach. The FS approach requires an extra iteration for 50
networks; whereas the same number of iterations is needed for
the other 23.

TABLE II1
NUMBER OF ITERATIONS AND NORMALIZED CPU TIME FOR A LOAD FLOW
SOLUTION USING STEP AND JOINT LTC POSITION DISCRETIZATION.

TABLE V
DETAILED CPU TIMINGS OF AN NRU LOAD FLOW SOLUTION.

Step Discret. Joint Discret.
Network Nb. Iter. | CPU Time | Nb. Iter. | CPU Time
IEEE 8500 12 100% 9 87.2%
Utill 28 100% 7 31.5%
Util2 23 100% 5 43.2%
Util3 30 100% 7 42.4%
TABLE IV

NUMBER OF ITERATIONS AND NORMALIZED CPU TIME FOR A POWER
FLOW SOLUTION USING THE PARDISO AND KLU SOLVERS.

PARDISO KLU
Network Nb. Iter. | CPU Time | Nb. Iter. | CPU Time
CKT5 3 100% 3 89.2%
IEEE 342 2 100% 2 92.8%
IEEE 8500 9 100% 9 74.2%
Utill 7 100% 7 225.4%
Util2 5 100% 5 75.8%
Util3 7 100% 7 73.4%

Total Load Flow 58.61 ms
Create Segment 19.90 ms
Data Exchange (CYME — NRU) 1.57 ms
Initialization (build Jacobian) 14.79 ms
Iteration #1 13.87 ms

Update Jacobian 0.494 ms
Create Vector (bk —tk) 1.162 ms
Symbolic Factorization 9.081 ms
Numerical Factorization 2.879 ms
Solve 0.164 ms
Convergence Check 0.080 ms
Iteration #2 4.93 ms
Update Jacobian 0.527 ms
Create Vector (bk —tk) 1.182 ms
Numerical Factorization 2.990 ms
Solve 0.169 ms
Convergence Check 0.056 ms
Get Results (NRU — CYME) 2.821 ms

B. Discretization

The number of iterations and normalized CPU time for the
test systems using the step and joint LTC discretization
approaches are summarized in Table III (the FS method is
used along with PARDISO). The results for CKT5 and IEEE
342 are not presented as they do not have LTCs. As expected,
the iteration count and CPU times are reduced with the joint
discretization scheme; this reduction is drastic for networks
with several LTCs (e.g., 7 iterations instead of 28 for Utill,
requiring only 31.5% of the original CPU time). As each
discretization usually results in 2 (sometimes 3) additional
iterations, it can be seen by comparing Tables II and III that
the first joint discretization sometimes resulted in controlled
voltages outside of the specified bandwidth, and that
corrective tap changes were needed to find an adequate
solution.

C. Solvers

The numerical performance of NRU using the PARDISO
and KLU linear solvers are presented in Table IV for the 6 test
systems (the FS and joint discretization techniques are used).
As it is optimized for extremely sparse circuit matrices, KLU
outperforms PARDISO on 5 of the 6 systems; however, for the
very large urban meshed network, PARDISO is more than
twofold faster than KLU. It is therefore suggested to use KLU
for radial and weakly meshed systems, and PARDISO for
highly meshed networks. A criterion based on the loop-to-node
ratio can be added to the code to automatically select the
preferred linear solver for any given system.

D. Detailed Timings

To better assess the numerical performance of NRU, several
timers were added to the major code sections. The resulting
CPU timings for the IEEE 342 test system with PARDISO are
presented in Table V. The “Create Segment” part of the code
consists of reading and treating the network file: it accounts
for around a third of the CPU time. Creation of the matrix is
also non-negligible, as it requires approximately 1/4™ of the
total CPU time, which is almost the same as for symbolic and
numerical factorizations combined. This contradicts the well-
known idea that matrix factorization is the main computational
bottleneck in load flow calculations. Numerical factorization is
also about 3 times faster than symbolic factorization. Due to
this, the 2" jteration accounts for less than 10% of the CPU
time. While these exact ratios depend on the test system and
the solver, they clearly demonstrate that a full Newton-
Raphson approach is not much slower than constant-matrix
solutions.

E. Comparison Between NRU and VDU

Finally, the CPU times necessary to solve the load flows of
the six test systems with CYME’s NRU and VDU engines are
presented in Table VI. NRU is initialized using FS, the LTCs
are discretized jointly, and either KLU or PARDISO is used,
based on the criterion explained in Section III-C. It is
observed that VDU does not converge on 3 of the 6 systems.
The IEEE 342 and Utill test systems diverge due to their
highly meshed structure; whereas hunting between the 14
LTCs occurs when trying to solve the Util3 network. It is
emphasized that Table VI is not meant as the definitive
comparison between matrix-based and ladder iterative
methods, but simply as a comparison between two optimized

TABLE VI
NUMBER OF ITERATIONS AND NORMALIZED CPU TIME USING THE NRU
AND VDU LOAD FLOW SOLVERS (THE DASH (—) INDICATES

DIVERGENCE).
NRU VDU
Network Nb. Iter. | CPU Time | Nb. Iter. | CPU Time
CKTS5 3 0.174 s 4 0.142 s
IEEE 342 3 0.122 s - -
IEEE 8500 9 0.531s 19 0.733 s
Utill 5 5.400 s - -
Util2 5 0.211s 13 0.205 s
Util3 8 0.298 s - -
commercial-grade distribution load flow solvers. As

previously demonstrated in [6] in different environments, the
cost per iteration is smaller for VDU than NRU; whereas the
former typically requires fewer iterations. In particular, NRU
converges in much fewer iterations than VDU on highly
loaded systems with several controls, such as the IEEE 8500
system. Overall, the computational cost of NRU is absolutely
competitive with VDUj in fact, NRU is even faster than VDU
on some systems.

IV. CONCLUSION

This paper presents the general structure of a commercial-
grade load flow engine suitable for distribution systems of all
topologies, called Newton-Raphson Unbalanced (NRU). Three
often overlooked aspects of distribution load flow calculations
are discussed in detail: initialization, calculation and
discretization of tap changer positions, and solution of the
resulting linear equations. Computer studies on multiple
distribution systems support the design choices made
regarding the three aforementioned aspects. They also
demonstrate that the versatile NRU engine is very competitive
in terms of CPU time with a topology-limited ladder iterative
engine. As a consequence of its high numerical efficiency,
NRU is well suited to meet the increasing demand of
distribution system load flow solutions arising from higher
levels of PV penetration.

REFERENCES

[1] R.F. Arritt and R. C. Dugan, “Distribution system analysis and
the future smart grid,” IEEE Trans. Ind. Appl., vol. 47, no. 6,
pp. 2343-2350, Nov./Dec. 2011.

[2] M. J Reno, J. Deboever, and B. Mather, “Motivation and
requirements for quasi-static time series (QSTS) for distribution
system analysis,” to appear in Proc. IEEE Power Energy Soc.
General Meeting, 2017.

[3] D. Shirmohammadi, H. W. Hong, A. Semlyen, and G. X. Luo,
“A compensation-based power flow method for weakly meshed
distribution and transmission networks,” IEEE Trans. Power
Syst., vol. 3, no. 2, pp. 753-762, May 1988.

[4] C. S. Cheng and D. Shirmohammadi, “A three-phase power
flow method for real-time distribution system analysis,” IEEE
Trans. Power Syst., vol. 10, no. 2, pp. 671-679, May 1995.

[5] P. A.N. Garcia, “Three-phase power flow calculations using the
current injection method,” IEEE Trans. Power Syst., vol. 15, no.
2, pp. 508-514, May 2000.

[6] L. R. de Araujo et al., "Comparisons between the three-phase
current injection method and the forward/backward sweep
method," Elect. Power Energy Syst., vol. 32, pp. 8§25-833, 2010.

[7] W. Xu, J. R. Marti, and H. W. Dommel, “A multiphase
harmonic load flow solution technique,” IEEE Trans. Power
Syst., vol. 6, no. 1, pp. 174-182, Feb. 1991.

[8] I. Kocar et al., “Multiphase load-flow solution for large-scale
distribution systems using MANA,” IEEE Trans. Power Del.,
vol. 29, no. 2, pp. 908-915, Apr. 2014.

[91 R. C. Dugan, T. E. McDermott, “An open source platform for
collaborating on smart grid research,” in Proc. IEEE Power
Energy Soc. General Meeting, 2011.

[10] L. Dzafic, R. A. Jabr, E. Halilovic, and B. C. Pal, “A sensitivity
approach to model local voltage controllers in distribution
networks,” IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1419-
1428, May 2014.

[11] O. Schenk and K. Girtner, “Solving unsymmetric sparse
systems of linear equations with PARDISO,” Future Generation
Comp. Syst.., vol. 20, no. 3, pp. 475-487, 2004.

[12] T. A. Davis and E. Palamadai Natarajan, “Algorithm 907: KLU,
a direct sparse solver for circuit simulation problems,” ACM
Trans. Math. Softw, vol. 37, no. 3, Sep. 2010.

[13] L. Kocar, J.-S. Lacroix, and F. Therrien, “General and simplified
computation of fault flow and contribution of distributed
sources in unbalanced distribution networks,” in Proc. IEEE
Power Energy Soc. General Meeting, 2012.

[14] I. Kocar and J.-S. Lacroix, “Implementation of a modified
augmented nodal analysis based transformer model into the
backward forward sweep solver,” IEEE Trans. Power Syst., vol.
27, no. 2, pp. 663-670, May 2012.

[15] T. A. Davis, Direct Methods for Sparse Linear Systems,
Philadelphia, PA: SIAM, 2006.

[16] B. Stott, “Review of load-flow calculations,” Proc. IEEE, vol.
62, no. 7, pp. 916-929, Jul. 1974.

[17] B. Stott and O. Alsag, “Fast decoupled load flow,” IEEE Trans.
Power App. Syst., vol. PAS-93, no. 3, pp. 859-869, 1974.

[18] S.-K. Chang and V. Brandwajn, “Adjusted solutions in fact
decoupled load flow,” IEEE Trans. Power Syst., vol. 3, no. 2,
pp. 726-733, May 1988.

[19] Cooper Power Systems, $225-10-10: Voltage Regulators, Oct.
2001.

[20] K. Schneider, P. Phanivong, and J.-S. Lacroix, “IEEE 342-node
low voltage networked test system,” in Proc. IEEE Power
Energy Soc. General Meeting, 2014.

[21]R. F. Arritt and R. C. Dugan, “The IEEE 8500-node test
feeder,” in Proc. IEEE Power Energy Soc. T&D, 2010.

This research was supported in part by the DOE SunShot Initiative,
under agreement 30691. Sandia National Laboratories is a
multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration
under contract DE-NA(0003525.

