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Magnetized Liner Inertial Fusion relies on )
three stages to produce fusion relevant conditions
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An axial magnetic field is applied to limit )
radial charged particle transport

Applied
B-field

= Metal cylinder contains ~1 mg/cm?3 of
deuterium gas

= 10 mm tall, 5 mm diameter, 0.5 mm thick

= Helmholtz-like coils apply 10-30 T

= 3 ms risetime to allow field to diffuse through
conductors

Apply axial magnetic field
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A laser is used to heat the fuel at the start )
of the implosion

Laser

= 527 nm, 2 ns, 2 ki laser used to heat the fuel
Applied
B-field

= Laser must pass through ~1 um thick plastic
window

= Fuelis heated to ~100 eV

= Recall the axial magnetic field limits thermal
conduction in the radial direction

Laser-heat the magnetized fuel
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The current from the Z machine is used to )

implode the target
= Axial currentis ~17 MA, risetime is 100 ns
Amplified _ ,
B-field = Generates ~3 kT azimuthal B-field
= Metal cylinder implodes at ~70 km/s
AIAA Current
= Fuel is nearly adiabatically compressed, which
Current-
generated further heats the fuel to keV temperatures
B-field
= Axial magnetic field is increased to 1-10 kT
— through flux compression

Compress the heated
and magnetized fuel :




We have demonstrated key aspects of )

Laboratories

magneto-inertial fusion on Sandia’s Z facility
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Primary Neutron Yield

10" F

Implosion

Implosion +
B-field + laser

Demonstrated
0.5-1 kJ DT-equivalent
vields on Z

Simulations indicate
10-100 kJ yields are
possible

We need to increase
fuel density, B-field,
laser energy, and

current to get there

6




We initially prioritized diagnostic access and B
B-field uniformity over minimizing inductance
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in this configuration
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= We have diagnostic access
_________ for 0 and 12 degree lines of
sight




We initially prioritized diagnostic access and B
B-field uniformity over minimizing inductance

* The magnetic field
uniformity is better than 1%
in this configuration
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Diagnostic access

= We have diagnostic access
_ for 0 and 12 degree lines of
sight

Target

= Required a long axial
extension of the inner-MITL

®* |nductanceis 7.3 nH

Current Flow = Prefer less than 5 nH




We observed high convolute voltage and high  ge
shunt current in this configuration

= The convolute
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Simulations indicate B-field non-uniformity of e
~50% has similar performance to uniform case

Uniform Bz End of laser p.  13ns later

20T

oT
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Simulations indicate B-field non-uniformity of e
~50% has similar performance to uniform case

Uniform Bz  End of laser p.  13ns later Bz gradient 10 — 15T
20T

oT

= Laser heating stage has larger impact on magnetic field uniformity

= Axial temperature profiles at stagnation are nearly identical between the two simulations
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We redesigned the inner-MITL and coils to )
reduce inductance and maintain diagnostic access
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top and 10 T at the bottom
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We redesigned the inner-MITL and coils to )

Laboratories

reduce inductance and maintain diagnostic access

= Asingle coil above the target
magnetizesitto 12.5 T at the
top and 10 T at the bottom

Coil

= Diagnostic access is limited
to O degree lines of sight

Diagnostic
access

16




We redesigned the inner-MITL and coils to )
reduce inductance and maintain diagnostic access

= Asingle coil above the target
Coil magnetizesitto 12.5 T at the
top and 10 T at the bottom

= Diagnostic access is limited
to O degree lines of sight

Diagnostic
access

= Load inductance reduced to
5.1 nH with a minimum gap
of 4 mm

Current Flow




In the new configuration the convolute voltage gz
dropped and so did the current loss
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We believe that there is more room to further reduce the initial inductance
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We also demonstrated nominal stagnation e
performance with a non-uniform B-field
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We need increased fuel density, laser energy, g

and B-field to take advantage of higher current o

= Qur standard capability is 10 T, 0.5-1 kJ, and 16-18 MA
= We are targeting 15-20 T, 1-2 kJ, and 19-20 MA in the near term
= We would like to reach 20-30 T, 2-4 kJ, and 20-22 MA by 2020

= New coil designs should enable magnetic fields 18-26 T that are compatible with
low inductance inner-MITL configurations

= New laser heating configurations with beam smoothing have demonstrated an
increase in stagnation performance
= New record MaglLIF yield is ~“4e12 with a lower-intensity, smoothed laser beam

= Experiments that combine increased magnetic field, laser energy, and current are
planned for later this year 20




