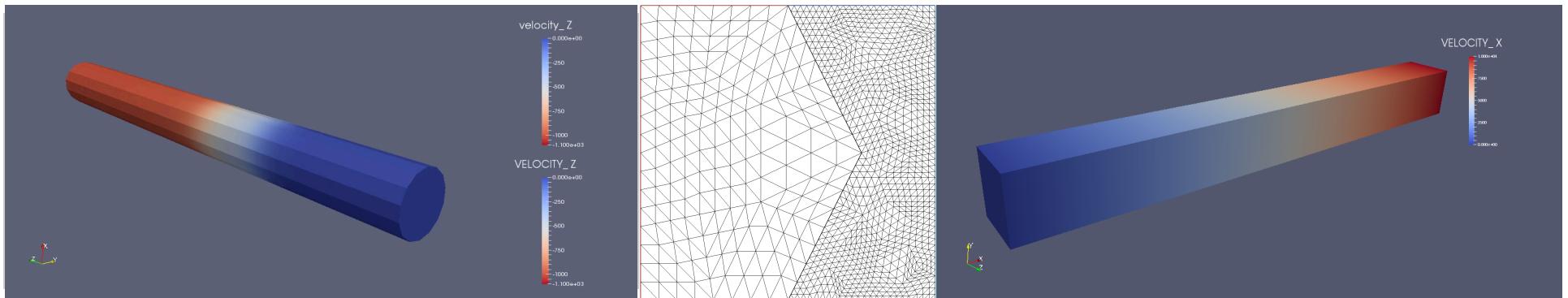


Exceptional service in the national interest



An explicit partitioned elastodynamics method based on Lagrange Multipliers

Pavel Bochev, Paul Kuberry and Kara Peterson

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Sandia National Laboratories

First in a series of two talks focusing on:

Problems with (physical or numerical) interfaces

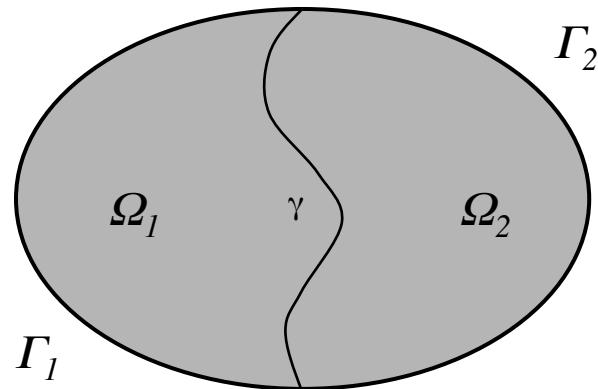
$$\ddot{u} - \nabla \cdot \sigma(u) = f \quad \text{in } \Omega \times T$$

$$u = 0 \quad \text{on } \Gamma \times T$$

$$u(x, 0) = u_0(x) \quad \text{in } \Omega \times T$$

$$\dot{u}(x, 0) = \dot{u}_0(x) \quad \text{in } \Omega \times T$$

$$\sigma(u) = \lambda(\nabla \cdot u)I + 2\mu\varepsilon(u)$$



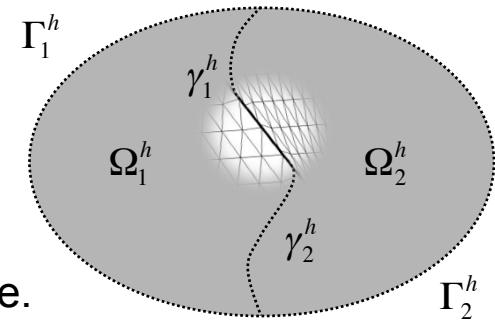
Solutions satisfy the continuity/transmission conditions

$$u|_{\gamma^-} = u|_{\gamma^+} \quad \text{and} \quad \sigma(u^-) \cdot n_\gamma = \sigma(u^+) \cdot n_\gamma$$

Today we will talk about

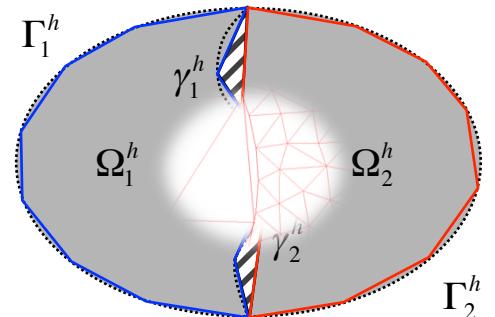
A partitioned algorithm under “practical constraints”

- Interface is **physical**, e.g., material property.
- Mesh is **interface-fitted** but not necessarily matching.
- Each **subdomain problem** is solved independently by a different code.
- Information exchange between codes is **limited to nodal masses and forces**.
- Motivated by the FORTE coupling of Sandia’s Alegra and Sierra/SM codes.



Thursday: An optimization-based, mesh-tying algorithm (P. Kuberry, 9:00am)

- Interface is physical or numerical, e.g., due to meshing
- **Separate meshing** creates 2 distinct, **non-coincident** versions of the same interface.
- Data transfer between non-coincident interfaces remains a tough challenge.
- Existing approaches typically involve complex mesh manipulations.



Original “welded” interface coupling in Forte:

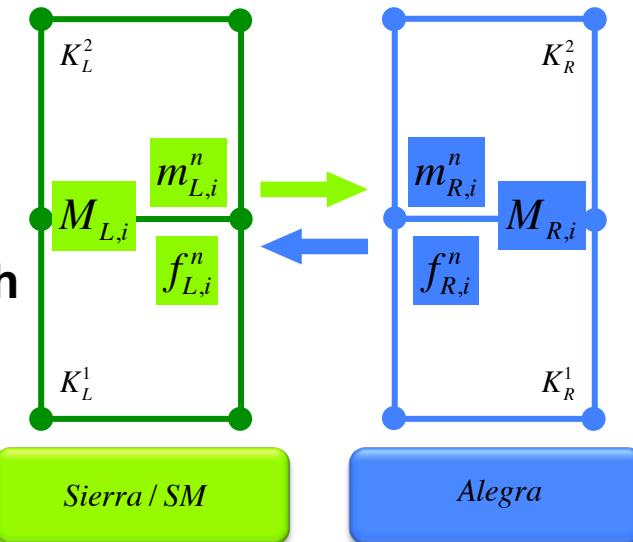
“Welded” interface coupling

Discrete subdomain equations

- Mass and forces **swapped** at nodes
- **Minimally intrusive** (black-box) coupling, but...
- Requires matching interface nodes
- One code may require **finer mesh**:
⇒ Forces **excessive mesh refinement!**

$$M_L u_L^{n+1} = \vec{m}_L^n + \vec{f}_L^n \quad M_R u_R^{n+1} = \vec{m}_R^n + \vec{f}_R^n$$

Mass-force exchange



Goal: develop a new partitioned algorithm, which

- Defaults to “welded” interface on **matching** grids.
- Handles interfaces with **non-matching** grids.
- Has **linear** consistency
- Is **second-order** accurate

Completed equation @ interface node:

$$(M_L + M_R) u_{L/R}^{n+1} = (\vec{m}_L^n + \vec{m}_R^n) + (\vec{f}_L^n + \vec{f}_R^n)$$

What does this swap mean mathematically?

Let's reverse-engineer the “welded” interface coupling

$$\begin{aligned}
 (M_L + M_R)u_L^{n+1} &= (\vec{m}_L^n + \vec{m}_R^n) + (\vec{f}_L^n + \vec{f}_R^n) \\
 (M_L + M_R)u_R^{n+1} &= (\vec{m}_L^n + \vec{m}_R^n) + (\vec{f}_L^n + \vec{f}_R^n) \\
 u_L^{n+1} &= u_R^{n+1}
 \end{aligned}$$

This is a pair of identical “completed” equations at an interface node

Because they are the same, they imply continuity of the nodal displacement!

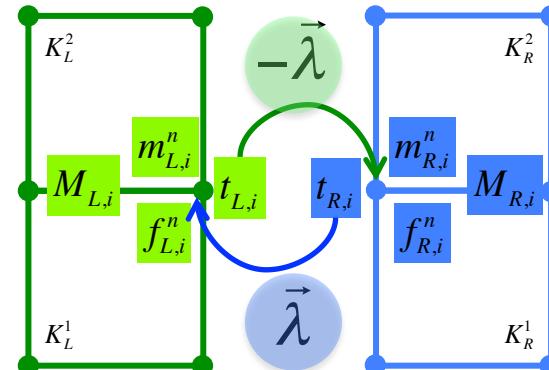
$$\begin{aligned}
 M_L u_L^{n+1} &= (\vec{m}_L^n + \vec{f}_L^n) + (\vec{m}_R^n + \vec{f}_R^n - M_R u_L^{n+1}) \\
 M_R u_R^{n+1} &= (\vec{m}_L^n + \vec{f}_R^n) + (\vec{m}_R^n + \vec{f}_L^n - M_L u_R^{n+1}) \\
 u_L^{n+1} &= u_R^{n+1}
 \end{aligned}$$

Let's group all terms from the “other” side

This is the contact force at the node!

It's beginning to look a lot like....

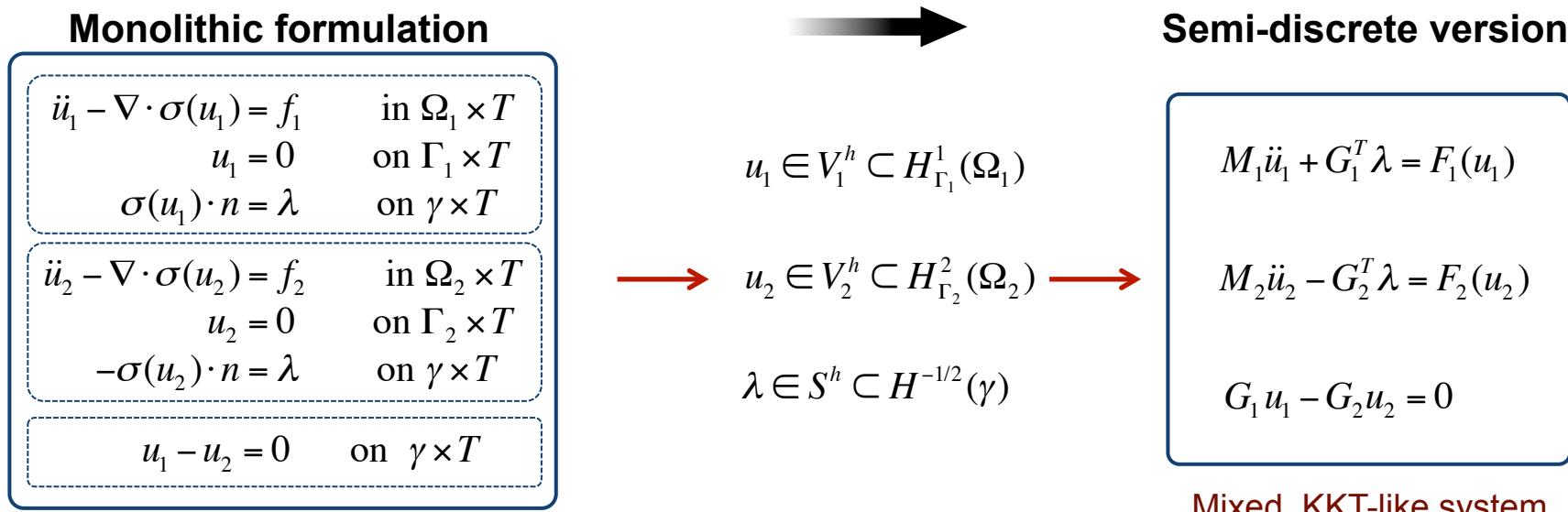
$$\begin{aligned}
 M_L u_L^{n+1} &= (\vec{m}_L^n + \vec{f}_L^n) + \vec{\lambda} \\
 M_R u_R^{n+1} &= (\vec{m}_L^n + \vec{f}_R^n) - \vec{\lambda} \\
 u_L^{n+1} &= u_R^{n+1}
 \end{aligned}$$



A mixed Lagrange multiplier formulation!

Let's start from a monolithic formulation

- Write the problem as a system of two subdomain equations with **mixed boundary conditions**.
- The **Neumann** boundary condition involves an **unknown** contact force λ .
- Close the system by adding the **displacement continuity** condition:



- System of **3 equations for 3 unknowns**: subdomain displacements and contact force.
- **Contact force continuity** $\sigma(u_1) \cdot n_1 + \sigma(u_2) \cdot n_2 = 0$ on $\gamma \times T$ **subsumed** in the equations.
- **Displacement continuity** $u_1 - u_2 = 0$ on $\gamma \times T$ **enforced explicitly**
- For problems with an energy principle t can be identified with a **Lagrange multiplier**.

There's one problem though...

Lagrange multipliers are not the most natural setting for partitioned schemes

- Result in Index-2 DAE that are more difficult to solve
- Not compatible with explicit time integration

$$M_1 \ddot{u}_1 + G_1^T \lambda = F_1(u_1)$$

$$M_2 \ddot{u}_2 - G_2^T \lambda = F_2(u_2)$$

$$G_1 u_1 - G_2 u_2 = 0$$

Partial solution, Carpenter et al, IJNME, 1991

- References the multiplier one time increment ahead (forward increment LM method).
- Resulting method still not purely explicit

A (simple) solution: switch constraints from displacement to acceleration

$$\begin{cases} u_1 = u_2 \Big|_{\gamma} \\ \ddot{u}_1 = \ddot{u}_2 \Big|_{\gamma} \end{cases}$$

index 2 DAE

implies the original constraint under suitable assumptions

$$\left[\begin{array}{ccc|cc} M_{1,\sigma} & 0 & G_1^T & 0 & 0 \\ 0 & M_{2,\sigma} & -G_2^T & 0 & 0 \\ G_1 & -G_2 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & M_{1,0} & 0 \\ 0 & 0 & 0 & 0 & M_{2,0} \end{array} \right] \begin{bmatrix} \ddot{u}_{1,\sigma} \\ \ddot{u}_{2,\sigma} \\ \lambda \\ \ddot{u}_{1,0} \\ \ddot{u}_{2,0} \end{bmatrix} = \begin{bmatrix} f_{1,\sigma} \\ f_{2,\sigma} \\ 0 \\ f_{1,0} \\ f_{2,0} \end{bmatrix}$$

- Caution: works for **transmission problems** but may not work for **contact problems!**

The master formulation on matching grids

The master monolithic (mixed) problem

$$\begin{bmatrix} M_{1,\sigma} & 0 & G_1^T & 0 & 0 \\ 0 & M_{2,\sigma} & -G_2^T & 0 & 0 \\ G_1 & -G_2 & 0 & 0 & 0 \\ 0 & 0 & 0 & M_{1,0} & 0 \\ 0 & 0 & 0 & 0 & M_{2,0} \end{bmatrix} \begin{bmatrix} \ddot{u}_{1,\sigma} \\ \ddot{u}_{2,\sigma} \\ \lambda \\ \ddot{u}_{1,0} \\ \ddot{u}_{2,0} \end{bmatrix} = \begin{bmatrix} f_{1,\sigma} \\ f_{2,\sigma} \\ 0 \\ f_{1,0} \\ f_{2,0} \end{bmatrix}$$

Option A:(1,1) Schur

eliminate
interface
DOF

$$\begin{bmatrix} M_{1,\sigma} & 0 & \tilde{M}_{1,\sigma} & 0 & 0 \\ 0 & M_{2,\sigma} & -\tilde{M}_{2,\sigma} & 0 & 0 \\ \tilde{M}_{1,\sigma} & -\tilde{M}_{2,\sigma} & 0 & 0 & 0 \\ 0 & 0 & 0 & M_{1,0} & 0 \\ 0 & 0 & 0 & 0 & M_{2,0} \end{bmatrix} \begin{bmatrix} \ddot{u}_{1,\sigma} \\ \ddot{u}_{2,\sigma} \\ \lambda \\ \ddot{u}_{1,0} \\ \ddot{u}_{2,0} \end{bmatrix} = \begin{bmatrix} f_{1,\sigma} \\ f_{2,\sigma} \\ 0 \\ f_{1,0} \\ f_{2,0} \end{bmatrix}$$

matching nodes specialization

Option B: (2,2) Schur

eliminate
internal
DOF

$$\begin{bmatrix} M_{1,\sigma} & 0 & \tilde{M}_{1,\sigma} & \ddot{u}_{1,\sigma} \\ 0 & M_{2,\sigma} & -\tilde{M}_{2,\sigma} & \ddot{u}_{2,\sigma} \\ \tilde{M}_{1,\sigma} & -\tilde{M}_{2,\sigma} & 0 & \lambda \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} f_{1,\sigma} \\ f_{2,\sigma} \\ 0 \\ 0 \end{bmatrix}$$

$$\tilde{M}_{*,\sigma}(M_{1,\sigma}^{-1} + M_{2,\sigma}^{-1})\tilde{M}_{*,\sigma}\lambda = \tilde{M}_{*,\sigma}(M_{2,\sigma}^{-1}f_{2,\sigma} - M_{1,\sigma}^{-1}f_{1,\sigma})$$

$$\begin{bmatrix} M_{1,\sigma} & 0 & \tilde{M}_{1,\sigma} \\ 0 & M_{2,\sigma} & -\tilde{M}_{2,\sigma} \\ \tilde{M}_{1,\sigma} & -\tilde{M}_{2,\sigma} & 0 \end{bmatrix} \begin{bmatrix} \ddot{u}_{1,\sigma} \\ \ddot{u}_{2,\sigma} \\ \lambda \end{bmatrix} = \begin{bmatrix} f_{1,\sigma} \\ f_{2,\sigma} \\ 0 \end{bmatrix}$$

VFR

$$\begin{aligned} (M_{1,\sigma}^i + M_{2,\sigma}^i)\ddot{u}_{1,\sigma}^i &= f_{1,\sigma}^i + f_{2,\sigma}^i \\ (M_{1,\sigma}^i + M_{2,\sigma}^i)\ddot{u}_{2,\sigma}^i &= f_{1,\sigma}^i + f_{2,\sigma}^i \end{aligned}$$

MFR

Identical Partitioned systems for matching nodes!

The master formulation on non-matching grids

$$\left[\begin{array}{ccc|cc} M_{1,\sigma} & 0 & G_1^T & 0 & 0 \\ 0 & M_{2,\sigma} & -G_2^T & 0 & 0 \\ G_1 & -G_2 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & M_{1,0} & 0 \\ 0 & 0 & 0 & 0 & M_{2,0} \end{array} \right] \begin{bmatrix} \ddot{u}_{1,\sigma} \\ \ddot{u}_{2,\sigma} \\ \lambda \\ \ddot{u}_{1,0} \\ \ddot{u}_{2,0} \end{bmatrix} = \begin{bmatrix} f_{1,\sigma} \\ f_{2,\sigma} \\ 0 \\ f_{1,0} \\ f_{2,0} \end{bmatrix}$$

Option A (VFR)

$$\left[\begin{array}{ccc} M_{1,\sigma} & 0 & G_1^T \\ 0 & M_{2,\sigma} & -\tilde{M}_{2,\sigma} \\ G_1 & -\tilde{M}_{2,\sigma} & 0 \end{array} \right] \begin{bmatrix} \ddot{u}_{1,\sigma} \\ \ddot{u}_{2,\sigma} \\ \lambda \end{bmatrix} = \begin{bmatrix} f_{1,\sigma} \\ f_{2,\sigma} \\ 0 \end{bmatrix}$$

$$\left[\begin{array}{ccc} M_{2,\sigma} & 0 & -G_2^T \\ 0 & M_{1,\sigma} & \tilde{M}_{1,\sigma} \\ G_2 & -\tilde{M}_{1,\sigma} & 0 \end{array} \right] \begin{bmatrix} \ddot{u}_{2,\sigma} \\ \ddot{u}_{1,\sigma} \\ \lambda \end{bmatrix} = \begin{bmatrix} f_{2,\sigma} \\ f_{1,\sigma} \\ 0 \end{bmatrix}$$

Option B (MFR)

$$\left[\begin{array}{ccc|c} M_{1,\sigma} & 0 & G_1^T & 0 \\ 0 & M_{2,\sigma} & -G_2^T & 0 \\ G_1 & -G_2 & 0 & 0 \end{array} \right] \begin{bmatrix} \ddot{u}_{1,\sigma} \\ \ddot{u}_{2,\sigma} \\ \lambda \end{bmatrix} = \begin{bmatrix} f_{1,\sigma} \\ f_{2,\sigma} \\ 0 \end{bmatrix}$$

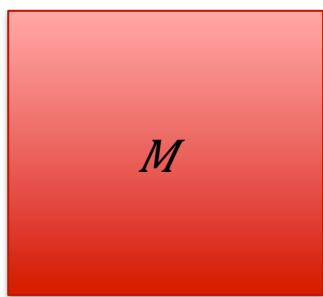
$$(G_1 M_{1,\sigma}^{-1} G_1^T + G_2 M_{2,\sigma}^{-1} G_2^T) \lambda = G_2 M_{2,\sigma}^{-1} f_{2,\sigma} - G_1 M_{1,\sigma}^{-1} f_{1,\sigma}$$

- Requires **2 separate master systems** for each side
- LM **collocated with displacement** on the opposite side
- LM spaces **simple to construct**
- Results in a **generalized “mass-force exchange”** between the subdomains
- Leads to a **system for interface DOFs**
- Requires **preconditioning**
- Index 1 enables **explicit treatment of the LM**
- Requires **common mesh refinement** for LM
- Potentially **more accurate...**
- Related to **Dual Schur Complement** systems in DD, FETI, hybrid methods,...

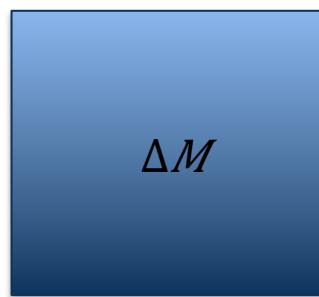
The two options in a nutshell

Options A and B are simply two different ways of expressing the contact force:

(A) **Indirect** representation: Generate



+

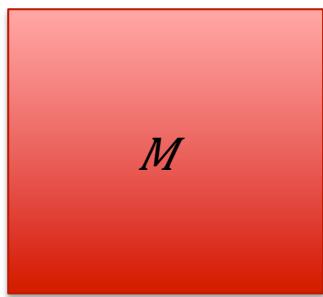


=

+

This is a **primal Schur** complement approach in which we express the contact force indirectly in terms of mass/force updates to the interface eqs.

(B) **Direct** representation: Generate



=

+

This is a **dual Schur** complement approach in which we solve an equation for the LM to obtain the contact force on the interface

Most approaches to partitioned algorithms are direct

Option A gives the desired generalization of FORTE

Consider the system for subdomain 1 (LM collocated with interface on subdomain 2)

$$\begin{bmatrix} M_{1,\sigma} & 0 & \tilde{M}_{1,\sigma} \xleftarrow{\Pi} & 0 & 0 \\ 0 & M_{2,\sigma} & -\tilde{M}_2 & 0 & 0 \\ \tilde{M}_{2,\sigma} \xrightarrow{\Pi} & -\tilde{M}_{2,\sigma} & 0 & 0 & 0 \\ 0 & 0 & 0 & M_{1,0} & 0 \\ 0 & 0 & 0 & 0 & M_{2,0} \end{bmatrix} \begin{bmatrix} \ddot{u}_{1,\sigma} \\ \ddot{u}_{2,\sigma} \\ \lambda \\ \ddot{u}_{1,0} \\ \ddot{u}_{2,0} \end{bmatrix} = \begin{bmatrix} f_{1,\sigma} \\ f_{2,\sigma} \\ 0 \\ f_{1,0} \\ f_{2,0} \end{bmatrix}$$

Taking the (1,1) Schur complement gives a system for u_1

$$\rightarrow (M_{1,\sigma} + \tilde{M}_{1,\sigma} \xleftarrow{\vec{P}} \tilde{M}_{2,\sigma}^{-1} M_{2,\sigma} \xrightarrow{\vec{P}}) \ddot{u}_{1,\sigma} = f_{1,\sigma} + \tilde{M}_{1,\sigma} \xleftarrow{\vec{P}} \tilde{M}_{2,\sigma}^{-1} f_{2,\sigma}$$

and analogously (using a second mixed problem) for u_2

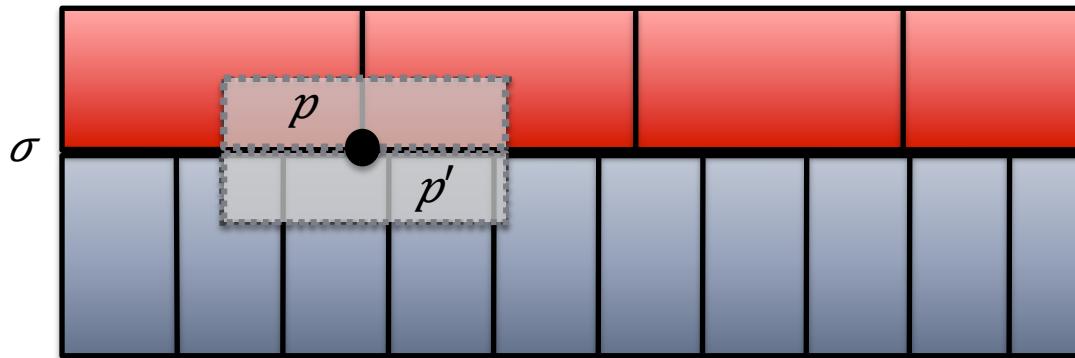
$$(M_{2,\sigma} + \tilde{M}_{2,\sigma} \xrightarrow{\vec{P}} \tilde{M}_{1,\sigma}^{-1} M_{1,\sigma} \xleftarrow{\vec{P}}) \ddot{u}_{2,\sigma} = f_{2,\sigma} + \tilde{M}_{2,\sigma} \xrightarrow{\vec{P}} \tilde{M}_{1,\sigma}^{-1} f_{1,\sigma}$$

generalization of
Forte's mass-
force exchange

mass \leftarrow **exchange** \rightarrow **force**

Comparison with a Slide Lines method

- We examine connections between Option A, i.e., generalized Forte coupling and slide lines for tied contact applications, Kuchařík et al. , *Comp. & Fluids*, 83 2013.


 Ω_1

$$m^{p'} = \alpha_i m_i^{p'} + \alpha_{i+1} m_{i+1}^{p'}$$

$$f^{p'} = \alpha_i f_i^{p'} + \alpha_{i+1} f_{i+1}^{p'}$$

$$a^{p'} = \alpha_i a_i^{p'} + \alpha_{i+1} a_{i+1}^{p'}$$

 Ω_2

- The slide line method is derived by considering virtual cells straddling the interface and then writing out contact conditions at $p=p'$:
 - Continuity of accelerations & continuity of the contact force
 - This leads to the following auxiliary system:

$$m^p \ddot{u}^p = f^p$$

$$m^{p'} \frac{a^p}{a^{p'}} \ddot{u}^{p'} = f^{p'} \frac{a^p}{a^{p'}} \quad \longrightarrow \quad (m^p + m^{p'} \frac{a^p}{a^{p'}}) \ddot{u}^p = f^p + f^{p'} \frac{a^p}{a^{p'}}$$

The slide line equation at interface node

Comparison with a Slide Lines method

Slide lines (Kuchařík et al.)

$$\left(m^p + \frac{(\alpha_i m_i^{p'} + \alpha_{i+1} m_{i+1}^{p'}) a^p}{\alpha_i a_i^{p'} + \alpha_{i+1} a_{i+1}^{p'}} \right) \ddot{u}^p = f^p + \frac{(\alpha_i f_i^{p'} + \alpha_{i+1} f_{i+1}^{p'}) a^p}{\alpha_i a_i^{p'} + \alpha_{i+1} a_{i+1}^{p'}}$$

Interpolate then scale vs. scale then interpolate

$$\left(m^p + \left(\alpha_i \frac{m_i^{p'}}{a_i^{p'}} + \alpha_{i+1} \frac{m_{i+1}^{p'}}{a_{i+1}^{p'}} \right) a^p \right) \ddot{u}^p = f^p + \left(\alpha_i \frac{f_i^{p'}}{a_i^{p'}} + \alpha_{i+1} \frac{f_{i+1}^{p'}}{a_{i+1}^{p'}} \right) a^p$$

Generalized Forte

Thanks to M. Shashkov (LANL) for pointing out Slide Lines reference

Properties

Equivalence to a monolithic explicit solution for matching grid interfaces

For interfaces with matching nodes there holds $M_{1\sigma} = M_{2\sigma}$ and $\vec{P} = \vec{P} = I$

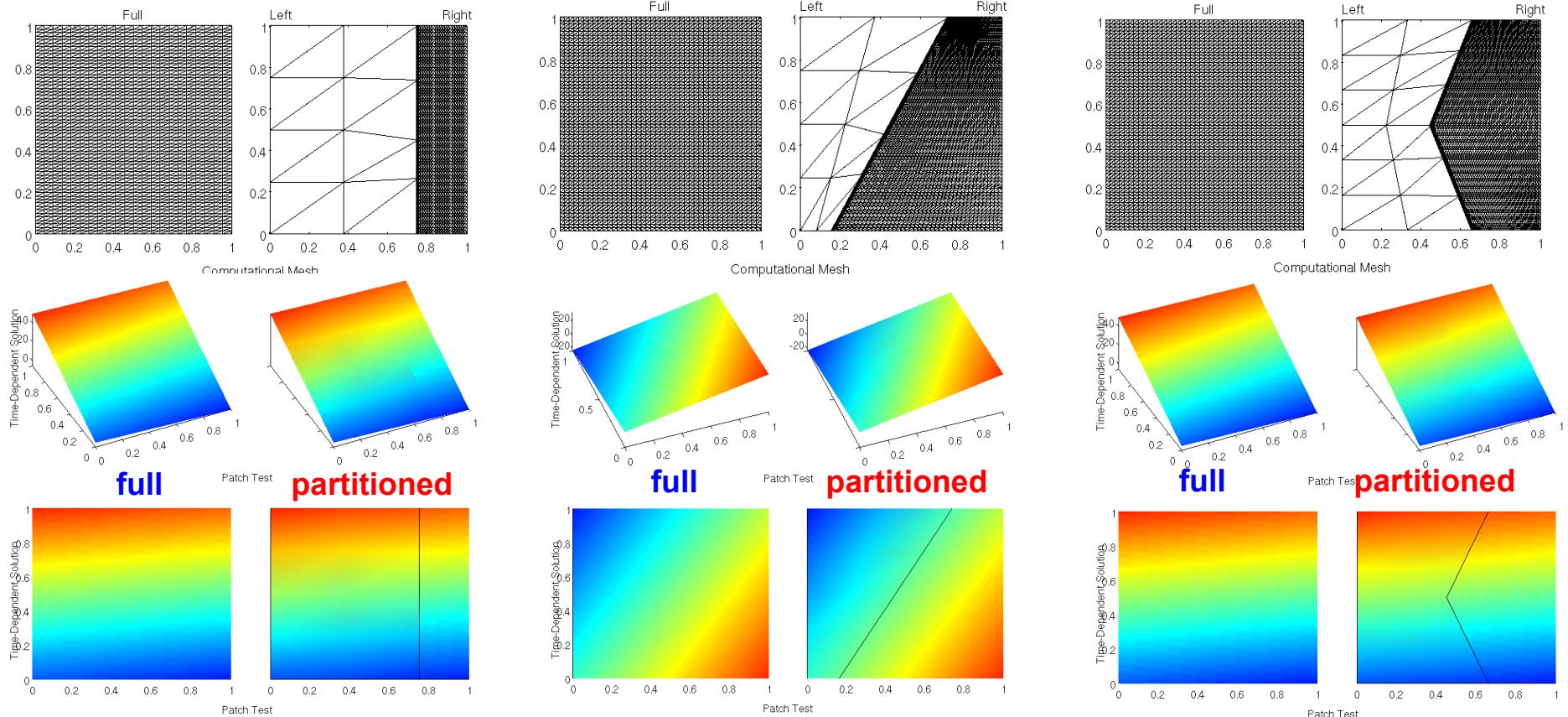
$$\begin{aligned} (M_1 + M_{1\sigma} \vec{P} M_{2\sigma}^{-1} M_2 \vec{P}) \ddot{u}_1 &= F_1 + M_{1\sigma} \vec{P} M_{2\sigma}^{-1} F_2 \\ (M_2 + M_{2\sigma} \vec{P} M_{1\sigma}^{-1} M_1 \vec{P}) \ddot{u}_2 &= F_2 + M_{2\sigma} \vec{P} M_{1\sigma}^{-1} F_1 \end{aligned}$$

$$\begin{aligned} (M_1 + M_2) \ddot{u}_1 &= F_1 + F_2 \\ (M_2 + M_1) \ddot{u}_2 &= F_2 + F_1 \end{aligned}$$

Interface	Vertical	Slanted
Mesh Ω_1	24x20	24x20
Mesh Ω_2	24x20	24x20
L_2 error Ω_1	3.38E-17	9.43E-17
L_2 error Ω_2	1.07E-15	1.05E-15
L_2 error Ω_1	2.49E-15	7.74E-15
L_2 error Ω_2	9.92E-14	1.23E-13

Properties

Recovery of linear displacements (patch test)

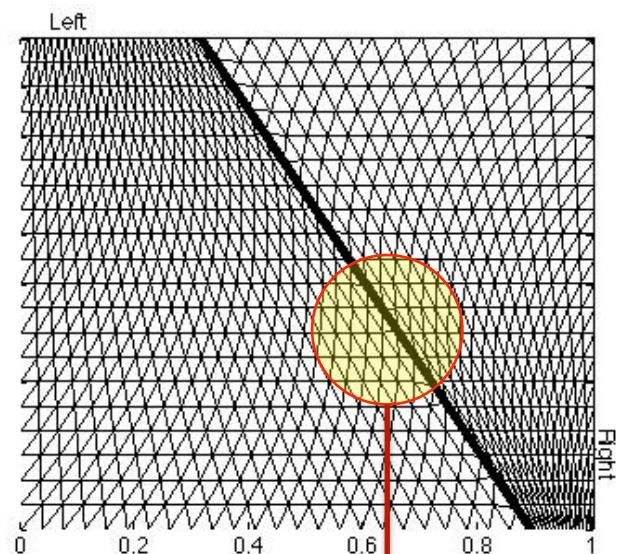
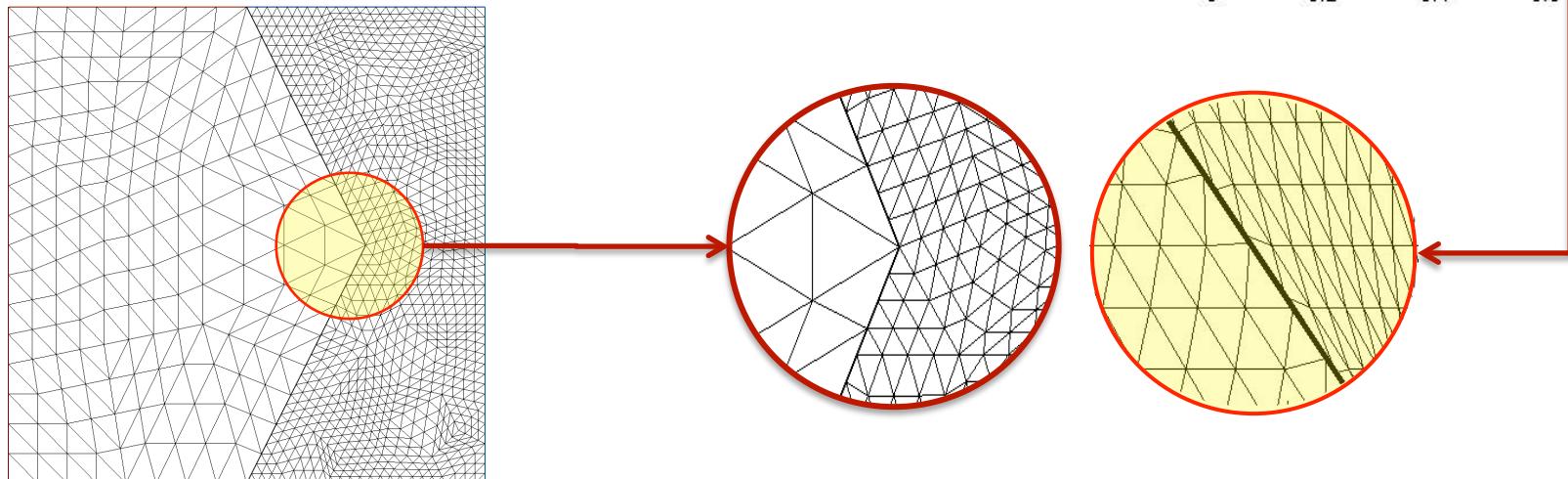


VFR approach recovers linear solution to machine precision on interfaces with non-matching grids.

Properties

2nd order accuracy on non-matching interfaces

	Error	Rate
Mesh Ω_1	28x40	56x80
Mesh Ω_2	52x40	104x80
L_2 error Ω_1	2.07E-03	5.15E-04
L_2 error Ω_2	3.79E-03	9.58E-04
H^1 error Ω_1	2.78E-01	1.39E-01
H^1 error Ω_2	8.22E-01	4.12E-01

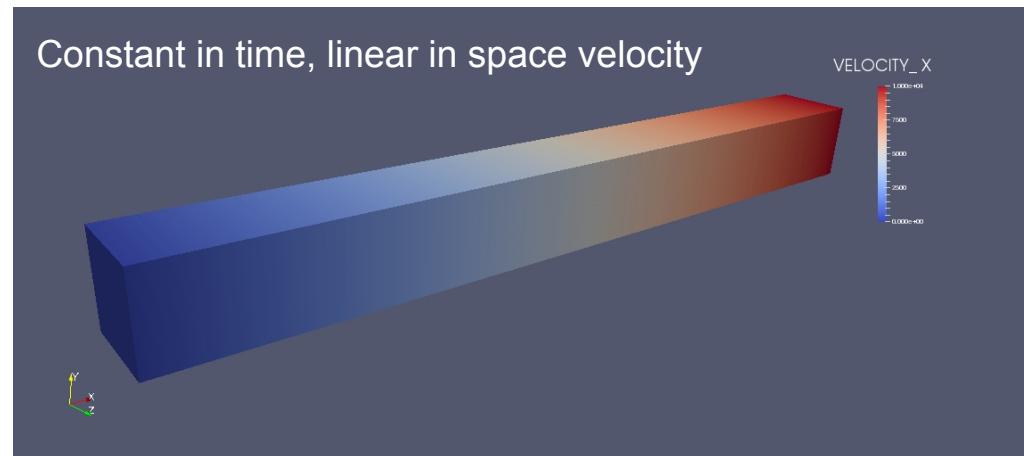


Implementation in production codes

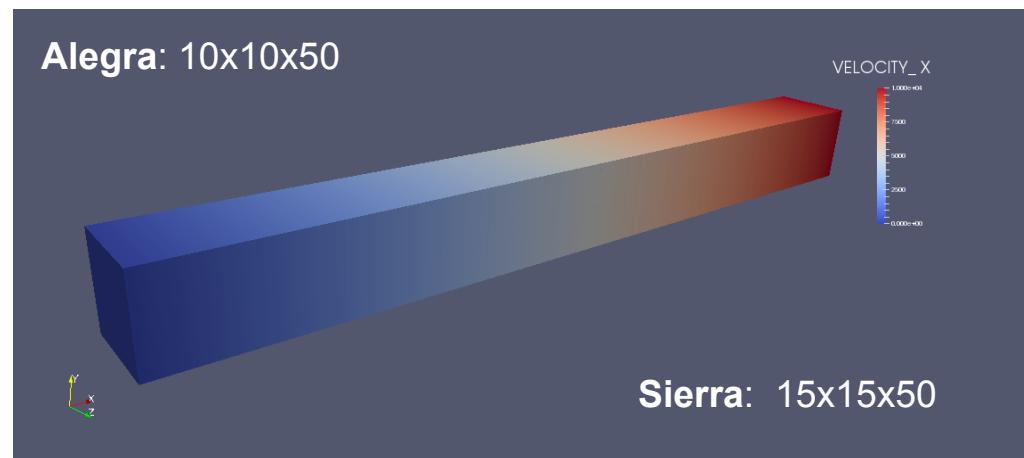
VFR coupling has been deployed in Sandia's Forte software.

Consistency test

Exact

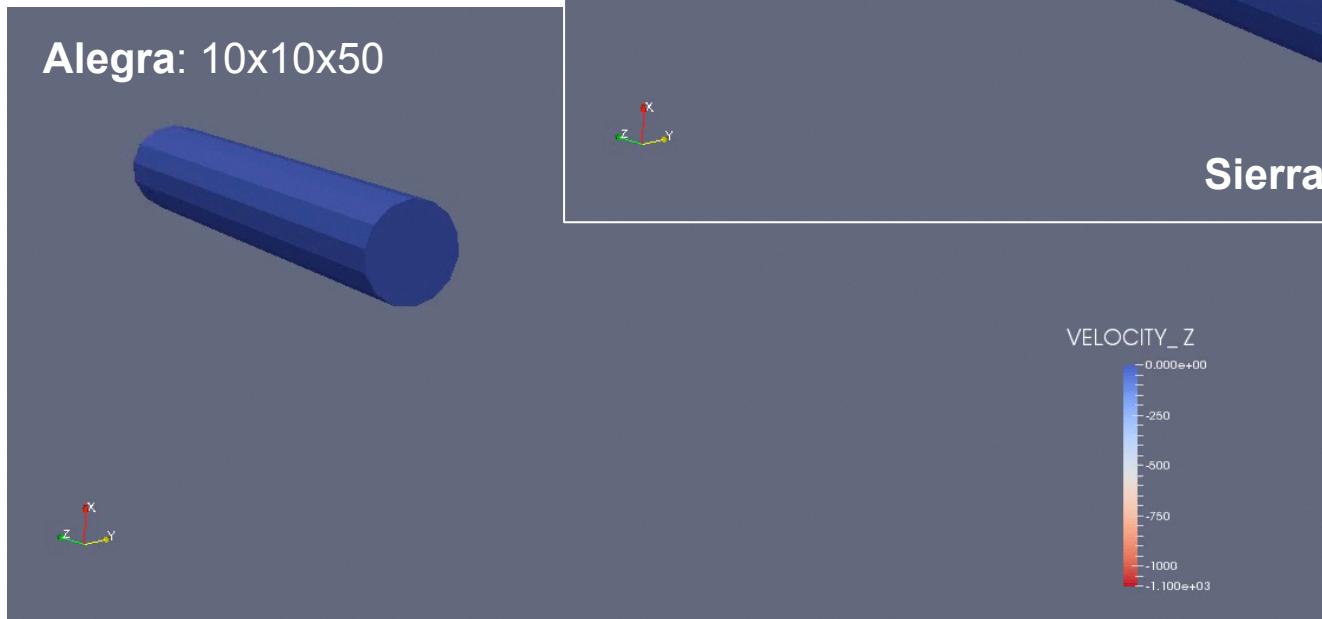
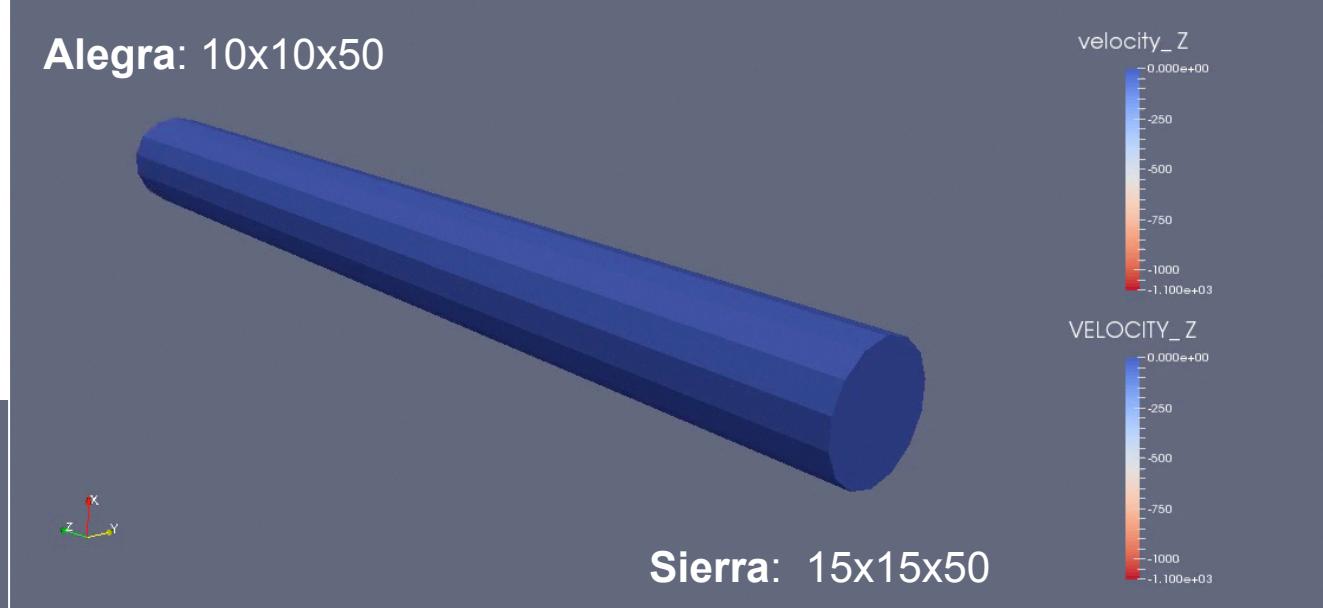


Forte+VFR



Verification of Forte+VFR

Axial pulse bar test



Conclusions

- **Developed a general framework** that reduces a DAE 2 to a DAE 1 and is based on Lagrange multipliers.
- **Framework provides** a way to generate partitioned approaches that can be traced back to a well-posed system including both direct and indirect contact force representation methods.
- **Operator simplification** allows for a diagonal mass update to the indirect approach, avoiding complicated linear solves in an explicit approach.
- **Equivalence to a monolithic solution (proved)** in the case of matching nodes, **passing a patch test (proved)**, and **second order convergence** rates observed in numerical experiments.