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Why Microwaves: [rap Fabrication Capabilities at Sandia
- Trapped ions are a promising platform for the implementation of quantum information Five level metallization Low-profile wire bonds Trap configurations
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DC electrodes are routed through lower metal layers allowing for: Stylus Trap
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« simplified routing as wiring can cross in different metal layers
* NAO.25 through slot - islanded trap structures, such as circulators and rings
« Trap layouts that are more true to models, since electrode leads don’t need
to be taken into account
Very good trap performance - Trench capacitors are integrated directly into the interposer to reduce RF
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The 71Yb* Qubit Microwave-Integrated Surface Trap
Trap frequencies up to 5 MHz achievable
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Temperature data corrected for emissivity
RF induced Heating Microwave Gate
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