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=  Boundary-layer transition can have a
significant impact on hypersonic vehicle
heating loads and controllability

= Crossflow results from pressure gradient ir
flow

= Crossflow-dominated transition can be
important in 3D flowfields

crossflow
. profile
sireamwise

= Cone at angle of attack profile

= Elliptic cone

= Recent computations and experiments
indicate that hypersonic crossflow breakdcwi,
may be due to modulated second mode

= Acoustic wave trapped between stationary
crossflow vortices and amplified
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= Further study of crossflow-dominated transition in
conventional wind tunnels

= What is the effect of patterned, discrete roughness elements (DREs) at
several angles of attack?

= How do trends compare between Mach numbers?
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= Hypersonic Wind Tunnel (HWT-8)

Sandia National Laboratories

Mach 8, Max Re,, = 17.4 x 10 /m
N2 test gas, T,= 660 K

Freestream noise levels of 3 - 5%

= Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT)

Purdue University

Mach 6, Max Re,, = 12 X 10° /m

Air test gas, T;=433 K

Freestream noise levels of about 2 — 3% (bleeds closed)

Used in conventional (noisy) mode only for these comparisons
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Model and Instrumentation

=  Modular cone with rotatable sensor frustum
= PCB132A31 and Kulite XCQ-062/MIC-062, Temperature Sensitive Paint
= Three roughness inserts

= Smooth
= 12 elements, k =0.005”, OD = 0.022”, 9-deg spacing (RIM-12x)
= 7 elements, k =0.005”, OD = 0.030", 18-deg spacing (RIM-7x)

PCB 11 at 343 mm, 123°

0.25 m |

Roughness Insert
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Smooth Cone Results, TSP ==
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Smooth Cone Results, PCB132 ) i,

= 343 mm from nosetip
= 123" from windward
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Smooth Cone Results, PCB132 ) i,

= 343 mm from nosetip

Integration band:

= 123° from windward / 110-500 kHz
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Smooth Cone Results, PCB132

Measured second mode
amplitude rises from
noise floor around Re = 3
million

Peak fluctuation
amplitude of 20% edge
pressure

Amplitude p'/p.
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Effect of Added Roughness, TSP () =,
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Smooth RIM-12x RIM-7x
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Effect of Added Roughness, PCBs @,
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= Adding roughness causes earlier transition by Re = 2-3 million
= Larger diameter roughness (RIM 7x) begins to increase in
amplitude earlier than RIM 12x
= Peak second-mode amplitudes all similar, 15-20% edge pressure
= Roughness results in more rapid initial growth of second mode

10-6 . . . . . : 0.2 -
% 10° /m LN —e-Smooth
—RIM 7x, Re. = 6.69 s —=RIM 12x
10-7 ——RIM 12x, Re, = 6.68] . 0.15L \ ——RIM 7x
o= . Smooth, Re, = 6.72 ~ \
S = s
— =y
=y ! [ \.-
= 105 | = 01 e
= E .
D“ E‘ K -\"‘-.
z 8 f,
1077 0.05 ) _ ]
M " __sIntegrated Amplitudes
PCB132 Pressure Spectra | + " 110-500 kHz
10—1{1 \ 0 . |

0 200 400 600 =00 1000 1200 2 3 4 51 6
Frequency, kHz Reynolds number Re, millions




Effect of Angle of Attack, TSP WL=R
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Pressure Fluctuation Amplitudes, different a [ =,
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Pressure Fluctuation Amplitudes, different a
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Effect of Mach Number )
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Effect of Mach Number ==
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Low-Frequency Instability UL

Second mode
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Low-Frequency Instability UL

10°¢ Re. = 6.7 % 10° /m

S —

P
IR

10—7 3

—a=6

10-5E \\

PSD, (¢ /p.)* /Hz

107"

10—10 |

Arclength from 126° ray, mm

1ot

0 100 200 300 400 500
Frequency, kHz

2 3 4 51 ] 7
Axial Distance from Kulite 1, mm

K1 at 328 mm from nosetip, 126:9
T




Low-Frequency Instability P';‘Rz-"f';
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= \Wave properties calculated using cross-power spectral density phase
= Wave properties on cone are similar to those measured on elliptic cone by Borg,
et al.
= Different geometries and Mach numbers
= Tunnel-noise driven instability?
= Very little growth with Reynolds number
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= Stationary Crossflow

= The addition of roughness destabilizes the boundary layer

= Transition occurs 30-40% sooner with roughness at « = 6° than for
smooth cone

= Growth rate of second mode is higher with roughness

= Stationary crossflow vortices modulate the second mode and amplify it
— May not be a “true” secondary instability

= Peak second-mode amplitudes are similar for all roughness patterns
and angles of attack (except 8°), 15-20% of edge pressure

= Low-Frequency Waves

= Phase speed and propagation angle of low-frequency waves measured
using closely-spaced Kulites

= Wave properties are similar to measurements made on elliptic cone at
different Mach and Reynolds number

= Need computations to better understand nature of instability
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Conclusions

= For a hypersonic pitched cone, travelling crossflow does not
seem to be important to transition even in noisy environment

= Transition in this case may not be the result of “true”
secondary instabilities but instead the second mode
modulated and amplified by stationary crossflow vortices

= Computations are essential for determining transition
mechanism in noisy environment
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QUESTIONS?
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Mach Number Comparison — With Quiet Flow @V ¥=,,
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