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Magnetized Liner Inertial Fusion relies on 
three stages to produce fusion relevant conditions
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An axial magnetic field is applied to limit 
radial charged particle transport 

 Metal cylinder contains ~1 mg/cm3 of 
deuterium gas

 10 mm tall, 5 mm diameter, 0.5 mm thick

 Helmholtz-like coils apply 10-30 T

 3 ms risetime to allow field to diffuse through 
conductors
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A laser is used to heat the fuel at the start 
of the implosion
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 527 nm, 2 ns, 2 kJ laser used to heat the fuel

 Laser must pass through ~1 μm thick plastic 
window

 Fuel is heated to ~100 eV

 Recall the axial magnetic field limits thermal 
conduction in the radial direction
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The current from the Z machine is used to 
implode the target
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 Axial current is ~17 MA, risetime is 100 ns

 Generates ~3 kT azimuthal B-field

 Metal cylinder implodes at ~70 km/s

 Fuel is nearly adiabatically compressed, which 
further heats the fuel to keV temperatures

 Axial magnetic field is increased to 1-10 kT
through flux compression
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We have demonstrated key aspects of 
magneto-inertial fusion on Sandia’s Z facility
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 Demonstrated 
0.5-1 kJ DT-equivalent 
yields on Z

 Simulations indicate 
10-100 kJ yields are 
possible

 We need to increase 
fuel density, B-field, 
laser energy, and 
current to get there



We initially prioritized diagnostic access and 
B-field uniformity over minimizing inductance
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We initially prioritized diagnostic access and 
B-field uniformity over minimizing inductance

 The magnetic field 
uniformity is better than 1% 
in this configuration
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We initially prioritized diagnostic access and 
B-field uniformity over minimizing inductance

 The magnetic field 
uniformity is better than 1% 
in this configuration

 We have diagnostic access 
for 0 and 12 degree lines of 
sight
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We initially prioritized diagnostic access and 
B-field uniformity over minimizing inductance

 The magnetic field 
uniformity is better than 1% 
in this configuration

 We have diagnostic access 
for 0 and 12 degree lines of 
sight

 Required a long axial 
extension of the inner-MITL 

 Inductance is 7.3 nH

 Prefer less than 5 nH
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We observed high convolute voltage and high 
shunt current in this configuration

 The convolute 
voltage is >2.5 MV 
early in time

 Current loss begins 
shortly afterward

 The shunt current 
approaches 10 MA 
near stagnation
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Simulations indicate B-field non-uniformity of 
~50% has similar performance to uniform case
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Simulations indicate B-field non-uniformity of 
~50% has similar performance to uniform case

 Laser heating stage has larger impact on magnetic field uniformity

 Axial temperature profiles at stagnation are nearly identical between the two simulations
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We redesigned the inner-MITL and coils to 
reduce inductance and maintain diagnostic access
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We redesigned the inner-MITL and coils to 
reduce inductance and maintain diagnostic access

 A single coil above the target 
magnetizes it to 12.5 T at the 
top and 10 T at the bottom
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We redesigned the inner-MITL and coils to 
reduce inductance and maintain diagnostic access

 A single coil above the target 
magnetizes it to 12.5 T at the 
top and 10 T at the bottom

 Diagnostic access is limited 
to 0 degree lines of sight
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We redesigned the inner-MITL and coils to 
reduce inductance and maintain diagnostic access

 A single coil above the target 
magnetizes it to 12.5 T at the 
top and 10 T at the bottom

 Diagnostic access is limited 
to 0 degree lines of sight

 Load inductance reduced to 
5.1 nH with a minimum gap 
of 4 mm
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In the new configuration the convolute voltage 
dropped and so did the current loss

 The convolute 
voltage dropped to 
only ~2 MV early in 
time

 Current loss delayed 
by about 15 ns

 The shunt current 
reduced to 7 MA 
near stagnation
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We believe that there is more room to further reduce the initial inductance



We also demonstrated nominal stagnation 
performance with a non-uniform B-field

 Primary DD neutron yield = 1.0e12

 Ion temperature = 2.0 keV

 Secondary DT neutron yield = 5.2e9

 Nominal stagnation image

 Nominal stagnation duration
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We need increased fuel density, laser energy, 
and B-field to take advantage of higher current
 Our standard capability is 10 T, 0.5-1 kJ, and 16-18 MA

 We are targeting 15-20 T, 1-2 kJ, and 19-20 MA in the near term 

 We would like to reach 20-30 T, 2-4 kJ, and 20-22 MA by 2020

 New coil designs should enable magnetic fields 18-26 T that are compatible with 
low inductance inner-MITL configurations

 New laser heating configurations with beam smoothing have demonstrated an 
increase in stagnation performance
 New record MagLIF yield is ~4e12 with a lower-intensity, smoothed laser beam

 Experiments that combine increased magnetic field, laser energy, and current are 
planned for later this year 20


