ROSS ’17, June 27, 2017, Washingon, DC, USA

SAND2017-5857C

N. Evans et al.

Scheduling Chapel Tasks with Qthreads on Manycore:
A Tale of Two Schedulers

Noah Evans

Center for Computing Research
Sandia National Laboratories
Albuquerque, New Mexico
nevans@sandia.gov

Richard Barrett
Sandia National Laboratories
Albuquerque, New Mexico
rfbarre@sandia.gov

ABSTRACT

This paper describes improvements in task scheduling for
the Chapel parallel programming language provided in its
default on-node tasking runtime, the Qthreads library. We
describe a new scheduler distrib which builds on the ap-
proaches of two previous Qthreads schedulers, Sherwood
and Nemesis, and combines the best aspects of both —work
stealing and load balancing from Sherwood and a lock free
queue access from Nemesis— to make task queuing better
suited for the use of Chapel in the manycore era. We demon-
strate the efficacy of this new scheduler by showing improve-
ments in various individual benchmarks of the Chapel test
suite on the Intel Knights Landing architecture.

CCS CONCEPTS

« Software and its engineering — Massively parallel
systems; Parallel programming languages; Runtime en-
vironments;

GENERAL TERMS

Parallel Programming Languages, Runtime Systems, Multi-
threading, Task Parallelism

ACM acknowledges that this contribution was authored or co-authored
by an employee, or contractor of the national government. As such, the
Government retains a nonexclusive, royalty-free right to publish or repro-
duce this article, or to allow others to do so, for Government purposes
only. Permission to make digital or hard copies for personal or classroom
use is granted. Copies must bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post,
requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

ROSS °17, Washingon, DC, USA

© 2017 ACM. 978-1-4503-5086-0/17/06...$15.00

DOI: 10.1145/3095770.3095774

Stephen L. Olivier
Center for Computing Research
Sandia National Laboratories
Albuquerque, New Mexico
slolivi@sandia.gov

George Stelle
Programming Models Team
Los Alamos National Laboratory
Los Alamos, New Mexico
stelleg@lanl.gov

KEYWORDS
Chapel, Qthreads, Task Queues, Work Stealing

ACM Reference format:

Noah Evans, Stephen L. Olivier, Richard Barrett, and George Stelle.
2017. Scheduling Chapel Tasks with Qthreads on Manycore: A Tale
of Two Schedulers. In Proceedings of ROSS °17, Washingon, DC, USA,
June 27, 2017, 9 pages.

DOI: 10.1145/3095770.3095774

1 INTRODUCTION

As systems grow in size and computational power much
of the scaling gains come not from faster processors or
instruction-level parallelism but from greater numbers of
cores and hardware threads per processor. This sea change
in computing threatens programmer productivity because
parallel programming is a challenging activity. It is much
more difficult to reason about than sequential programming
and there are fewer developers with either the capability or
the inclination to create large parallel programs that are both
correct and scalable.

Therefore the ability to fully exploit parallelism requires
tools and programming models that abstract away or sim-
plify the parallelism available to the user. By pushing the
complexity of parallel programs into the runtime developing
large parallel programs becomes tractable. The success of
the message passing model and supporting MPI implementa-
tions like MPICH and OpenMPI demonstrate the advantages
of this approach.

In task parallel programming models, the programmer
specifies the smallest sequential units of work to be per-
formed (tasks) and data or control dependences between
them. Efficient scheduling of the tasks, concurrently where
allowed by the dependences, is the responsibility of the run
time system. Task parallelism is a key feature of Chapel [11],

Scheduling Chapel Tasks with Qthreads on Manycore

a programming language developed at Cray Inc. as part of
DARPA’s High Productivity Computing System (HPCS) pro-
gram that attempted to make parallel programming available
to a wider spectrum of programmers.

A core idea of Chapel is the idea of multiresolution develop-
ment. The programming language allows the user to develop
coarse grained programs relying on traditional sequential
data structures and control flow and gradually introduce
parallel and high performance capabilities, like sparse arrays
and parallel tasking, during the natural course of program
development. This allows Chapel applications to utilize dis-
parate runtime systems and different hardware with minimal
changes to applications themselves.

The software architecture of Chapel’s run time system
uses a modular approach and provides a common tasking
layer interface which has binding to a variety of tasking layer
implementations including MassiveThreads [22], Qthreads [29],
POSIX threads [9] and (on Cray systems) Cray-proprietary
lightweight threading.

The current default tasking layer for Chapel is Qthreads,
a user-level threading library developed by Sandia National
Laboratories. The key idea of Qthreads is to provide abstrac-
tions for lightweight threading and synchronization that
directly model parallel hardware even though they are im-
plemented in software. Locality is also a first class concept:
locality domains are specified by work queue controllers
called shepherds that correspond to hardware locality do-
mains.

The structure of Qthreads locality and synchronization
primitives correspond directly to Chapel’s parallel primitives
which make it possible to make modifications to Qthreads
which interact with the resolution of an application by speci-
fying new synchronization and scheduling primitives which
Chapel can then use transparently.

This paper describes a new scheduler distrib which takes
lessons learned from previous Qthreads schedulers to imple-
ment a new scheduler that combines the best aspects of each,
specifically work stealing and lock free queuing, in order
to make a new scheduler with better performance under
Chapel than its predecessors.

The remainder of the paper is organized as follows. Sec-
tion 2 gives and overview of task parallelism, the Chapel
language, and the Qthreads multithreading library. Section 3
describes the existing Qthreads schedulers and the new dis-
trib scheduler. Section 4 presents an evaluation of the differ-
ent schedulers. Section 5 discusses related work. The paper
closes with conclusions and future work in Section 6.

ROSS ’17, June 27, 2017, Washingon, DC, USA

2 BACKGROUND
2.1 Task parallelism

The task parallel programming model for parallel program-
ming breaks down computations into work units and then
schedules and executes these units on available hardware
resources, often dynamically at run time. Early work on
the task parallel programming model and efficient run time
system support for its use is exemplified by the Cilk [15]
extention to C. In recent years, the number of task paral-
lel languages, libraries, and run time systems has increased
manyfold, as shown in the related work (Section 5).

The task parallel programming model differs in approach
from other models of parallel computation like Single Pro-
gram Multiple Data (SPMD) and Bulk Synchronous Process-
ing (BSP), which typically depend on the programmer’s spec-
ification of a static, regular, balanced work distribution. In
the task parallel model, different tasks can perform different
amounts of work, and they can begin and end at different
times. While providing greater opportunities for parallelism
and the interleaving of computation and communication, this
asynchrony among tasks can lead to contention and load
balancing problems as work can be unevenly distributed and
multiple tasks can contend for resources.

To ensure that work is evenly distributed and computa-
tions are making progress, correct and efficient scheduling
by the run time system are paramount. Much of the research
into task parallel runtimes involves ensuring that load bal-
ance is maintained, often by work stealing [7], to move tasks
from busy computational units to units that are underuti-
lized.

A task parallel computation is often represented as a Di-
rected Acyclic Graph (DAG) or tree of tasks. During execu-
tion, the runtime partitions the graph into subgraphs such
that each hardware resource executes some set of subgraphs
over the course of the program. One especially important
aspect of this partitioning of the task graph is maintaining
proper spatial and temporal locality of data in the computa-
tions. Since computational bandwidth often outstrips data
bandwidth the runtime should schedule data to be closer to
the computation involved.

2.2 Chapel Tasking Layer

The Chapel language [11] incorporates the task parallel
programming model through the parallel constructs begin,
cobegin, and coforall. Task management in the Chapel run-
time is implemented as a C API that provides support for
these constructs, as well as synchronization variables for
managing concurrent access to data. Chapel code compiles
to C code that delegates its tasking and synchronization be-
havior to the Chapel tasking API. The API consists of the
following functionality:

ROSS ’17, June 27, 2017, Washingon, DC, USA

o The Startup/Teardown layer initializes and finalizes
the task runtime as well as creating singleton tasks
for begin statements.

o The Creation and Execution of Task Lists implements
Chapel’s cobegin and coforall statements.

o The Synchronization functions implement the full/empty

semantics of Chapel’s synchronization variables.

e Task Control yields the processor or sleeps.

e Query functions allow Chapel to query the number
of tasks, threads or states.

In accordance with Chapel’s multiresolution approach
this API make no assumptions about the behavior of the
underlying runtime. This API is modular, so it is possible to
choose different tasking implementations at runtime via an
environment variable.

2.3 Qthreads

The default Chapel tasking layer is the Qthreads [29] a cross
platform, general purpose, parallel runtime from Sandia Na-
tional Laboratories. Qthreads is composed of two fundamen-
tal abstractions, lightweight threads scheduled onto locality
domains called shepherds and Full/Empty Bit (FEB) synchro-
nization primitives. The goal of these abstractions is to match
hardware threading architectures that implement massive
lieghtwieght multithreading and synchronization, such as
such as the Tera MTA / Cray XMT [1]. Individual threads
of computation can be anonymous, have explicit resource
allocations, and exploit explicit locality.

This approach means that Qthreads are fundamentally
different from traditional threading models. Qthreads do
not have individual thread identifiers, signal vectors or pre-
emption. They share more in common with coroutines and
scheduler activations [2] than OS-level threads.

Scheduling in Qthreads is cooperative. When one Qthread
can no longer make progress, either via a synchronization
primitive or an explicit yield, control is then passed to an-
other waiting Qthread. This context switch occurs entirely
within user space, typically much faster than a system call
and does not require the saving of signal handlers or the
full set of system registers. These user level context switches
allow the Qthreads runtime to interleave computation with
data access. A Qthread can —for example— launch a new
Qthread to produce some data and write a FEB, then yield to
be rescheduled when the FEB is available for reading. In the
interim, another Qthread can be scheduled so that hardware
resources are not idle.

3 SCHEDULER DESIGN IN QTHREADS

Like the Chapel runtime, the Qthreads library also uses a
modular design, and among the configurable options is the

N. Evans et al.

Table 1: Qthreads schedulers

Scheduler \ Queue \ Workstealing
Sherwood | One per NUMA domain OR | Yes

one per worker thread
Only one per worker thread | No
Only one per worker thread | Yes

Nemesis
Distrib

choice of cooperative scheduler. Various schedulers are im-
plemented in terms of thread queues with defined interac-
tions within and between shepherds (locality domains) and
workers.

To implement a thread queue a developer satisfies an API
that provides the following functionality:

e initialization and teardown;

e enquequeing and dequeuing, as well as filtering mech-
anisms to remove certain classes of threads from the
queue;

e stealing control and statistics, which are optional;

e policy support which dictates whether a shepherd
can support multiple workers or only one.

The original Qthreads scheduler was a simple lock free
queue that distributed tasks in FIFO order with only one
queue and one worker per shepherd. More sophisticated
schedulers followed, and several of these are described below
and summarized in Table 1.

3.1 Sherwood

The Sherwood scheduler was the first work stealing sched-
uler for Qthreads, developed originally to support OpenMP
tasking over Qthreads [23]. It takes an alternate approach
to the organization of shepherds and queues. Rather than
maintaining a one-to-one mapping of shepherd and work
queue to hardware thread, Sherwood generalizes the idea
of a shepherd to correspond to a particular resource with
locality constraints (e.g., a NUMA domain) with multiple
workers per shepherd that share a queue mediated by mutex
locks.

Sherwood uses a two-level load balancing scheme combin-
ing the methods of work stealing [7] and LIFO shared queu-
ing among topologically nearby threads, known as parallel
depth-first (PDF) scheduling [6]. All workers within a shep-
herd share a single queue. This arrangement enables them to
benefit from cooperative caching since they share cache and
memory resources, an effect of PDF schedulers [13]. Tasks
are scheduled in LIFO order, so newly created or recently
yielded tasks are executed first in order to exploit cache local-
ity. When a work queue is empty Sherwood attempts to work
steal from other shepherds on the system, examining other
work queues in a round robin fashion. When work is found
the scheduler attempts to take n qthreads from the victim

Scheduling Chapel Tasks with Qthreads on Manycore

queue, where n is a tunable parameter that defaults to the
number of workers per shepherd. This approach maximizes
throughput by doing slow cross-domain transfers at once
rather than attempt to steal one qthread at a time.

Sherwood excelled on NUMA architectures with small
numbers of cores per NUMA domain and large shared caches,
and became the default Qthreads scheduler. On recent many-
core systems it has struggled to scale with larger numbers
of cores and threads, often experiencing significant queue
contention. While one possible configuration of Sherwood
for decreased contention is to use only one worker per shep-
herd and queue, such a configuration was not the original
design point for this scheduler.

3.2 Nemesis

The Qthreads Nemesis scheduler is a thread queue based on
the MPICH2 Nemesis queueing subsystem. It is currently
the default thread queue used in Chapel. In contrast to Sher-
wood, Nemesis uses a simple FIFO queueing scheme for jobs
designed to be a highly optimized for SMP systems.

The original Nemesis queuing scheme acted as a progress
engine for MPICH2 [8]. As part of the MPI progress engine
it provided a queue implementation for multiple producers
to write MPI messages to a queue which had one receiver
process.

The Nemesis Qthreads thread queue adopts this intran-
ode message queueing scheme from MPICH2, but rather
than receiving MPI messages it receives tasks and dequeues
them for scheduling. Unlike Sherwood locality is set to a per
hardware thread basis rather than per NUMA domain. This
minimizes contention and maximizes scalability at the cost
of NUMA-based locality, e.g., shared caching.

To minimize memory bus traffic Nemesis aligns all thread
data structures to cache lines. The queue then uses a compare
and swap instruction to swap the head and tail of the queue.
If the swapped tail is not null there is contention writing
the queue and the queue should wait for the operation to
complete before attempting to write. This ensures progress
and throughput in aggregate: Although some writers can
starve, the system itself is guaranteed to make progress.

Nemesis is the Qthreads scheduler currently used by the
Chapel runtime, and is better suited to manycore architec-
tures than the Sherwood scheduler due to lower queue con-
tention. However, it lacks the load balancing benefits of a
workstealing approach.

3.3 Distrib

The recently added Distrib scheduler is a new thread queue
scheduler designed from scratch to combine the NUMA ef-
ficiency and load balancing of Sherwood and the queueing
performance of Nemesis. The primary insight is that Nemesis
mitigates memory contention in the runtime by spreading its

ROSS ’17, June 27, 2017, Washingon, DC, USA

work across many queues, and therefore many cache lines. In
contrast, Sherwood runs into contention issues due to every
queue operation per NUMA domain touching a single cache
line. While this was less of an issue for Sherwood in the
past, when there were fewer cores per NUMA domain and
per node, modern many-core architectures have shown that
this approach scales poorly. By spreading work across many
cache lines and adding mechanisms to limit work stealing,
Distrib enables reduced-contention load balancing.

At its core Distrib is a reimplementation of Nemesis’s
queue with work stealing functionality added to its behavior.
It maintains the same lock free behavior as Nemesis, swap-
ping head and tail pointers with compare and swap before
adding elements to the queue. All queue data structures are
also cache aligned. However Distrib differs from Nemesis
in its queueing order, items are scheduled in LIFO order to
preserve cache locality.

Distrib departs significantly from Sherwood in its work
stealing implementation. Work stealing is heavily simplified,
stolen elements are still stolen from the head of individual
work queues in round robin order, but they are stolen a job
at a time according to a user defined environment variable
STEAL_RATIO defines ratio of attempts to run an enqueued
job before stealing. If there is no work to steal and no jobs
on the queue another user defined variable COND_BACKOFF
specifies a number of cycles to wait before sleeping on a
condition variable and setting a counter of sleeping worker
threads. If a task attempts to enqueue work it signals the
condition variable to wake up the sleeping workers and
decrements the number of waiting workers.

Distrib is currently being tuned and tested as a candidate
to be the new default Qthreads scheduler for Chapel.

4 EVALUATION

To measure the differences between the different schedulers
we chose several benchmarks from the Chapel nightly perfor-
mance benchmarks and ran them using the baseline Qthreads
FIFO threadqueue, Sherwood, Nemesis and Distrib in order
to understand the differences between each of the sched-
ulers and their behavior. Specifically we wanted to see how
the performance of each queue affected the running time of
Chapel benchmarks and to see the effects of work stealing
and lockfree queuing in isolation.

4.1 Experimental Setup

The evaluation was conducted on a node of the Bowman
Advanced Architecture Testbed cluster at Sandia National
Laboratory. This node hosts an Intel Xeon Phi Knights Land-
ing Processor, model number 7250, with 68 cores and 272
hardware threads operating at 1.6 GHz. The processor in-
cludes 16GB of high bandwidth memory (MC-DRAM) on
the package, which we operate in cache mode. In addition

ROSS ’17, June 27, 2017, Washingon, DC, USA

Quicksort (Cache)

scheduler
distrib

— nemesis
sherwood

E

ol
©
c
o
o
[0
@
1.2~
£
<
(&}
ko]
o
1.0-
0.8-
0e+00 5e+04 1e+05

Size of problem 2n

Figure 1: Chapel Quicksort Benchmark
Lower is better

there is 96GB of DDR4 main memory. We compiled with
Chapel version 1.14.0.5f9253e and GCC version 4.8.3 using
the -O3 and -march=native flags. Performance comparisons
were performed by using Linux’s perf tools to do full system
profiling and the flamegraph tools [16] to do time compar-
isons. The Chapel benchmarks used are all available in the
main Chapel distribution.

4.2 Quicksort

The Chapel quicksort benchmark is an implementation of
a parallel quicksort executing the partition of each pivot
in parallel. We use quicksort to act as a stress test for task
spawning and communication. We also set the threshold
sufficiently high that it never serializes using the same tech-
niques as [28].

From Figure 1 we can see that —while both Nemesis and
distrib are roughly comparable at small scales— as the prob-
lem size grows distrib is almost 10% faster. This change in
behavior is almost entirely due to distrib’s backoff strategy
freeing up the kernel to do work. More than 59% of the cycles
spent in quicksort are spent doing page fault handling from
memory allocation. By quickly relinquishing it’s timeslice
when no work is available distrib is able to better accommo-
date the needs of the kernel.

N. Evans et al.

Tree (Cache)

1.6-

scheduler
distrib
— nemesis
sherwood
wl.2-
©
c
o /
&} :
[0
<)
()
E,s :
- —_—
[}
L]
(@)

0.4-

5 10
Size of problem 2”n

Figure 2: Chapel Tree Benchmark
Lower is better

4.3 Tree Exploration

The chapel tree benchmark computes the sum of uniquely
identified randomly generated tree nodes. This is done in
parallel using Chapel’s cobegin. It measures how well work
is scheduled across tasks using an easily parallelizable work-
load.

Figure 2 illustrates the difference performance characteris-
tics of the different schedulers. Initially, from problem sizes of
2% to 2'% nodes distrib is slower than Nemesis and Sherwood
which show roughly equivalent performance characteristics.
However from a problem size of 2!! nodes onward distrib
shows better scaling.

Like quicksort this behavior can be traced almost entirely
to memory allocation however, in this case the kernel only
spends around 36% of its time in the clearing memory in the
kernel in distrib (slightly more in Nemesis). However, the
extra overhead in this case comes from Nemesis spawning
fewer tasks and spending more time sleeping in the kernel.
Nemesis shows a 4% improvement in spin wait time com-
pared to distrib but that gain is offset by an addition 7% of
time spent in the kernel.

Scheduling Chapel Tasks with Qthreads on Manycore

Stream (Cache)

150 -

100 -

scheduler
distrib

/ — nemesis

50 - sherwood

Throughput (Gigabytes per sec)

0 100 200
Number of Tasks

Figure 3: Chapel Stream Benchmark
Higher is better

44 STREAM

The stream benchmark measures the amount of sustainable
memory throughput of a system using a simple vector kernel
which operates on arrays larger than machine cache and the
data is structured to ensure that data is not reused.

Since the workload on stream is regular and stresses the
system, stream is a good benchmark for measuring the over-
head of a task based system, any decline in throughput across
schedulers indicates overhead costs for a particular sched-
uler. To test this overhead we use a constant problem size of
16 Megabytes of data (the smallest problem size that achieves
maximum memory throughput for the benchmark) but vary
the number of cooperating tasks to measure the impact of
the threading runtime on the benchmark performance.

Figure 3 describes our stream result.

We see that —using Nemesis— stream achieves a maximum
throughput 130 GB/s, close to the maximum for the memory
bus, at 64 tasks, corresponding to one task per physical core
on Knights Landing. We see that as the number of tasks
equals the number of hyperthreads performance begins to
scale upwards again.

We see that distrib is slightly better for smaller numbers
of tasks where distrib demonstrates 6% better performance,

ROSS ’17, June 27, 2017, Washingon, DC, USA

SSCA2 (Cache)

50- scheduler

distrib
— nemesis
sherwood

40~
%)
o
c
o
&)
[0
<2
o 30-
£
x
O
L]
(@)

20-

10-

0 100 200

Number of Tasks

Figure 4: Chapel SSCA2 Benchmark
Lower is better

while at 64 tasks Nemesis is slightly more than 2% faster
than distrib.

This performance variation can be attributed to aggressive-
ness of the default backoff behavior in each queue. Distrib’s
more aggressive backoff behavior leads it to give up control
of the processor more aggressively than Nemesis, leading to
more time spent in Linux’s irq path with larger numbers of
tasks, while at smaller numbers of tasks distrib is capable
of providing slightly more work to tasks with a full work
queue.

4.5 SSCA2

The SSCA benchmark uses different analysis kernels operat-
ing on the same data structure with irregular access patterns
to simulate HPC graph workloads. Since each kernel poten-
tially has different access patterns optimizing different access
patterns.

In Figure 4 we see roughly equivalent performance be-
tween Sherwood and Nemesis (less than 1%) while distrib is
roughly 10% faster than both. Similar to the Tree and Quick-
sort benchmarks this performance improvement is due to
much more aggressive backoff when there is lack of work
or contention as the problem scales up. Nemesis and Sher-
wood both spend roughly equivalent times in computation

ROSS ’17, June 27, 2017, Washingon, DC, USA

Graph500 (Cache)

scheduler
128 - distrib
— nemesis
sherwood
/
8 32-
c
o
o
[0
@
(0]
£ s-
<
(&}
ko]
®)
2- /
\ —m

5 10 15
Size of problem 27n

Figure 5: Chapel Graph500v2 Benchmark
Lower is better

and spin locking, while distrib spends 4% time in user space
and 600% as much time in the kernel, translating to a 5%
improvement overall at scale.

4.6 Graph500

The Graph500 “Search” benchmark models data-intensive su-
per computer applications. Like SSCA2, the Graph500 bench-
mark uses multiple kernels which operate on a weighted
undirected graph. The first kernel constructs the graph and
a second kernel performs a breadth first search on the graph.

In the Figure 5 we see similar scaling profiles between
Nemesis and distrib, however distrib is 600% faster than
Nemesis and Sherwood at scale, thanks to work stealing
reducing the amount of time spent looking for work (20% less
time in userspace overall) and better use of backoff to avoid
monopolizing the processor leading to better throughput
overall.

5 RELATED WORK

The space of task parallel programming models and run
time systems is wide and varied. High-level on-node lan-
guages and libraries include Cilk [15], Intel Cilk Plus [26],
OpenMP tasking [4] (available in OpenMP versions 3.0 [24]
and above), Intel Threading Building Blocks (TBB) [25], and

N. Evans et al.

Microsoft Task Parallel Library (TPL) [19]. Libraries other
than Qthreads that also provide on-node low-level light-
weight threading include MassiveThreads [22] and Argob-
ots [27]. OCR [20] represents an effort to unify run time
system development. X10 [12] is a Java-based language that,
like Chapel, was developed as part of the HPCS program and
incorporates task parallel features as well. Habanero [10]
builds on X10 and contributes to OCR. Other task paral-
lel frameworks for distributed memory execution include

Charm++ [18], HPX [17], and Uintah [21]. Legion [5], StarPU [3],

and OmpSs [14] are designed to support task parallelism on
heterogeneous systems.

6 CONCLUSIONS AND FUTURE WORK

This paper has described the two schedulers for Qthreads,
Nemesis and distrib, that are most performant for manycore
execution, contrasting them with each other and the default
multicore Sherwood scheduler. Together these schedulers
support a variety of HPC workloads and performance pro-
files. Choosing among the Qthreads schedulers and their
configurations provides a way to tune the Chapel runtime
to particular workloads in a way that is transparent to the
users of higher level programming constructs like Chapel’s
cobegin and coforall statements, adhering to Chapel’s goal
to be a multiresolution programming language.

The most important result of this paper is that for the
different HPC workloads that Chapel supports there is no
one “correct” Qthreads scheduler with the best performance.
Depending on the pattern and needs of the workload either
of the Nemesis or distrib schedulers may be the optimal
choice, specifically the Nemesis scheduler for workloads
with regular data access patterns and execution flow and the
distrib scheduler for workloads with irregular data access
patterns and execution flow.

There is still a significant amount of work to be done to
make Qthreads better fit Chapel’s vision of a multiresolution
programming language. Currently schedulers are statically
compiled into the Qthreads library, but a better approach
would be to allow Qthreads to dynamically choose schedulers
at runtime. There is also much room for improvement in
optimization of schedulers for manycore HPC architectures
such as Intel’s Knights Landing processors, including work
on backoff, workstealing and other tunable parameters.

ACKNOWLEDGMENT

Sandia is a multi-mission laboratory operated by Sandia Cor-
poration, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Admin-
istration under contract DE-AC04-94AL85000. We wish to
express our appreciation for the use of the Advanced Archi-
tecture Test Bed, Bowman, at Sandia National Laboratories.

Scheduling Chapel Tasks with Qthreads on Manycore

The test beds are provided by National Nuclear Security Ad-
ministration’s Advanced Simulation and Computing (ASC)
program for research and development of advanced archi-
tectures for exascale computing.

REFERENCES

[1] Gail A. Alverson, Robert Alverson, David Callahan, Brian Koblenz,
Allan Porterfield, and Burton J. Smith. 1992. Exploiting heterogeneous
parallelism on a multithreaded multiprocessor. In ICS ’92: Proc. 6th
ACM Intl. Conference on Supercomputing. ACM, 188-197.

[2] Thomas E Anderson, Brian N Bershad, Edward D Lazowska, and

Henry M Levy. 1992. Scheduler activations: Effective kernel support

for the user-level management of parallelism. ACM Transactions on

Computer Systems (TOCS) 10, 1 (1992), 53-79.

Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-

André Wacrenier. 2009. StarPU: A unified platform for task scheduling

on heterogeneous multicore architectures. In Euro-Par 2009: 15th

International Euro-Par Conference on Parallel Processing. Springer, 863

874.

[4] Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan
Lin, Federico Massaioli, Xavier Teruel, Priya Unnikrishn an, and Guan-
song Zhang. 2009. The Design of OpenMP Tasks. IEEE Transactions
on Parallel and Distributed Systems 20 (March 2009), 404-418. Issue 3.

[5] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012.
Legion: expressing locality and independence with logical regions. In
SC 12: Proc. Intl. Conference on High Performance Computing, Network-
ing, Storage and Analysis. IEEE Computer Society Press, 66.

[6] Guy E Blelloch, Phillip B Gibbons, and Yossi Matias. 1999. Provably ef-
ficient scheduling for languages with fine-grained parallelism. Journal
of the ACM (JACM) 46, 2 (1999), 281-321.

[7] Robert D Blumofe and Charles E Leiserson. 1999. Scheduling multi-
threaded computations by work stealing. Journal of the ACM (JACM)
46, 5 (1999), 720-748.

[8] D.Buntinas, G. Mercier, and W. Gropp. 2006. Design and evaluation of
Nemesis, a scalable, low-latency, message-passing communication sub-
system. In Sixth IEEE International Symposium on Cluster Computing
and the Grid, Vol. 1. IEEE, 521-530.

[9] David R. Butenhof. 1997. Programming with POSIX Threads. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Vincent Cave, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. 2011.

Habanero-Java: The New Adventures of Old X10. In PPPJ 2011: 9th

Intl. Conference on the Principles and Practice of Programming in Java.

ACM, 51-61.

Bradford L Chamberlain, David Callahan, and Hans P Zima. 2007.

Parallel programmability and the chapel language. The International

Journal of High Performance Computing Applications 21, 3 (2007), 291

312.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher

Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and

Vivek Sarkar. 2005. X10: An object-oriented approach to non-uniform

cluster computing. In OOPSLA 05: Proc. 20th ACM SIGPLAN Conference

on Object Oriented Programming Systems, Languages, and Applications.

ACM, 519-538.

Shimin Chen, Phillip B Gibbons, Michael Kozuch, Vasileios Liaskovitis,

Anastassia Ailamaki, Guy E Blelloch, Babak Falsafi, Limor Fix, Nikos

Hardavellas, Todd C Mowry, and others. 2007. Scheduling threads for

constructive cache sharing on CMPs. In Proc. 19th ACM Symposium

on Parallel Algorithms and Architectures. ACM, 105-115.

Alejandro Duran, Eduard Ayguadé, Rosa M Badia, Jests Labarta, Luis

Martinell, Xavier Martorell, and Judit Planas. 2011. OmpSs: a proposal

for programming heterogeneous multi-core architectures. Parallel

—
w
—_

[10

=

(11

—

[12

=

(13

—_

(14

=

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

ROSS ’17, June 27, 2017, Washingon, DC, USA

Processing Letters 21, 02 (2011), 173-193.

M. Frigo, C. E. Leiserson, and K. H. Randall. 1998. The Implementation
of the Cilk-5 Multithreaded Language. In PLDI *98: Proc. 1998 ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation. ACM, 212-223.

Brendan Gregg. 2016. The flame graph. Commun. ACM 59, 6 (2016),
48-57.

Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio,
and Dietmar Fey. 2014. HPX: A Task Based Programming Model in a
Global Address Space. In 8th Intl. Conf. on Partitioned Global Address
Space Programming Models (PGAS ’14). ACM, Article 6, 11 pages.
Laxmikant V. Kale and Sanjeev Krishnan. 1993. CHARM++: A Portable
Concurrent Object Oriented System Based on C++. In Proc. 8th Annual
Conference on Object-oriented Programming Systems, Languages, and
Applications (OOPSLA ’93). ACM, New York, NY, USA, 91-108.

Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. 2009. The
design of a task parallel library. SIGPLAN Notices: OOPSLA °09: 24th
ACM SIGPLAN Conference on Object Oriented Programming Systems,
Languages, and Applications 44, 10 (2009), 227-242.

T. Mattson, R. Cledat, Z. Budimlic, V. Cave, S. Chatterjee, B. Seshasayee,
R. van der Wijngaart, and V. Sarkar. 2015. The Open Community
Runtime Interface. (2015).

Qingyu Meng, Justin Luitjens, and Martin Berzins. 2010. Dynamic
task scheduling for the uintah framework. In Many-Task Computing
on Grids and Supercomputers (MTAGS), 2010 IEEE Workshop on. IEEE,
1-10.

Jun Nakashima and Kenjiro Taura. 2014. MassiveThreads: A thread
library for high productivity languages. In Concurrent Objects and
Beyond. LNCS, Vol. 8665. Springer, 222-238.

Stephen L Olivier, Allan K Porterfield, Kyle B Wheeler, Michael Spiegel,
and Jan F Prins. 2012. OpenMP task scheduling strategies for multi-
core NUMA systems. The International Journal of High Performance
Computing Applications 26, 2 (2012), 110-124.

OpenMP Architecture Review Board. 2008. OpenMP API, Version 3.0.
(May 2008).

James Reinders. 2007. Intel Threading Building Blocks - Outfitting C++
for Multi-core Processor Parallelism. O’Reilly, Sebastopol, CA.

A.D. Robison. 2013. Composable Parallel Patterns with Intel Cilk Plus.
Computing in Science Engineering 15, 2 (March 2013), 66-71.

S. Seo, A. Amer, P. Balaji, P. Beckman, C. Bordage, G. Bosilca, A.
Brooks, A. Castellas, D. Genet, T. Herault, P. Jindal amd L. V. Kale, S.
Krishnamoorthy, J. Lifflander, H, Lu, E. Meneses, M. Snir, and Y. Sun.
2015. Argobots: A lightweight low-level threading/tasking framework.
http://collab.mcs.anl.gov/display/ ARGOBOTS/. (2015).

Kyle B. Wheeler, Richard C. Murphy, Dylan Stark, and Bradford L.
Chamberlain. 2011. The Chapel tasking layer over qthreads. In 2011
Cray Users’ Group Conference (CUG 2011). Cray User Group, Inc.
Kyle B. Wheeler, Richard C. Murphy, and Douglas Thain. 2008.
Qthreads: An API for programming with millions of lightweight
threads. In IPDPSW 2008: Proc. 22nd IEEE Intl. Symposium on Parallel
and Distributed Processing Workshops. IEEE, 1-8.

