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Need for large-scale simulations

* Goal: high-fidelity solutions of plasma physics models for
large-scale problems with complex physics and geometry

— magnetohydrodynamic (MHD), multifluid electromagnetic plasma
simulations

— US DOE interest: pulsed fusion reactors (e.g. z-pinch), magnetically
confined fusion (e.g. ITER tokamak)
« Fast and robust solution methods for multiphysics problems
— e.g. Newton-Krylov approaches
— Block and fully-coupled preconditioners for multiphysics
— Scalable solution methods: multilevel/multigrid

* “Next generation” platforms (manycore, accelerators)

« Talk focus: our AMG-based preconditioned approach for
large-scale FEM simulations

— Drekar CFD/MHD application code (resistive MHD, recent capability:
multifluid plasmas)

— Trilinos solvers
— Brief discussion on matrix assembly for next gen platforms
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Drekar Implicit/IMEX FE Application

(J. Shadid, R. Pawlowski, E. Cyr, T. Smith, E. Phillips, T. Wildey, D. Sondak, M. Bettencourt, et al.)
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stabilized FEM, unstructured hexahedral meshes &
Newton-Krylov solvers with AMG-based preconditioners
Drekar and Trilinos path forward for future architectures: Kokkos (C.
Edwards, C. Trott, D. Sunderland, N. Ellingwood, S. Hammond; not part of this talk)
Matrix assembly
« Panzer and phalanx have been refactored to use Kokkos
 Intrepid2 with Kokkos for discretization
Solve
* Most of Tpetra has been refactored to use Kokkos
« Newton-Krylov: fully-coupled multigrid, physics-based block preconditioners
» Dblock preconditioners with Teko: E. Phillips talk
* many solver packages in the process of being refactored to Kokkos
 refactor not yet complete---results for this talk for MPI-only
« good scaling with O(10%) MPI processes is still critical
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Brief Trilinos overview (solver library portion)

» Classic Trilinos (Epetra-based) (Heroux et al.):
» Limited by 32-bit integer global objects
» Most packages employ flat MPI-only; future architectures?

* “Next-gen” or “second generation” Trilinos solver stack (Tpetra-based):
* No 32-bit limitation on globals (employs C++ templated data types)

» Path forward for future architectures: Kokkos (Edwards, Trott, Sunderland,
Ellingwood, Hammond; not part of this talk)

Functionality Classic stack | Newer solver stack

Distributed linear algebra | Epetra Tpetra (Hoemmen,Trott, etc.)

Iterative linear solve Aztec Belos (Thornquist,Hoemmen,etc.)

Incomplete factor Aztec, Ifpack | Ifpack2 (Hoemmen,Hu,Siefert, etc.)

Algebraic multigrid ML MuelLu (Hu,Prokopenko,Wiesner,Siefert, Tuminaro,etc.)
Partition & load balance | Zoltan Zoltan2 (Devine,Boman,Rajamanickam,Wolf,etc.)
Direct solve interface Amesos Amesos2 (Rajamanickam,etc.)

« PETSc is another well-known solvers library (ANL; Smith, Gropp, Knepley,
Brown, Mclnnes, Balay, Zhang, et al.); 2015 SIAM/ACM CSE prize winner
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Trilinos MueLu Library: algebraic multigrid preconditioners

(J. Hu, A. Prokopenko, J. Gaidamour, T. Wiesner, C. Siefert, R. Tuminaro)

“Next-gen” ML (R. Tuminaro, J. Hu, C. Tong, M. Gee, M. Sala, C. Siefert)
Smoothed aggregation (Vanek,Mandel,Brezina 1996)

» Create graph where vertices are block nonzeros in matrix A,

» Edge between vertices i and j added if block By(i,j) contains nonzeros
Uncoupled aggregation; prolongation/restriction; nonsmoothed; A..1 = R¢ Ak Pk
Repartition coarser level matrices (MuelLu+Zoltan2) to reduce communication

Coarsest level: serial direct solve (KLU; T. Davis) on 1 MPI process

Other approaches: LLNL Hypre (R. Falgout, U. Yang, T. Kolev, A. Baker, E.
Chow, C. Tong, et al.), MLBDDC (S. Badia, A. Martin, J. Principe, et al.), etc.

Weak Scaling: Linear Iterations (Ha=2.5)

= FC AMG (BG/Q) @‘7‘
700k| * =+ DD ILU(1),ov=1 (Titan)
= -+ FC AMG (Titan)
g 000 *  Weak scaling: MHD generator :
g _ J _ J _ \W*
%500 b Re - 500, Rem - 1, Ha - 25 " ”‘;‘h MQ{‘\‘
g @0 « Cray XK7, IBM Blue Gene/Q [ .
@6 | | Additive Schwarz domain decomposition does not scale
PG @ @m0 | Multigrid critical for performance and scaling
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MuelLu strong scaling: Poisson equation

(with J. Hu, J. Shadid, A. Prokopenko, E. Cyr, R. Pawlowski)
3D Poisson (1 DOF/mesh node); Drekar

Simple cube geometry, near uniform mesh Sz
Fixed problem size (2.4B DOFs); 1 MPI task/core BG/Q (image courtesy LLNL)
Optimal iteration count to 1.6 million cores (full-scale Sequoia BG/Q)

MPI CG iterations | Solvet(s) | MG setup (s) | DOFs/MPI
131,072 | 6.3 1.17 7.67 ~18,800
262,144 | 6.0 1.08 12.35 ~9400
524,288 | 6.3 1 25.43 ~4700

1,048,576 | 7.3 0.91 53.04 ~2400
1,572,864 | 7.0 0.94 128.9 ~1500

 MPI+X has potential to help (for Trilinos, X=Kokkos)
100k MPI + 16 OpenMP would delay suboptimal scaling
* 1.6M MPI processes =» MPI takes a lot of memory
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Resistive (incompressible) MHD model

(J. Shadid, R. Pawlowski, E. Cyr, L. Chacon)

Navier-Stokes + Magnetic Induction
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Steady-state MHD generator
* Flow with external cross-stream B field

8 DOFs/mesh node
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Weak scaling: fully-coupled multigrid MHD -

(with J. Shadid, J. Hu, A. Prokopenko, E. Cyr, R. Pawlowski)

MPI DOFs GMRES Time/Newton step (s)
iterations Multigrid setup Solve
/Newton | Hier+smoo| Smoother >
128 845,000 14.0 12.4 11.0 4.7 « BG/Q: 1 MPl/core
1024 6,473,096 20.0 14.7 13.0 6.6| « Multigrid prec setup
8192 50,658,056 30.8 16.9 14.2 10.1 time/Newton step
65,536 400,799,240 53.4 20.3 16.1 17.9 «  Smoother: ILU(O)
524,288(3,188,616,200 98.7 45.3 19.1 40.1 overlap=1

Drekar 3D MHD generator on BG/Q (simple geometry)
Algorithmic scaling challenging for nonsymmetric matrices
* 4096x increase in size: 6.0x iterations, 7.3x time
» Petrov-Galerkin or energy minimization approaches promising
* Need better aggregation, better smoothers, etc.
Another challenge: sparse matrix-matrix multiply (A,;=R*A*P)
« Employ reuse of construction of hierarchy + smoothers (Prokopenko,Hu)
» Application dependent (e.g. cannot reuse for adaptive mesh)
« Critical for transient simulations (104 or 10° time steps)
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Smoothers for MHD systems

 Most MHD turbulence simulations employ spectral methods
« Stabilized FEM: variational multiscale (VMS) (Hughes 1995)
— many authors employ VMS for CFD

e MHD/MHD turbulence with VMS (Shadid et al., Sondak+Oberai, Codina et al.,
Badia et al.)

* Fully-coupled Newton-Krylov (multigrid preconditioned)

« Effective smoothers critical for multigrid
— Need to efficiently damp high frequency error
— Relaxation not robust for our MHD problems; need ILU(0) overlap=1

* Krylov smoothers

— Lots of previous work for SPD problems (Bank, Bornemann, Braess,
Deuflhard, Douglas, Notay, Oosterlee, Shaidurov, Vassilevski, etc.)

— Some previous work for Helmholtz (EIman, Ernst, O’Leary, etc.)
— Far less previous work for nonsymmetric (recently: Birken, Bull, Jameson, etc.)

— Drekar GMRESR solve preconditioned by multigrid with GMRES smoother
(possibly preconditioned with e.g. block Jacobi)

— Setup much cheaper than ILU, but solve can be expensive

. Sandia
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Comparison of smoothers: transient Taylor-Green

MHD vortex decay (VMS resistive MHD)
« Re=5100; cube domain, 20 time steps, CFL ~0.5
» linux cluster dual-socket SNB, IB fat-tree (TLCC2)

S S

S £ \ N

smoother iters/dt |Prec setup(s) |Solve(s)|Prec+sol(s) [Mem(MB)

; ILU(0)ov1 14.2 257 94 351 1436
128° elem, noprec| 15.4 23| 258 281 917
16.8M DOFs, otGS 136 26| 409 435 917
256 MPI GMRES I kiac 13.1 36 250 285 927
bkGS 12.0 33| 559 592 930

smoother iters/dt |Prec setup(s) |Solve(s)|Prec+sol(s) [IMem(MB)

5123 elem, |ILU(O)ov1|ovl 37.3 407| 280 687 1519
1.07b DOFs, noprec| 31.0 92| 610 702 1002
16384 MPI |GMRES [ptGS 21.5 94 728 822 1002
bklac 21.9 60 458 518 1017

GMRES can be faster than ILU; requires less memory

DD-GMRES smoother reduces global communication, but at a penalty of
higher iteration count and higher solve times at this scale; need to go to
large scales to see potential benefit
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Initial weak scaling: island coalescence
comparison of smoothers

Transient reS|st|ve MHD (8 DOF/mesh node)

Drekarisland coalescence weak scaling: time
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Time = 3.03523 Aw

Transient: fixed time step
of 0.1 (20 steps);
Smoothers: ILU, GMRES
(std relaxation did not
work)

643, 1283, 2563 elem:
2.1M, 16.9M, 135M DOF
Dual-socket 2.6GHz
SNB+IB fat tree (TLCC2)
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Initial weak scaling: island coalescence comparison of
smoothers

Drekarisland coalescence weak scaling: time » Transient: fixed time step of
600 0.1 (20 steps); Smoothers:

500 ILU, GMRES (std relaxation
74 did not work)
£ .« 643, 1283, 2568 elem: 2.1M,
- I - I I 16.9M, 135M DOF's
. e Dual-socket 2.6GHz

ILU64 LU 512 ILU 4096 GM -no GM-no GM-no GM-bk] GM-bk] GM-bkJ
512 4096 64 512 4096 SNB+IB fat'tree (TLCCZ)

M prec setup Msolve

Drekarisland coalescence weak scaling: Dreakarisland coalescence weak scaling:
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GMRES iterations/Newton step
Memory (MB)

GMRES smoother is faster than standard ILU smoother, requires less memory
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“Next generation” platforms (NGP)

« Many-core processors and accelerators

« Many large platforms around the world with many-core
processors and accelerators

 We use US DOE platforms
— NERSCS8 Cori Cray XC40: ~9700 Intel Xeon Phi Knights Landing (KNL)
— LANL/SNL Trinity ATS-1 Cray XC40
* Phase 1 ~9400 dual-socket HSW compute nodes
« Phase 2 ~9000 Intel Xeon Phi Knights Landing (KNL)
— LLNL ATS-2 Sierra: IBM POWER+NVIDIA GPUs
— ORNL Summit: IBM POWER+NVIDIA GPUs
— ANL Aurora: Intel Xeon Phi

« DOE has many huge legacy codes
— especially NNSA Tri-labs (LANL, LLNL, SNL)
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First step towards NGP: matrix assembly
(M. Bettencourt, R. Pawlowski, E. Cyr)

Drekar FE assembly with
Kokkos

Electron full-Maxwell
plasma system simulation

Mixed-basis assembly using =
nodal (fluid), edge (electric
field), face (magnetic field)

FE integration and
gather/scatter kernels
(local-dense to global-
sparse data structures)

Dual-socket 16-core HSW
Single GPU (K80)

Single KNC (224 threads)
Single KNL (256 threads)

Run Time
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e—e Haswell-MPI
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First step towards NGP: matrix assembly for GPU

(C. Trott, M. Bettencourt, R. Pawlowski, E. Cyr, E. Phipps)
« Original GPU results below expectations due to lack of
parallelism in assembly kernels
« To expose more parallelism, need to extend physics kernels to
hierarchical parallelism
« Impact of hierarchical parallelism of a core CFD computational
kernel extracted to a standalone test (work with Christian Trott)

« Future work: hierarchical parallelism in Drekar matrix
assembly

GPU Scaling: For 8000 cells: Fastest 0.013024
T T T T T

100
[ Cell parallel (K20)
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Multi-level parallel (K20) | |
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Concluding remarks and future work

e Presented scaling studies for full MHD systems

e Performed a comparison of multigrid smoothers for our MHD problems
e initial empirical study for two test cases

* initial evaluation of GMRES as alternative smoother to current standard (ILU)

e Shows promise: can solve an initial class of relevant problems (appears
competitive; expensive, but so is ILU)

 Memory usage benefits (ILU requires ~40% more)

e (o to larger scale; more test cases

» Drawback: more communication?

* Need to go back and try to analyze method more carefully
o Kokkos for manycore and accelerators (“X” for MPI+X)

e Preliminary threaded matrix assembly results promising

e Lot of work remaining for threaded preconditioner setup and solve
* Many challenges for multigrid-preconditioned linear solve

e algorithmic scaling for nonsymmetric problems

e multigrid preconditioner setup (sparse mat-mat)
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Thanks For Your Attention!

Paul Lin (ptlin@sandia.gov)
John Shadid, Edward Phillips, Jonathan Hu, Paul Tsuiji,
Eric Cyr, Roger Pawlowski, David Sondak
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What is Kokkos?
O O O

Applications & Libraries

v
Kokkos

performance portability for C++ applications

Multi-Core Many-Core APU CPU+GPU
Cornerstone for performance portability across next generation HPC

architectures at multiple DOE laboratories, and other organizations.

. Sandia
@) :NERGY VA S  Slide stolen from M. Bettencourt, who i) seions

Laboratories
probably stole it from the Kokkos team t




Abstractions
Patterns, Policies, and Spaces

Parallel Pattern of user’s computations
— parallel_for, parallel_reduce, parallel_scan, task-graph, ... (extensible)

Execution Policy tells how user computation will execute
— Static scheduling, dynamic scheduling, thread-teams, ... (extensible)
Execution Space tells where computations will execute

— Which cores, numa region, GPU, ... (extensible)

Memory Space tells where user data resides

— Host memory, GPU memory, high bandwidth memory, ... (extensible)

Layout (policy) tells how user array data is laid out
— Row-major, column-major, array-of-struct, struct-of-array ... (extensible)

Differentiating: Layout and Memory Space
— Versus other programming models (OpenMP, OpenACC, ...)
— Critical for performance portability ...

Slide stolen from M. Bettencourt, who mh Sandia
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Multi-fluid Plasma System Model
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Fully discrete 2-fluid system

D, K¢, 0 Qx 0 0 0 [ 0
D" Dy 0 Qp Qpii 0 [QE™|QE™
D D%, De Q5 Q7. Q7| Qg | 0
z;’ 0 0 Dpc Kﬁ:u 0 0 0
i Quui 0 Dpe Dy 0 QE™ | Q5™
Pilli et QI;' K B_|
0 0 0 0 0 0 TKETQs

Pele

Ee

E
B

16 Coupled

Nonlinear PDEs
(continuity,
momentum, energy for
lons+electrons;
Maxwell equations)

Group the hydrodynamic variables together (similar discretization)

F — (/?-i,, Pil;, gia Pes Pele, ge)

Resulting 3x3 block system

Dr QL
Qr Qg
0 Kz
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Physics-based Approach Enables Optimal AMG Sub-block Solvers

Use upper triangular factor of block LU decomposition as preconditioner

—QB Kg‘ 0 | 2schur complements to solve
P=| 0 Dp QE
0 0 S

Fluid sub-solve: Node-based

A\
L —1  YFE coupled CFD type system.
Sr = Dr — KED, QE
F F ETE QF SIMPLEC approximation for Sg

e\ . .
o EA—11-B Maxwell subsystem: electric field
DE — QE — KBQB KE Edge-based curl-curl
type system.
— - Magnetic field: Face-based simple
—1lygo B
B — QB KE E mass matrix Inversion.
ENERGY //IV A‘S&" Next: Results for Maxwell subsystem; Large-scale "1 ﬁg{‘.ﬂ'ﬁa.

plasma fluid subsystem study is future work Laboratories
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Weak Scaling for Maxwell Subsystem
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« 3D edge-based curl-curl E-B Maxwell subsystem: ML H(curl) AMG
» 3 sub-blocks (2 with rows = #edges); MuelLu on sub-blocks

* cubic domain with cubic elements
* 10 time steps; total 20 linear solves (20 Teko/Muelu prec setup); Cray XC40

Drekar Tpetra/Teko/MueLu E-B Maxwell weak scaling

140.0 .
e . « Good scaling on block solves
% 120.0
2 / (at least for solve; setup
R / needs improvement)

A Teko8.4Brow | « Formulation presented Wed
2 600 matrices .

, 13:55 E. Phillips

z 40.0 /

% 20.0 /

0.0 + T

32 256 2048 16384 131072

# MPI Processes
«8=GMRES iterations/solve <=(Total time)/(time steps) Work Sti” in progress: multiﬂuid results

=#=Solve time/Newt

Next we revisit single fluid full MHD systems
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“Next generation” platforms (NGP)

Many-core processors and accelerators

ACES
— NERSCS Cori
« ~9500 Intel Xeon Phi Knights Landing (KNL)
— ACES Trinity ATS-1
* Phase 1 ~9500 dual-socket HSW compute nodes
* Phase 2 ~9500 Intel Xeon Phi Knights Landing (KNL)
— ~68 cores

CORAL
— LLNL ATS-2 Sierra

 IBM POWER+NVIDIA GPUs
— ORNL Summit

 IBM POWER+NVIDIA GPUs
— ARNL Aurora

* Intel Xeon Phi

DOE has many huge legacy codes
— especially NNSA Tri-labs (LANL, LLNL, SNL)
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