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Abstract — Methods and initial results are presented for
creating synthetic high-frequency solar simulations with unique 
profiles for each interconnection point on a distribution system 
feeder using low-frequency input data. The three steps to synthetic 
sample creation are to develop a relationship between high and 
low frequency data, create high-frequency timeseries based on this 
relationship, and then to generate unique samples for different 
spatial locations. The simulation results for a distribution system 
voltage regulator demonstrate the value of unique high-frequency 
samples for distributed PV compared to a single PV profile used 
at all interconnection points.

I. INTRODUCTION

High-frequency solar variability with unique inputs for 
different interconnection points on distribution feeders are 
important inputs to accurate quasi-static time series (QSTS) 
distribution grid integration studies. Using low-frequency solar 
variability results in underestimation of the impact of solar 
photovoltaics (PV) to distribution grid operations, while using 
a single PV profile for all interconnection points results in an 
overestimation of the PV impact due to the spatial smoothing 
provided by distributed PV. 

Measurements of high-frequency solar variability are scarce, 
motivating methods which can synthetically generate high-
frequency data from more ubiquitous low-frequency data such 
as satellite-derived irradiance. In this paper, we present initial 
results from ongoing work to develop high frequency, spatially-
unique synthetic samples and to show their value to QSTS. 

II. METHOD

To create inputs to distribution grid studies which involve 
distributed PV across a feeder, Sandia will use a 3-step 
process.

1) Develop a relationship between low-frequency 
satellite derived solar irradiance and high-frequency 
solar irradiance, using an hourly or daily summary 
statistic such as the variability score (VS). 

2) Select high frequency timeseries samples given the 
predicted high-frequency summary statistic. 

3) Generate unique irradiance samples for each 
interconnection point by adding some decorrelation 
between points, while still retaining the overall 

summary statistics.

A. Low-frequency data and high-frequency data relationship

The relationship between low-frequency satellite and high-
frequency irradiance has resolved in previous work [1]. The 
relation between solar variability derived from hourly satellite 
irradiance versus sub-minute ground measured solar irradiance 

was found to be strongest when the hourly satellite data was 
adjusted in several ways. 

The adjusted satellite data was first converted to a clear-sky 
index to remove solar variability caused by the sun’s movement 
through the sky. Then, the median of all daily variability scores, 
using a year of more of satellite data, was used. This median 

variability score was then Scaled by the ratio of 
������ ���

���� ����, to 

re-introduce the magnitude of irradiance that was removed by 
using the clear-sky index Finally, spatial smoothing was used 
by taking the distance-weighted average of the 9 satellite pixels 
surrounding the location of interest. The ground 30-second 
variability is shown as a function of the 1-hour satellite variably 
in Figure 1, where the 1-hour satellite data was adjusted as 
described in the bullets above. 

B. Select High-Frequency Timeseries

At least three basic methods exist for selecting appropriate 
high-frequency timeseries based on the low-frequency 
variability determined in II. A. 

One method is to find hours in a lookup library that match 
the summary statistic found from satellite data. For this method, 
a large database of high-frequency irradiance samples is 
needed. Based on the variability statistic assigned to each hour 
of satellite data, a representatively variable hour of high-
frequency data is pulled from the library. Figure 2 shows an 
example of this method. Hours in the morning are clear and 
hence low-variability sample hours are assigned from the 
library. In the afternoon and evening, however, the hourly data 
indicates a sharp change in output, leading to a high variability 

Figure 1: Relationship between 30-second ground measured solar 
variability (x-axis) and 1-hour satellite derived solar variability (y-
axis) for several locations. 
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statistic for those hours and hence the high-frequency samples 
assigned from the library are highly variable. This method is 
similar to that used in [2].

A second method is to create synthetic ramp rates by 
sampling from a cumulative distribution of high-frequency 
ramp rates during times which match the low-variability 
statistic. This method is similar to the first method, except that 
each short-interval ramp (e.g., 1-second or 1-minute) is 
sampled independently; in the first method hour-long blocks are 
sampled all altogether. The advantage of this method is that it 
requires a smaller library of high-frequency data. The 
disadvantage is that, due to the independent sampling, special 
care must be taken to ensure that the autocorrelation of the 
created timeseries is representative of actual solar timeseries. 
That is, the independent sampling may, for example, often 
choose several large down ramps in a row, leading to a very 
steep decline in generation that is not reflected in the hourly 
data. Instead, additional dependencies must be factored into this 
method, such as that solar timeseries are more likely to ramp up 
after a down ramp than down again.

The third method, which we describe in detail in this paper,
is the creation of synthetic cloud fields based on the hourly 
irradiance statistic. The cloud sizes are scaled based on the 
variability determined from the hourly data. Cloud fields are 
created based on a modification of Perlin noise [3], which has 
historically been used for creation of clouds for movies and 
video games. Just as for the second method, special care must 
be taken to accurately reproduce the ramp rate statistics of true 
solar irradiance timeseries, as this method tends to predict too 
quick of changes from full output to cloud obstruction.
Smoothing of the cloud edges and retention of high-spatial 
scale (in addition to larger cloud features) noise are imperative.

C. Unique PV Production Across a Distribution Feeder

Assuming only a single representative timeseries for all 
locations on a feeder will lead to significant overestimation of 
the PV impacts to the feeder (see section Error! Reference 
source not found.), as all distributed PV systems will ramp at 

the exact same time and in the same direction. Instead, unique 
PV profiles must be created for each of the different 
interconnection points along the feeder to model cloud shading, 
movement, and the spatial smoothing of distributed PV. 

The method used to create unique PV profiles will depend on 
the method to create representative timeseries (II. B. ). The first 
and second representative timeseries methods result in a single 
timeseries. These can then be tuned into unique timeseries by 
time-shifting each timeseries based on the cloud speed. 
Example time shifts for PV interconnection locations on a 
distribution feeder, and an example shifted timeseries are 
shown in Figure 3. Time shifts must occur for clear-sky index 
data, as seen in Figure 3, to account for changing sun angles 
(most important over long time periods of 10s of minutes to 
hours), in addition to the cloud motion. The disadvantage to this 
method is that all any locations perpendicular to the direction 
of cloud motion have identical PV generation timeseries, and 
all locations have identical irradiance statistics, just with 
different offsets. Both of these mean that spatial smoothing 
across the feeder is slightly underestimated, and, hence, the PV 
impact to the feeder may be slightly overestimated. 

If the synthetic cloud field method is used, then unique PV 
output profiles naturally are created due to the 2-dimentional 

Figure 2: Relationship between 30-second ground measured solar 
variability (x-axis) and 1-hour satellite derived solar variability 
(y-axis) for several locations. 

Figure 3: [Top] Time offset for points along a distribution feeder, 
and [Bottom] resulting shifted timeseries for one offset.  
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nature of the cloud fields. As in section II. B. , care must be 
taken to ensure that created profiles retain the spatial smoothing 
behavior of true distributed PV.

III. SYNTHETIC CLOUD FIELDS

Since the synthetic cloud fields have the ability to address 
both sections II. B. and II. C. , it is a promising method. In this 
section, we present work we have done to develop the cloud 
field method and to create sample PV inputs for distribution 
grid studies.

A. Field at Different Scales

The synthetic cloud fields method begins by creating random 
noise at different spatial scales, as seen in the left plots in 
Figure 4. 

Figure 4: [Left] Finer to coarser (top to bottom) scales of random 
noise. [Right] Those random noise fields interpolated to the size 
of the finest random noise field (scale 1). 

Next, each scale of random noise is linearly interpolated to a 
grid the same size as the finest grid (scale 1 in Figure 4). This 
results in a smooth field for the larger scales while retaining the 
more random field at the smaller scales, as seen in the right side 
of Figure 4. 

B. Initial Cloud Field

These interpolated fields are added together to create an 
initial cloud field, as seen Figure 5. Different weights are applied 
to the different interpolated fields. These weights are related to 
the solar variability: a higher weighting on the finer interpolated 
fields will lead higher variability since the resulting cloud field 
will be more jagged. 

Here, we define scale weighting based on the variability 
score [2]. Specifically, weights are related to ��/��� (��),  where 
� is the scale and VS is the variability score, though we are still 
determining the exact coefficients. 

Figure 5: Initial cloud field created by summing all the interpolated 
fields (right plots in Figure 4). 

C. Cloud Mask

However, this initial cloud field does not look like actual sky 
conditions: values range from fully clear to fully cloudy without 
distinct cloud shapes. To obtain more distinct clouds, we create 
a cloud mask, which is based on the expected fraction of the sky 
covered by clouds (e.g., as found from hourly data). 

The cloud mask is created by setting all values greater than 
kt to clear sky. For example, if kt=0.5, then roughly half the 
pixels in the cloud field will be set to clear sky. Figure 6 shows 
an example cloud mask for kt=0.5, and the resulting cloud field
when the mask is applied. To apply the cloud mask, the two 
initial cloud fields are created. The first one is used to make the 
cloud mask, and the cloud mask is then applied to the second 
cloud field. If the cloud mask were applied to the same field as 
it was created from, there would be no values in the cloud field 
between kt and 1 (clear). This is especially a problem for low 
kt values, where, e.g., for kt=0.2, the clouds would all be very 
opaque (no values would be generated between 0.2 and 1).
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Figure 6: [Top] Cloud mask. [Bottom] Resulting cloud field after 
mask is applied.  

D. Variation with VS and kt

We have defined the cloud fields to be a function of VS and 
kt. Figure 7 shows example cloud fields for a variety of VS and 
kt combinations. As VS increases indicating more variability, 
the clouds get smaller. As kt increases indicating less of the sky 
is covered by clouds, we see more clear sky. 

Also included in Figure 7 is a clear-sky index sample. This 
was generated by sampling a complete row from each cloud 
field. Since the cloud fields have values ranging from 0-1, they 

are analogous to clear-sky index values: 0 is fully cloudy and 1 
is fully clear. 

These clear-sky samples again confirm that cloud fields with 
higher VS have higher variability, and that cloud fields with 
higher kt values tend to have fewer clouds. However, the clear-
sky index samples in Figure 7 are not fully realistic. They tend 
to be either 1 (clear) or a value much less than 1 (cloudy), 
instead of having smooth transitions from clear to cloudy. 
Additionally, cloudy areas are highly opaque, which is not 
representative of thin clouds which only slightly reduce the 
irradiance reaching the surface. 

We continue to modify the cloud field creation methodology, 
including adjusting the scale weights, applying targeted 
smoothing, and allowing for different cloud opacities. The goal 
is to be able to match the statistics of ground measured 
irradiance.  

E. Sampling from Cloud Fields

Since the eventual goal of the cloud field methodology is to 
create unique PV samples for distribution grid studies, we need 
to be able to sample timeseries from the cloud fields. We do this 
by assigning a length scale to the cloud field (e.g., one pixel is 
one meter), and by advecting the clouds based on the cloud 
speed. For example, for a 5 m/s cloud speed with 1m pixels, we 
would sample every 5 pixels to generate a 1-second resolution 
timeseries. 

Figure 7: Cloud fields created based on each VS and kt input.  
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Examples of samples at various cloud speeds are shown in 
Figure 8. Fast clouds speeds lead to lower correlation among 
different PV sites [3], and we do see that behavior in the 
samples from the cloud fields. 

However, a side effect of sampling at different intervals is 
that the cloud speed is directly impacting the variability of each 
individual location:  slower cloud speeds lead to less variability. 
The variability at each individual location should depend only 
on the VS (not the cloud speed), so this interdependency will 
need to be addressed in future iterations.

Figure 8: Timeseries created from sampling the same cloud field 
at different intervals corresponding to different cloud speeds.  

F. Convert to GHI and Power

The samples described in section III. E. are analogous to 
clear-sky index samples. They can be converted to GHI by 
multiplying by a clear-sky index (e.g., [4]). Figure 10 shows a 
sample GHI timeseries created with this method. The “on-off” 
behavior of the clear-sky index samples is again seen in the GHI 
samples. 

Figure 9: Sample GHI timeseries derived from cloud fields. 

These GHI samples can be converted to power output 
samples by using a decomposition and transposition model to 
convert to plane of array (POA) irradiance in the plane of the 
PV modules to be simulated, and then by using an irradiance to 
power model to convert to power output. 

Figure 10 shows PV power samples over a day. The VS can 
kt were varied over different hours of the day, so some periods 
are fully clear while others are cloudy. Again, we notice the 
“on-off” behavior of the power from the single location. 
However, when timeseries are sampled at hundreds of locations 
(corresponding to the hundreds of different transformer 
locations on the feeder), the aggregate output is much smoother 
and looks more realistic. As described in section Error! 
Reference source not found., we have ongoing test to evaluate 
the need for accurate distributed PV inputs. For analysis such 
as voltage regulator tap changes, it may not be important that a 
single customer be accurately portrayed because the regulator 
will only see the aggregate output of several PV systems. 

IV. UNIQUE PV PROFILES IMPACT ON DISTRIBUTION STUDIES

Previous work has shown the value of the high-frequency 
solar inputs discussed in Section II.B. to distribution grid 
studies: a 20% error [5] and 70% error [6] were found in 
computing voltage regulator tap change operations when using 
hourly PV samples instead of high-frequency samples. Here, 
we additionally show the value of using unique PV inputs 

Figure 10: Sample power output timeseries for one location (blue), and for the aggregate of all locations on the feeder (black). 
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across the feeder (discussed in Section II.C.), instead of 
assuming the same PV power profile at all locations Error! 
Reference source not found. shows voltage regulator 
timeseries for a week-long simulation for both the case of a 
single irradiance profile used at all PV interconnection points 
and for a unique irradiance profile used at each interconnection 
point. The unique irradiance profiles were created based on 8 
ground measurements, then were spread across the feeder using 
the first method described in section II. C. (cloud speed based 
time shifting). The result is that the unique irradiance profiles 
resulted in ~30% fewer tap change operations. Thus, in order to 
accurately determine PV impacts such as voltage regulator tap 
change operations, it is important to generate spatially-unique 
irradiance profiles. 

Figure 11. Voltage regulator tap change operations in a sample 
week for [top] a single irradiance profile used at all 
interconnection points and [bottom] unique irradiance profiles 
used at each interconnection point.

V. CONCLUSIONS AND FUTURE WORK

We have shown the need for unique, high-frequency solar PV 
samples in quasi-static time series simulations (QSTS) of 
distribution grid impacts of PV, and laid out the synthetic cloud 
field method. Additional tweaks to the cloud field methodology 
are needed to make the sampled timeseries better match 
measured irradiance data. Additionally, the method should be 
further demonstrated with QSTS simulations to show its value 
for simulating high penetrations of distributed PV when no or 
limited ground data is available.
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