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Abstract — Methods and initial results are presented for
creating synthetic high-frequency solar simulations with unique
profiles for each interconnection point on a distribution system
feeder using low-frequency input data. The three steps to synthetic
sample creation are to develop a relationship between high and
low frequency data, create high-frequency timeseries based on this
relationship, and then to generate unique samples for different
spatial locations. The simulation results for a distribution system
voltage regulator demonstrate the value of unique high-frequency
samples for distributed PV compared to a single PV profile used
at all interconnection points.

I. INTRODUCTION

High-frequency solar variability with unique inputs for
different interconnection points on distribution feeders are
important inputs to accurate quasi-static time series (QSTS)
distribution grid integration studies. Using low-frequency solar
variability results in underestimation of the impact of solar
photovoltaics (PV) to distribution grid operations, while using
a single PV profile for all interconnection points results in an
overestimation of the PV impact due to the spatial smoothing
provided by distributed PV.

Measurements of high-frequency solar variability are scarce,
motivating methods which can synthetically generate high-
frequency data from more ubiquitous low-frequency data such
as satellite-derived irradiance. In this paper, we present initial
results from ongoing work to develop high frequency, spatially-
unique synthetic samples and to show their value to QSTS.

II. METHOD

To create inputs to distribution grid studies which involve
distributed PV across a feeder, Sandia will use a 3-step
process.

1) Develop a relationship between low-frequency
satellite derived solar irradiance and high-frequency
solar irradiance, using an hourly or daily summary
statistic such as the variability score (VS).

2) Select high frequency timeseries samples given the
predicted high-frequency summary statistic.

3) Generate unique irradiance samples for each
interconnection point by adding some decorrelation
between points, while still retaining the overall
summary statistics.

A. Low-frequency data and high-frequency data relationship

The relationship between low-frequency satellite and high-
frequency irradiance has resolved in previous work [1]. The
relation between solar variability derived from hourly satellite
irradiance versus sub-minute ground measured solar irradiance

was found to be strongest when the hourly satellite data was
adjusted in several ways.

The adjusted satellite data was first converted to a clear-sky
index to remove solar variability caused by the sun’s movement
through the sky. Then, the median of all daily variability scores,

using a year of more of satellite data, was used. This median

. . dian GHI
variability score was then Scaled by the ratio of un_z, to
1000 Wm

re-introduce the magnitude of irradiance that was removed by
using the clear-sky index Finally, spatial smoothing was used
by taking the distance-weighted average of the 9 satellite pixels
surrounding the location of interest. The ground 30-second
variability is shown as a function of the 1-hour satellite variably
in Figure 1, where the 1-hour satellite data was adjusted as
described in the bullets above.
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Figure 1: Relationship between 30-second ground measured solar
variability (x-axis) and 1-hour satellite derived solar variability (y-
axis) for several locations.

B. Select High-Frequency Timeseries

At least three basic methods exist for selecting appropriate
high-frequency timeseries based on the low-frequency
variability determined in II. A.

One method is to find hours in a lookup library that match
the summary statistic found from satellite data. For this method,
a large database of high-frequency irradiance samples is
needed. Based on the variability statistic assigned to each hour
of satellite data, a representatively variable hour of high-
frequency data is pulled from the library. Figure 2 shows an
example of this method. Hours in the morning are clear and
hence low-variability sample hours are assigned from the
library. In the afternoon and evening, however, the hourly data
indicates a sharp change in output, leading to a high variability
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Figure 2: Relationship between 30-second ground measured solar
variability (x-axis) and 1-hour satellite derived solar variability
(y-axis) for several locations.

statistic for those hours and hence the high-frequency samples
assigned from the library are highly variable. This method is
similar to that used in [2].

A second method is to create synthetic ramp rates by
sampling from a cumulative distribution of high-frequency
ramp rates during times which match the low-variability
statistic. This method is similar to the first method, except that
each short-interval ramp (e.g., 1-second or 1-minute) is
sampled independently; in the first method hour-long blocks are
sampled all altogether. The advantage of this method is that it
requires a smaller library of high-frequency data. The
disadvantage is that, due to the independent sampling, special
care must be taken to ensure that the autocorrelation of the
created timeseries is representative of actual solar timeseries.
That is, the independent sampling may, for example, often
choose several large down ramps in a row, leading to a very
steep decline in generation that is not reflected in the hourly
data. Instead, additional dependencies must be factored into this
method, such as that solar timeseries are more likely to ramp up
after a down ramp than down again.

The third method, which we describe in detail in this paper,
is the creation of synthetic cloud fields based on the hourly
irradiance statistic. The cloud sizes are scaled based on the
variability determined from the hourly data. Cloud fields are
created based on a modification of Perlin noise [3], which has
historically been used for creation of clouds for movies and
video games. Just as for the second method, special care must
be taken to accurately reproduce the ramp rate statistics of true
solar irradiance timeseries, as this method tends to predict too
quick of changes from full output to cloud obstruction.
Smoothing of the cloud edges and retention of high-spatial
scale (in addition to larger cloud features) noise are imperative.

C. Unique PV Production Across a Distribution Feeder

Assuming only a single representative timeseries for all
locations on a feeder will lead to significant overestimation of
the PV impacts to the feeder (see section Error! Reference
source not found.), as all distributed PV systems will ramp at
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Figure 3: [Top] Time offset for points along a distribution feeder,
and [Bottom] resulting shifted timeseries for one offset.

the exact same time and in the same direction. Instead, unique
PV profiles must be created for each of the different
interconnection points along the feeder to model cloud shading,
movement, and the spatial smoothing of distributed PV.

The method used to create unique PV profiles will depend on
the method to create representative timeseries (II. B. ). The first
and second representative timeseries methods result in a single
timeseries. These can then be tuned into unique timeseries by
time-shifting each timeseries based on the cloud speed.
Example time shifts for PV interconnection locations on a
distribution feeder, and an example shifted timeseries are
shown in Figure 3. Time shifts must occur for clear-sky index
data, as seen in Figure 3, to account for changing sun angles
(most important over long time periods of 10s of minutes to
hours), in addition to the cloud motion. The disadvantage to this
method is that all any locations perpendicular to the direction
of cloud motion have identical PV generation timeseries, and
all locations have identical irradiance statistics, just with
different offsets. Both of these mean that spatial smoothing
across the feeder is slightly underestimated, and, hence, the PV
impact to the feeder may be slightly overestimated.

If the synthetic cloud field method is used, then unique PV
output profiles naturally are created due to the 2-dimentional



nature of the cloud fields. As in section II. B. , care must be
taken to ensure that created profiles retain the spatial smoothing
behavior of true distributed PV.

III. SYNTHETIC CLOUD FIELDS

Since the synthetic cloud fields have the ability to address
both sections II. B. and II. C. , it is a promising method. In this
section, we present work we have done to develop the cloud
field method and to create sample PV inputs for distribution
grid studies.

A. Field at Different Scales

The synthetic cloud fields method begins by creating random
noise at different spatial scales, as seen in the left plots in
Figure 4.
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Figure 4: [Left] Finer to coarser (top to bottom) scales of random
noise. [Right] Those random noise fields interpolated to the size
of the finest random noise field (scale 1).

Next, each scale of random noise is linearly interpolated to a
grid the same size as the finest grid (scale 1 in Figure 4). This
results in a smooth field for the larger scales while retaining the
more random field at the smaller scales, as seen in the right side
of Figure 4.

B. Initial Cloud Field

These interpolated fields are added together to create an
initial cloud field, as seen Figure 5. Different weights are applied
to the different interpolated fields. These weights are related to
the solar variability: a higher weighting on the finer interpolated
fields will lead higher variability since the resulting cloud field
will be more jagged.

Here, we define scale weighting based on the variability
score [2]. Specifically, weights are related to i'/~"(VS) | where
i is the scale and VS is the variability score, though we are still
determining the exact coefficients.
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Figure 5: Initial cloud field created by summing all the interpolated
fields (right plots in Figure 4).

C. Cloud Mask

However, this initial cloud field does not look like actual sky
conditions: values range from fully clear to fully cloudy without
distinct cloud shapes. To obtain more distinct clouds, we create
a cloud mask, which is based on the expected fraction of the sky
covered by clouds (e.g., as found from hourly data).

The cloud mask is created by setting all values greater than
kt to clear sky. For example, if kt=0.5, then roughly half the
pixels in the cloud field will be set to clear sky. Figure 6 shows
an example cloud mask for kt=0.5, and the resulting cloud field
when the mask is applied. To apply the cloud mask, the two
initial cloud fields are created. The first one is used to make the
cloud mask, and the cloud mask is then applied to the second
cloud field. If the cloud mask were applied to the same field as
it was created from, there would be no values in the cloud field
between kt and 1 (clear). This is especially a problem for low
kt values, where, e.g., for kt=0.2, the clouds would all be very
opaque (no values would be generated between 0.2 and 1).
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Figure 6: [Top] Cloud mask. [Bottom] Resulting cloud field after
mask is applied.

D. Variation with VS and kt

We have defined the cloud fields to be a function of VS and
kt. Figure 7 shows example cloud fields for a variety of VS and
kt combinations. As VS increases indicating more variability,
the clouds get smaller. As kt increases indicating less of the sky
is covered by clouds, we see more clear sky.

Also included in Figure 7 is a clear-sky index sample. This
was generated by sampling a complete row from each cloud
field. Since the cloud fields have values ranging from 0-1, they
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are analogous to clear-sky index values: 0 is fully cloudy and 1
is fully clear.

These clear-sky samples again confirm that cloud fields with
higher VS have higher variability, and that cloud fields with
higher kt values tend to have fewer clouds. However, the clear-
sky index samples in Figure 7 are not fully realistic. They tend
to be either 1 (clear) or a value much less than 1 (cloudy),
instead of having smooth transitions from clear to cloudy.
Additionally, cloudy areas are highly opaque, which is not
representative of thin clouds which only slightly reduce the
irradiance reaching the surface.

We continue to modify the cloud field creation methodology,
including adjusting the scale weights, applying targeted
smoothing, and allowing for different cloud opacities. The goal
is to be able to match the statistics of ground measured
irradiance.

E. Sampling from Cloud Fields

Since the eventual goal of the cloud field methodology is to
create unique PV samples for distribution grid studies, we need
to be able to sample timeseries from the cloud fields. We do this
by assigning a length scale to the cloud field (e.g., one pixel is
one meter), and by advecting the clouds based on the cloud
speed. For example, for a 5 m/s cloud speed with 1m pixels, we
would sample every 5 pixels to generate a 1-second resolution
timeseries.
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Figure 7: Cloud fields created based on each VS and kt input.



Examples of samples at various cloud speeds are shown in
Figure 8. Fast clouds speeds lead to lower correlation among
different PV sites [3], and we do see that behavior in the
samples from the cloud fields.

However, a side effect of sampling at different intervals is
that the cloud speed is directly impacting the variability of each
individual location: slower cloud speeds lead to less variability.
The variability at each individual location should depend only
on the VS (not the cloud speed), so this interdependency will
need to be addressed in future iterations.
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Figure 8: Timeseries created from sampling the same cloud field

at different intervals corresponding to different cloud speeds.

F. Convert to GHI and Power

The samples described in section III. E. are analogous to
clear-sky index samples. They can be converted to GHI by
multiplying by a clear-sky index (e.g., [4]). Figure 10 shows a
sample GHI timeseries created with this method. The “on-off”
behavior of the clear-sky index samples is again seen in the GHI
samples.
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Figure 9: Sample GHI timeseries derived from cloud fields.

These GHI samples can be converted to power output
samples by using a decomposition and transposition model to
convert to plane of array (POA) irradiance in the plane of the
PV modules to be simulated, and then by using an irradiance to
power model to convert to power output.

Figure 10 shows PV power samples over a day. The VS can
kt were varied over different hours of the day, so some periods
are fully clear while others are cloudy. Again, we notice the
“on-off” behavior of the power from the single location.
However, when timeseries are sampled at hundreds of locations
(corresponding to the hundreds of different transformer
locations on the feeder), the aggregate output is much smoother
and looks more realistic. As described in section Error!
Reference source not found., we have ongoing test to evaluate
the need for accurate distributed PV inputs. For analysis such
as voltage regulator tap changes, it may not be important that a
single customer be accurately portrayed because the regulator
will only see the aggregate output of several PV systems.

IV. UNIQUE PV PROFILES IMPACT ON DISTRIBUTION STUDIES

Previous work has shown the value of the high-frequency
solar inputs discussed in Section II.B. to distribution grid
studies: a 20% error [S] and 70% error [6] were found in
computing voltage regulator tap change operations when using
hourly PV samples instead of high-frequency samples. Here,
we additionally show the value of using unique PV inputs
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Figure 10: Sample power output timeseries for one location (blue), and for the aggregate of all locations on the feeder (black).



across the feeder (discussed in Section II.C.), instead of
assuming the same PV power profile at all locations Error!
Reference source not found. shows voltage regulator
timeseries for a week-long simulation for both the case of a
single irradiance profile used at all PV interconnection points
and for a unique irradiance profile used at each interconnection
point. The unique irradiance profiles were created based on 8
ground measurements, then were spread across the feeder using
the first method described in section II. C. (cloud speed based
time shifting). The result is that the unique irradiance profiles
resulted in ~30% fewer tap change operations. Thus, in order to
accurately determine PV impacts such as voltage regulator tap
change operations, it is important to generate spatially-unique

irradiance profiles.
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Figure 11. Voltage regulator tap change operations in a sample
week for [top] a single irradiance profile used at all
interconnection points and [bottom] unique irradiance profiles

used at each interconnection point.

V. CONCLUSIONS AND FUTURE WORK

We have shown the need for unique, high-frequency solar PV
samples in quasi-static time series simulations (QSTS) of
distribution grid impacts of PV, and laid out the synthetic cloud
field method. Additional tweaks to the cloud field methodology
are needed to make the sampled timeseries better match
measured irradiance data. Additionally, the method should be
further demonstrated with QSTS simulations to show its value
for simulating high penetrations of distributed PV when no or
limited ground data is available.
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