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State of the art for Si quantum dot spin qubits

Single qubit gates
Kawakami et al., 2014 Takeda et al., 2016
Si/SiGe (natural) Si/SiGe (natural)
Fidelity: 99 % Fidelity: 99.6 %
Micro-magnet (EDSR) Micro-magnet (EDSR)
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Large QDs array

Zajac et al., 2016
Si/SiGe

9 QDs
Good reproducibility for
charging energies and
orbital energies

Veldhorst et al., 2014
MOS (Al), Si 28
Fidelity: 99.6 %

Transmission line (ESR)

] also

Two-qubit gates

Veldhorst et al., 2015

MOS (Al), Si 28
Fidelity: < 90 %
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A reliable Si QD platform
Well-isolated two-level system
Dot-reservoir tunnel barrier tunability
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Dot-reservoir tunnel rate control
Valley splitting tuning
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A reliable platform for scaling up QD arrays

(1) Well-isolated two-level system
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Our approach

Split accumulation gate architecture

Poly-silicon gates: CMOS compatible, less stress and noise _ ';‘?‘B;_-’]
than Al gates. 3Binm 30-60Inm)
| | o . By, Poly-8i
Single gate stack subtractive fabrication process (no lift-off), B 100 nm;
CMOS compatible and better yield.
Sandia National Laboratories fabrication process
Minimalist planar architecture: we have to make it work with Sllsubstrate;
one less gate. .
Fabrication: check. Do we fulfill the other criterias? B
Qinnla_laad Double-lead
device
Tested in Tested in
E UNIVERSITE DE Sandia
SHERBROOI National
Laboratories
Te =125 Te =160 mK
Charge detecti Charge detection +
only transport




Dot-reservoir tunnel barrier control methods

Local accumulation devices

Dot W Reservolr
I

Dedicated barrier gate

Zajac et al., 2016



Dot-reservoir tunnel barrier control methods

Local accumulation devices

Dot W Reservolr
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Dedicated barrier gate

Zajac et al., 2016



Dot-reservoir tunnel barrier control methods

Local accumulation devices

Zajac et al., 2016



Dot-reservoir tunnel barrier control methods

Local accumulation devices

Zajac et al., 2016



Single-electron regime

dilog(@lgerHd Vg 02 TN -02
J ! T

. VY

N=0 1 2.3 45,

50 Y by i ™
&
e,

B
13 L LS e
V™)

Background:
SET oscillations

Effect of AR on
the tunnel rate I

Cond. band min. (meV)




Single-electron regime
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Thalakulam et al., APL 96, 183104 (2010).



Single-electron regime
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Single-electron regime
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Tuning orthogonality: tunnel rate and dot occupation

4.2 44 46 4.8
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Tuning orthogonality: tunnel rate and dot occupation
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Tuning orthogonality: tunnel rate and dot occupation
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Gustavsson et al., Surf. Science Rep. 64, 191 (2009).
Elzerman et al., APL 84, 234617 (2004).



Tuning orthogonality: tunnel rate and dot occupation
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Gustavsson et al., Surf. Science Rep. 64, 191 (2009).
Elzerman et al., APL 84, 234617 (2004).



Tuning orthogonality: tunnel rate and dot occupation
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Gustavsson et al., Surf. Science Rep. 64, 191 (2009).
Elzerman et al., APL 84, 234617 (2004).

Tuning orthogonality

AR, AD = A/ AR/ AUAR
Oar Ap=0.9 £ 0.3 decade/mV

Dedicated barrier gate:

Zajac et al., APL 106, 223507 (2015).

0B, ap=1.1%£ 0.3 decade/mV

S. Rochette et al., in preparation
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Data by Martin Rudolph, SNL



Electronic states in silicon quantum dots: Multivalley artificial atoms,
Y. Hada and M.Eto, PRB 68, 155322, 2003

Observation of the single electron regime in a highly tunable silicon quantum dot,
W.H. Lim et al, APL 95, 242102, 2009
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M| =12

N =1

N/ =10

Magnetic: field, B (T)
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Electronic states in silicon quantum dots: Multivalley artificial atoms,
Y. Hada and M.Eto, PRB 68, 155322, 2003

Observation of the single electron regime in a highly tunable silicon quantum dot, .
W. H. Lim et al, APL 95, 242102, 2009 Data by Martin Rudolph, SNL
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Magnetic: field, B! (T)
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Electronic states in silicon quantum dots: Multivalley artificial atoms,
Y. Hada and M.Eto, PRB 68, 155322, 2003

Observation of the single electron regime in a highly tunable silicon quantum dot, .
W. H. Lim et al, APL 95, 242102, 2009 Data by Martin Rudolph, SNL



Evs = gupBgt
= 220 ueVv

Electronic states in silicon quantum dots: Multivalley artificial atoms,

Y. Hada and M.Eto, PRB 68, 155322, 2003

Observation of the single electron regime in a highly tunable silicon quantum dot,

W.H. Limetal, APL 95, 242102, 2009
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Magnetic field, B! (T)

Data by Martin Rudolph, SNL



Separation ST increases with the
vertical electric field (Vab)
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take in account differences in the gate oxide

Spin valley lifetimes in a silicon quantum dot with a tunable valley splitting, thickness: 182 peV/V
C. H. Yang et al, Nat. Comm., 2013



Separation ST increases with the
vertical electric field (Vab)
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Multiple quantum dots Initialization and readout

One reservoir per extremity One reservoir per QD?

AR AR AR AR AR AR
AD AD AD AD AD AD
Readout: SWAP until reservoir reached Initialization and readout
(or PSB) accessible for each quantum dot

Zajac et al., 2016



(1) Well-isolated two-level system
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A reliable platform for scaling up QD arrays |

(2) Dot-reservoir tunnel rate control
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Tuning orthogonality tunnel
rate vs dot occupation:

Lar AD=0.9 £ 0.3 decade/mV

Comparable to dedicated

barrier gate devices

(3) Extensible fabrication

-Strong confinement, d < 50 nm

-Large and tunable valley splitting,
75 to 225 pyeV and +

Bap)
35nm S0-601nm
ﬁiiﬁém
5
Slsubstrate

Poly-Si
100

- Single poly-si gate stack
process entirely CMOS
compatible and high yield

-One reservoir per dot:
Could simplify initialization
and readout for large
arrays
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