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First in a series of two talks focusing on:

Problems with (physical or numerical) interfaces

u-V-ou)=f mQxT
u=0 onI'xT
u(x,0)=u,(x) in QxT
u(x,0)=u,(x) in AxT

o(w)=AV-u)l +2ue(u)

Solutions satisfy the continuity/transmission conditions

.

. =u|y+ and o) n,=o(’)n,
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Today we will talk about ) o

A partitioned algorithm under “practical constraints”

* Interface is physical, e.g., material property.

« Mesh is interface-fitted but not necessarily matching.
« Each subdomain problem is solved independently by a different code.
» Information exchange between codes is limited to nodal masses and forces.
» Motivated by the FORTE coupling of Sandia’s Alegra and Sierra/SM codes.

Thursday: An optimization-based, mesh-tying algorithm (P. Kuberry, 9:00am)

* Interface is physical or numerical, e.g., due to meshing

« Separate meshing creates 2 distinct, non-coincident
versions of the same interface.

« Data transfer between non-coincident interfaces remains a
tough challenge.

» Existing approaches typically involve complex mesh
manipulations.
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welded” interface coupling in Forte: TV ==,
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“Welded” interface coupling === Discrete subdomain equations

« Mass and forces swapped at nodes M, u™ =m! + f M ut =mh + fr
« Minimally intrusive (black-box) coupling, but...

« Requires matching interface nodes Mass-force exchange

* One code may require finer mesh: .Kz ? ! = !

= Forces excessive mesh refinement!

Goal: develop a new partitioned algorithm, which

» Defaults to “welded” interface on matching grids. K. Ky

« Handles interfaces with non-matching grids. '
Sierral S
« Has linear consistency L et S J -

* |s second-order accurate

Completed equation @ interface node:

(M, +MR)u2711€ = (m; +ﬁ;lR)+(an +]_51?)
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What does this swap mean mathematically? @&

Let’s reverse-engineer the “welded” interface coupling

(M, + M )u!™ = (" +m)+ (J?Ln 4 f;) This is a pair of identical “completed”
(M, +M "™ = G+ )+ (f” ) equations at an interface node
L RYR T L R L R
urt =y p Because they are the same, they imply

continuity of the nodal displacement!

M, u* = (n) + fL”) + (my, + f; - M u) Let’s group all terms from the “other” side
M quy” = (m) + f) + (g + f =M, up™) This is the contact force at the node!
; uz+l — u;t;l
————o .
K; _ Ky
It’'s beginning to look a lot like.... A

M, =l + )+ A
Ml = (! + fi)— A

n+l n+l

U, =1Ug

A mixed Lagrange multiplier formulation!
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Let’s start from a monolithic formulation ) e

» Write the problem as a system of two subdomain equations with mixed boundary conditions.
« The Neumann boundary condition involves an unknown contact force A.
» Close the system by adding the displacement continuity condition:

Monolithic formulation » Semi-discrete version

i -V-o(u)=f  inQxT

u =0 onI', xT uw EV" CH%I(QI) M.ii, + G, 1 = F,(u,)
o) n=~ on yxT

i, -Vou)=f, inQxT|| —s w,EV/CH(Q,)—> | M,i,-G'A=Fu,)
u, =0 onI', xT
—o(u,) n=4~ onyxT

AES"CH "(y) G u, —G,u, =0

u-u,=0 on yxT

Mixed, KKT-like system

« System of 3 equations for 3 unknowns: subdomain displacements and contact force.
« Contact force continuity o(y) - n, +0o(u,)'n,=0 on yxT subsumed in the equations.
 Displacement continuity u, -u,=0 on yxT enforced explicitly

» For problems with an energy principle t can be identified with a Lagrange multiplier.
6
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There’s one problem though... )

Lagrange multipliers are not the most natural setting for partitioned schemes

* Result in Index-2 DAE that are more difficult to solve Mii, +Gl A =F (u,)

* Not compatible with explicit time integration M,ii, -G A= F, ()

G u -G,u, =0

Partial solution, Carpenter et al, I/INME, 1991

+ References the multiplier one time increment ahead (forward increment LM method).
* Resulting method still not purely explicit

A (simple) solution: switch constraints from displacement to acceleration

. d 2 DAE [ Ml,o 0 G{ E 0 0 Ul,0 fl’o'

U =u|, index implies the original 0 My, -G 0 0 U5 fo.o
constraint under G =Gy 0 0 O 1| . A =10

T ) suitable assumptions 0 0 0 Mo O U1,0 f10

> i, =ii,|, |index1DAE PR 0 0 0 00 Mo | f20

» Caution: works for transmission problems but may not work for contact problems!

|
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The master formulation on matching grids @&,
My, O GT1 0 0 (e fio
0 My, -GJi 0 0 2,5 foo
The master monolithic (mixed) problem G =Gy 0 1 0 O 1| . A 1=1.0_
0 0 0 ‘Mo O U0 fi,0
0 0 0 1 0 My U2,0 f2,0
Option A:(1,1) Schur Mo Mz _%2 O I i 223 Option B: (2,2) Schur
Mg =My 0 L 00 || A f=] 0
0 0 0 ‘Mg O 10 fio . .
eliminate 0 0 0 0 Myl | f20 eliminate
interface matching nodes specialization Internal
DOF DOF
v ~
i M » 0 M o U o flo
Mg 0 . Mg Uyq e O Myo | =M | | U2o | = ey
0 Ms o —M2,a dae | = | foo My —Ms, 0 A 0
Ml,o _M2,0 0 A 0 ~
M*,J(Mi; + M{,;)M* O')\ = M*,J(M£;f2,a - Mi;fl,g)
VFR | Or, 0y, = fL A MFR
(M 5 + M; ;)i , fotfoo

Identical Partitioned systems for matching nodes!
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The master formulation on non-matching grlc@

Ml’o' 0 G,{ i 0 0 ﬁ/l,a’ fl,o‘
0 M270' —Gg i 0 0 ﬁ/2,a’ f2,a
G =Gy 0 0 0 f A =1 0
0 0 0 ‘Mo O U0 Ji0
0 0 0 0 My g0 f20
Option A (VFR) Option B (MFR)
\ 4
My 0 Gi 11 Uyo e Mig 0 1 Gy [, J1o
0 1 Mg —Myo | | U206 | = | f20 0 My =Gy | | dae | = | fao
Gl _MQ,O- 0 A 0 G1 —GQ : 0 A 0
Mo O Gy 1 [ di2g 2o
0 ]\4},0 Ml o) U0 - fl,o' v
Gy | =My, 0 A 0 (GI M GT + GaM; tGE)X = GaMy , fo.o — GiM; , f10
* Requires 2 separate master systems for » Leads to a system for interface DOFs
each side « Requires preconditioning
* LM collocated with displacement on the « Index 1 enables explicit treatment of the LM

opposite side « Requires common mesh refinement for LM

* LM spaces simple to construct . Potentially more accurate...

» Results in a generalized “mass-force - Related to Dual Schur Complement systems
exchange” between the subdomains in DD, FETI, hybrid methods, ... 9



The two options in a nutshell
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Options A and B are simply two different ways of expressing the contact force:

(A): Indirect representation: Generate .

- + . : i + I
(B) Direct representation: Generate .
: i + I

This is a primal Schur
complement approach in
which we express the contact
force indirectly in terms of
mass/force updates to the
interface egs.

This is a dual Schur
complement approach in
which we solve an
equation for the LM to
obtain the contact force on
the interface

Most approaches to partitioned algorithms are direct 10




Option A gives the desired generalization of FOHER

Consider the system for subdomain 1 (LM collocated with interface on subdomain 2)

Ml,a 0 ]\Nfl,aﬁ i 0 0 i 7:"1,0 ] I fl,a ]
0 M20' _MQ i 0 0 '&2,0 f2,0
Moo Mo, 0 1 0 0 | [ A |=].0_
0 0 0 ‘Mpgo 0 1,0 J1,0
|0 0 0 1 0 My | L u20_ | f2,0 |

Taking the (1,1) Schur complement gives a system for u;

_>(M1,a + M1,0$M£;M2,a?)ﬁl,a — fl,a + Ml,aﬁMz_,;fQ,a

generalization of
Forte’s mass-

and analogously (using a second mixed problem) for i, force exchange

(MQ,J + M2 U?M 1]\41 0$ 'U'2,a — f2,a + M2,0?M1_,glfl,a

mass <— exchange — force .
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Comparison with a Slide Lines method

= We examine connections between Option A, i.e., generalized Forte coupling and
slide lines for tied contact applications, Kucharik et al. , Comp. & Fluids, 83 2013.

R mt' = am?’ + az+1mp'+1
1 /1 1 ] [ I 7 = asf? + i f?,

_ P’
al’ = ozza —l— Q41054 q

= The slide line method is derived by considering virtual cells straddling the
interface and then writing out contact conditions at p=p”.

= Continuity of accelerations & continuity of the contact force
= This leads to the following auxiliary system:

mPuP = fp . o ap
mp ap/ up _ fp/a_p/ - (mp —+ mp )up = f + f
aP aP

The slide line equation at interface node
12
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Comparison with a Slide Lines method

Slide lines (Kucharik et al.)

(mp 4+ (aim p —|—Oé1,—|—1mf_,i_1) p) fp 1 (ozzf —|—oz7,_|_1fz_i_1)

/
p’
ozza ‘|‘O‘z—|—1a7,_|_1 aza —|—ozz_|_1aH_1

Interpolate then scale vs. scale then interpolate

- m? p
(mp + (0= + g1 7’“)0?) u? = fP + (ay Eis “Ll )ap
a’z z—{—l a’z z—l—l

Generalized Forte

Thanks to M. Shashkov (LANL) for pointing out Slide Lines reference 3
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Equivalence to a monolithic explicit solution for matching grid interfaces

For interfaces with matching nodes there holds M,, =M, and P=P=1

(M +M, PM; MP = F +M, PM;'F, (M +M, PM 1MP F,+M, PM:'F,
M +M F+F M +M

___Interface | Vertical | _Slanted __

Mesh Q;, 24x20 24x20
Mesh Q, 24x20 24x20
L, error Q, 3.38E-17 9.43E-17
L, error Q, 1.07E-15 1.05E-15
L, error Q, 2.49E-15 7.74E-15
L, error Q, 9.92E-14 1.23E-13

14
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Recovery of linear displacements (patch test)

Left Right

0
0 02 04 08 08 1 0 02 04 0B 08 1

Cramnntatinnal Mash

Time-Dependent Sglution
- o = &

0a %8 e
02

full et partitioned

=

o

| |

=3
=
Ao
=
=
=
=3
=3
3
=3
=
Ao
=3
=
=
=3
=3
3

Time-Depsndent Solution,
=

=3

Patch Test

0
0 02 04 0B 08 1 0 02 04 06 08 1

Computational Mesh

5

Time-Dependent olutign
===}
f

0g

fuII partltloned

1
g
=
2
D5
2
g
g
s
B4
g
a
fl
B2
p:

L]

0 0.2 04 08 0.8 1 0 0.2 04 06 08

Patch Test

Sandia
"1 National
Laboratories

Full Left Right

0z 04 06 03 1

Computational Mesh

:
=1
5
R0
o
5
51
5
208
E 1 1
= 08
06
02 o4
IO -
full at=partitioned

=3

Time-Depgndent Solution,
o e = w —_

=3

0z 04 0.8 0.8 1 [ 0z 0.4 0.8 0.8 1
Patch Test

VFR approach recovers linear solution to machine precision on
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interfaces with non-matching grids.
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2nd order accuracy on non-matching interfaces

Mesh Q, 28x40 56x80

Mesh Q, 52x40 104x80

L, error Q, 2.07E-03 5.15E-04 2.01

L, error Q, 3.79E-03 9.58E-04 1.99

H' error Q, 2.78E-01 1.39E-01 1.00

H' error Q, 8.22E-01 4.12E-01 1.00
-
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Implementation in production codes ) et

VFR coupling has been deployed in Sandia’s Forte software.

Consistency test o : :
Constant in time, linear in space velocity EOIET

§

Exact —_—

Alegra: 10x10x50 VELOCITY_ X

— Lom= 101

g

Forte+tVFR ——

Sierra: 15x15x50
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Verification of Forte+VFR )t

Axial pulse bar test

Alegra: 10x10x50 fti

250
500
-750

—-1.1002+03

VELOCITY_Z

—0.000&+00

Alegra: 10x10x50

Sierra: 15x15x50

I ——
Official Use Only
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 Developed a general framework that reduces a DAE 2 to a DAE 1 and is
based on Lagrange multipliers.

 Framework provides a way to generate partitioned approaches that can be
traced back to a well-posed system including both direct and indirect contact
force representation methods.

« Operator simplification allows for a diagonal mass update to the indirect
approach, avoiding complicated linear solves in an explicit approach.

« Equivalence to a monolithic solution (proved) in the case of matching
nodes, passing a patch test (proved), and second order convergence
rates observed in numerical experiments.
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