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Models and Testing Mitigate Grid Storage Safety Risks

 How bad can a Li-Ion battery fire be at grid storage scale?

 Will a single cell in runaway cause cascading failure?

 Cost of safety testing increases with scale

 Models can complement test programs

 Yield insight into causes of observed events

 Extend experimental results to new scenarios

 Evaluate standards and test configurations (existing and proposed)

 Optimize product design
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Sandia Tools Suitable for Battery Safety Analysis

 Sierra-Mechanics integrated simulation tools developed at Sandia
 Original purposes included safety analysis of weapons in fire scenarios 

 Product of DOE-NNSA investments via Advanced Scientific Computing (ASC) program

 Charged batteries include both ‘fuel’ and ‘oxidizer’ internally

 Similar to energetic materials such as rocket propellants
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Heat transfer mechanisms in a fire



How Do We Model Thermal Runaway in Batteries?
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Models Need Parameters

 Preliminary chemistry model from literature

 Derived from calorimetry data (ARC and DSC)

 Yields reasonable predictions of thermal 
runaway onset (time and temperature)

 Empirical chemical reactions

5ARC measurement from MacNeil, D. D. and J. R. Dahn (2001). Journal of Physical Chemistry A 105(18): 4430-4439.

• SEI decomposition

• Cathode-electrolyte

• Electrolyte-salt

• Anode-electrolyte 	
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Cathode Chemistry Drives Cell Failure

6LiCoO2 model from Hatchard, T. D., D. D. MacNeil, A. Basu and J. R. Dahn (2001). Journal of the Electrochemical Society 148(7): A755-A761.
LiMn2O4 model from  Spotnitz, R. and J. Franklin (2003). Journal of Power Sources 113(1): 81-100.

Simulated oven tests for 18650 cells 
2 cathode materials, 2 temperatures

 Differences in cathode chemistry must be understood and quantified 
to predict thermal runaway of single cells



Limitations of Literature Chemistry Models

 Limited to low-temperature reactions

 Sufficient to predict initiation of thermal runaway 

 Driven by 1st stage of cathode decomposition

 Original intent of published models

 Under-predicts maximum cell temperatures 

 Missing heat release from high-temperature reactions

 Cannot accurately predict cascading failure

 Limited in terms of applicable materials

 Few cathode materials

 Optimized for a single build and state of charge 

 Does not account for real property variations
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Cathode & Electrolyte DSC data at 0.2oC/min

Anode & Electrolyte DSC data at 0.2oC/min

Data  from Wang, Q., J. Sun, X. Yao and C. Chen (2005). Thermochimica Acta 437(1–2): 12-16.



High-Fidelity Models Required for Cascading Failure
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Data from Lamb, J., et al. (2015). Journal of Power Sources 283: 517-523.

Add extra high-temperature reaction Decrease high-temperature reaction rate by 4x

Baseline Chemistry Model



Correct Thermodynamic Basis Critical for Modeling

 Anode Differential Scanning Calorimetry (DSC) at 10oC/min

 Hrxn = (DSC Area)/(DSC Rate)

 Different reaction regimes should be compared on appropriate stoichiometric basis

 C6Li + EC  C6 + C2H4 + Li2CO3  yields Hrxn = 42.5 kJ/g Li

 Integration of 2 experimental DSC curves yields 48.9 kJ/g Li and 41.3 kJ/g Li 

 Good agreement considering differences in electrolyte, etc.
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SEI

Electrolyte

Residual 
C6Li 
and/or 
binder

Exfoliation?

C6Li + 
Electrolyte

Roth, E. P. and D. H. Doughty (2004). "Thermal abuse performance of high-power 
18650 Li-ion cells." Journal of Power Sources 128(2): 308-318.
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Staged C6Li Consumption in Anode

 C6Li + Electrolyte reaction shows up as “plateau” in DSC

 Literature model couples exp(-z/z0) limiter with Arrhenius chemical rate function

 Results in considerable unconverted lithium in model

 z treated as a normalized SEI thickness

 No dimensions or scaling rules provided

 z0 = 0.033 in 2001 paper, z0 = 0.15 in 1999

 Exposure of new surface area should trigger consumption of residual intercalated lithium

 Graphite exfoliation and/or breakdown of SEI layer

 Corresponds to one or more of the large DSC peaks

 Should be included to model reasonable high-temperature heat release from anode
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Haik, O., S. Ganin, G. Gershinsky, E. Zinigrad, B. Markovsky, D. Aurbach and I. Halalay (2011). Journal of the Electrochemical Society 158(8): A913-A923.

Richard, M. N. and J. R. Dahn (1999). Journal of the Electrochemical Society 146(6): 2068-2077.
Richard, M. N. and J. R. Dahn (1999). Journal of the Electrochemical Society 146(6): 2078-2084.
Hatchard, T. D., D. D. MacNeil, A. Basu and J. R. Dahn (2001). Journal of the Electrochemical Society 148(7): A755-A761.



Modified Approach for C6Li Plateau

 Use exp(-z) instead of exp(-z/z0) to limit rate
 Allows initial reaction rate to be specified 

independent of layer growth rate

 Layer growth rate should be inversely proportional 
to surface area (use BET)

 New rules for scaling growth in z
 Initially set z0 = 0, calibrate when data available

 Likely scales with mass of SEI per unit surface area

 Set reference condition to BETref = 10 m2/g

 ρS2 = mass concentration of salt deposited on 
particle surface from C6Li + Electrolyte reaction

 Cz = scaling factor that specifies layer growth rate

 Calibrate simultaneously with Arrhenius parameters
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Richard, M. N. and J. R. Dahn (1999). Journal of the Electrochemical Society 146(6): 2068-2077.
Richard, M. N. and J. R. Dahn (1999). Journal of the Electrochemical Society 146(6): 2078-2084.
Hatchard, T. D., D. D. MacNeil, A. Basu and J. R. Dahn (2001). Journal of the Electrochemical Society 148(7): A755-A761.



DSC Compared to Literature C6Li Model
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Sandia 
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Sandia 
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Haik et al. 
2011 Fig 5d

Haik et al. 
2011 Fig 5g

Data

Old Model

Roth, E. P. and D. H. Doughty (2004). "Thermal abuse performance of high-power 18650 Li-ion cells." Journal of Power Sources 128(2): 308-318.
Haik, O., S. Ganin, G. Gershinsky, E. Zinigrad, B. Markovsky, D. Aurbach and I. Halalay (2011). Journal of the Electrochemical Society 158(8): A913-A923.



DSC Compared to Improved C6Li Model
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Data

Old Model

Updated 
Model

(Gen1 BET 
Uncertainty)

Sandia 
2004 Gen1

Sandia 
2004 Gen2

Haik et al. 
2011 Fig 5d

Haik et al. 
2011 Fig 5g

Next Steps: 
• Calibrate SEI 

reaction
• Allow C6Li 

reaction(s) to 
accelerate

• Improve 
Electrolyte 
Model

Roth, E. P. and D. H. Doughty (2004). "Thermal abuse performance of high-power 18650 Li-ion cells." Journal of Power Sources 128(2): 308-318.
Haik, O., S. Ganin, G. Gershinsky, E. Zinigrad, B. Markovsky, D. Aurbach and I. Halalay (2011). Journal of the Electrochemical Society 158(8): A913-A923.



Path Forward for Thermal Runaway Models at Sandia

 Use Sandia and literature data to add high-
temperature reactions to model

 Identify reactions for cathode, anode, and electrolytes

 Fit corresponding rate parameters

 Extend model to additional cathode materials

 Apply in cascading failure scenarios, validate with data

 Include better physics in upgraded models

 Rigorous thermodynamics

 Detailed material property dependence 

 Mass transport limitations

 Include additional phenomena

 External discharge 

 Quantify impact and practicality during runaway

 Pressurization and venting

 Quantify and evaluate toxic gas release and fire risks
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LCO LFP NCA NMC

Data from Wang, Q., J. Sun, X. Yao and C. Chen (2005). Thermochimica Acta 437(1–2): 12-16.
Pictured cells from ongoing Sandia investigations (Barkholtz)
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