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First	
  in	
  a	
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  of	
  two	
  talks	
  focusing	
  on:	
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Problems with (physical or numerical) interfaces 

Ω1 Ω2
γ

Γ2

Γ1

!!u−∇⋅σ (u) = f in Ω×T
u = 0 on Γ×T

u(x, 0) = u0 (x) in Ω×T
!u(x, 0) = !u0 (x) in Ω×T

σ (u) = λ(∇⋅u)I + 2µε(u)

Solutions satisfy the continuity/transmission conditions 

u
γ−
= u

γ+
and σ (u− ) ⋅nγ =σ (u

+ ) ⋅nγ
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Today	
  we	
  will	
  talk	
  about	
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•  Interface is physical, e.g., material property. 
•  Mesh is interface-fitted but not necessarily matching. 
•  Each subdomain problem is solved independently by a different code. 
•  Information exchange between codes is limited to nodal masses and forces. 
•  Motivated by the FORTE coupling of Sandia’s Alegra and Sierra/SM codes. 

A partitioned algorithm under “practical constraints” 

Thursday: An optimization-based, mesh-tying algorithm (P. Kuberry, 9:00am) 
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•  Interface is physical or numerical, e.g., due to meshing 
•  Separate meshing creates 2 distinct, non-coincident 

versions of the same interface. 
•  Data transfer between non-coincident interfaces remains a 

tough challenge. 
•  Existing approaches typically involve complex mesh 

manipulations. 
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Original	
  “welded”	
  interface	
  coupling	
  in	
  Forte:	
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“Welded” interface coupling 

•  Mass and forces swapped at nodes 
•  Minimally intrusive (black-box) coupling, but… 
•  Requires matching interface nodes 
•  One code may require finer mesh: 
⇒  Forces excessive mesh refinement! 

Goal: develop a new partitioned algorithm, which 

•  Defaults to “welded” interface on matching grids. 
•  Handles interfaces with non-matching grids. 
•  Has linear consistency 
•  Is second-order accurate 

MLuL
n+1 =

mL
n +

fL
n

Discrete subdomain equations 

MRuR
n+1 =

mR
n +

fR
n

KL
1

KL
2

mR,i
nmL,i

n

fL,i
n fR,i

n

KR
1

KR
2

AlegraSierra / SM

ML,i MR,i

Mass-force exchange 

Completed equation @ interface node: 

(ML +MR )uL/R
n+1 = ( mL

n +
mR
n )+ (


fL
n +

fR
n )
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What	
  does	
  this	
  swap	
  mean	
  mathemaFcally?	
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Let’s reverse-engineer the “welded” interface coupling  

KL
1

KL
2

KR
1

KR
2

tL,i tR,i
mL,i

n

fL,i
n

ML,i

mR,i
n

fR,i
n

MR,i

!
λ

−
!
λ

(ML +MR )uL
n+1 = ( !mL

n +
!mR
n )+ (

!
fL
n +
!
fR
n )

(ML +MR )uR
n+1 = ( !mL

n +
!mR
n )+ (

!
fL
n +
!
fR
n )

uL
n+1 = uR

n+1

MLuL
n+1 = ( !mL

n +
!
fL
n )+ ( !mR

n +
!
fR
n −MRuL

n+1)
MRuR

n+1 = ( !mL
n +
!
fR
n )+ ( !mR

n +
!
fL
n −MLuR

n+1)
uL
n+1 = uR

n+1
This is the contact force at the node! 

MLuL
n+1 = ( !mL

n +
!
fL
n )+
!
λ

MRuR
n+1 = ( !mL

n +
!
fR
n )−
!
λ

uL
n+1 = uR

n+1

This is a pair of identical “completed” 
equations at an interface node  

Because they are the same, they imply 
continuity of the nodal displacement! 

Let’s group all terms from the “other” side  

It’s beginning to look a lot like…. 

A mixed Lagrange multiplier formulation! 
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Let’s	
  start	
  from	
  a	
  monolithic	
  formulaFon	
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Monolithic formulation 

!!u1 −∇⋅σ (u1) = f1 in Ω1 ×T
u1 = 0 on Γ1 ×T

σ (u1) ⋅n = λ on γ ×T

!!u2 −∇⋅σ (u2 ) = f2 in Ω2 ×T
u2 = 0 on Γ2 ×T

−σ (u2 ) ⋅n = λ on γ ×T

u1 −u2 = 0      on  γ ×T

σ (u1) ⋅n1 +σ (u2 ) ⋅n2 = 0  on  γ ×T
•  System of 3 equations for 3 unknowns: subdomain displacements and contact force. 
•  Contact force continuity                                                  subsumed in the equations. 
•  Displacement continuity                                                  enforced explicitly 
•  For problems with an energy principle t can be identified with a Lagrange multiplier. 

u1 ∈V1
h ⊂ HΓ1

1 (Ω1)

u2 ∈V2
h ⊂ HΓ2

2 (Ω2 )

λ ∈ Sh ⊂ H −1/2 (γ )

M1!!u1 +G1
Tλ = F1(u1)

M2!!u2 −G2
Tλ = F2 (u2 )

G1u1 −G2u2 = 0

Mixed, KKT-like system 

Semi-discrete version 

•  Write the problem as a system of two subdomain equations with mixed boundary conditions. 
•  The Neumann boundary condition involves an unknown contact force λ. 
•  Close the system by adding the displacement continuity condition: 

u1 −u2 = 0      on  γ ×T
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There’s	
  one	
  problem	
  though…	
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M1!!u1 +G1
Tλ = F1(u1)

M2!!u2 −G2
Tλ = F2 (u2 )

G1u1 −G2u2 = 0

Lagrange multipliers are not the most natural setting for partitioned schemes 

•  Result in Index-2 DAE that are more difficult to solve 
•  Not compatible with explicit time integration 

Partial solution, Carpenter et al, IJNME, 1991 

•  References the multiplier one time increment ahead (forward increment LM method).  
•  Resulting method still not purely explicit 

.  

A (simple) solution: switch constraints from displacement to acceleration 

!!u1 = !!u2 γ index 1 DAE 

u1 = u2 γ index 2 DAE implies the original 
constraint under 
suitable assumptions 

2
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•  Caution: works for transmission problems but may not work for contact problems! 
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The	
  master	
  formulaFon	
  on	
  matching	
  grids	
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Option A:(1,1) Schur  Option B: (2,2) Schur   

Identical Partitioned systems for matching nodes! 
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The master monolithic (mixed) problem 

M̃⇤,�(M
�1
1,� +M�1

2,�)M̃⇤,�� = M̃⇤,�(M
�1
2,�f2,� �M�1

1,�f1,�)

VFR MFR 

matching nodes specialization 

eliminate 
internal 
DOF 

eliminate 
interface 

DOF 
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The	
  master	
  formulaFon	
  on	
  non-­‐matching	
  grids	
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Op-on	
  A	
  (VFR)	
  

2
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Op-on	
  B	
  (MFR)	
  

•  Leads to a system for interface DOFs 
•  Requires preconditioning 
•  Index 1 enables explicit treatment of the LM 
•  Requires common mesh refinement for LM 
•  Potentially more accurate… 
•  Related to Dual Schur Complement  systems 

in DD, FETI, hybrid methods,… 

•  Requires 2 separate master systems for 
each side 

•  LM collocated with displacement on the 
opposite side 

•  LM spaces simple to construct 
•  Results in a generalized “mass-force 

exchange” between the subdomains 
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The	
  two	
  opFons	
  in	
  a	
  nutshell	
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Options A and B are simply two different ways of expressing the contact force: 

+ + 

+ 

= 

= 

𝑀 

𝑀 

Δ𝑀 𝑓 

𝑓 Δ𝑓 

Δ𝑓 

(A): Indirect representation: Generate  

(B) Direct representation: Generate  
This is a dual Schur 
complement approach in 
which we solve an 
equation for the LM to 
obtain the contact force on 
the interface 

This is a primal Schur 
complement approach in 
which we express the contact 
force indirectly in terms of 
mass/force updates to the 
interface eqs. 

Most approaches to partitioned algorithms are direct 
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OpFon	
  A	
  gives	
  the	
  desired	
  generalizaFon	
  of	
  FORTE	
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Consider the system for subdomain 1 (LM collocated with interface on subdomain 2) 

(M1,� + M̃1,�
 �
P M̃�1

2,�M2,�
�!
P )ü1,� = f1,� + M̃1,�

 �
P M̃�1

2,�f2,�

Taking the (1,1) Schur complement gives a system for u1  

and analogously (using a second mixed problem) for u2  

mass force ⇦    exchange    ⇨ 

generalization of 
Forte’s mass-
force exchange 
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Comparison	
  with	
  a	
  Slide	
  Lines	
  method	
  
§  We examine connections between Option A, i.e., generalized  Forte coupling  and 

slide lines for tied contact applications, Kuchařík et al. , Comp. & Fluids, 83 2013. 

 
 
§  The slide line method is derived by considering virtual cells straddling the 

interface and then writing out contact conditions at p=p’: 
§   Continuity of accelerations & continuity of the contact force 
§  This leads to the following auxiliary system: 
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𝜎 
𝑝  

𝑝′ 

mp0 = ↵im
p0

i + ↵i+1m
p0

i+1

fp0 = ↵if
p0

i + ↵i+1f
p0

i+1

ap
0
= ↵ia

p0

i + ↵i+1a
p0

i+1

mpüp = fp

mp0 ap

ap0
üp0 = fp0 ap

ap0
(mp +mp0 ap

ap0
)üp = fp + fp0 ap

ap0

Ω1

Ω2

The slide line equation at interface node 
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Comparison	
  with	
  a	
  Slide	
  Lines	
  method	
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Slide lines (Kuchařík et al.) 

Generalized Forte 

Interpolate	
  then	
  scale	
  vs.	
  scale	
  then	
  interpolate	
  

Thanks to M. Shashkov (LANL) for pointing out Slide Lines reference 
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ProperFes	
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Equivalence to a monolithic explicit solution for matching grid interfaces  

Interface Vertical Slanted 
  Mesh Ω1 24x20 24x20 
  Mesh Ω2 24x20 24x20 
  L2 error Ω1 3.38E-17 9.43E-17 
  L2 error Ω2 1.07E-15 1.05E-15 
  L2 error Ω1 2.49E-15 7.74E-15 
  L2 error Ω2 9.92E-14 1.23E-13 

M1 +M1σ

!
PM2σ

−1M2

!
P( ) !!u1 = F1 +M1σ

!
PM2σ

−1F2 M2 +M2σ

!
PM1σ

−1M1

!
P( ) !!u2 = F2 +M2σ

!
PM1σ

−1F1

M1 +M2( ) u1 = F1 +F2

!
P =
"
P = IFor interfaces with matching nodes  there holds                 and   

M2 +M1( ) u2 = F2 +F1

M1σ =M2σ
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Chevron Interface

Figure 5: Computational Mesh

Figure 6: Patch Test

3

ProperFes	
  
Recovery of linear displacements (patch test) 

VFR approach recovers linear solution to machine precision on 
interfaces with non-matching grids. 

Diagonal Interface

Figure 3: Computational Mesh

Figure 4: Patch Test

2

Diagonal Interface

Figure 3: Computational Mesh

Figure 4: Patch Test

2

Vertical Interface

Figure 1: Computational Mesh

Figure 2: Patch Test

1

Vertical Interface

Figure 1: Computational Mesh

Figure 2: Patch Test

1

partitioned full partitioned full partitioned full 

Chevron Interface

Figure 5: Computational Mesh

Figure 6: Patch Test

3
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ProperFes	
  

Error Rate 
Mesh Ω1 28x40 56x80 

Mesh Ω2 52x40 104x80 

L2 error Ω1 2.07E-03 5.15E-04 2.01 

L2 error Ω2 3.79E-03 9.58E-04 1.99 

H1 error Ω1 2.78E-01 1.39E-01 1.00 

H1 error Ω2 8.22E-01 4.12E-01 1.00 

2nd order accuracy on non-matching interfaces 
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ImplementaFon	
  in	
  producFon	
  codes	
  

Alegra: 10x10x50 

Sierra:  15x15x50 

Consistency test 
Constant in time, linear in space velocity 

Forte+VFR 

Exact 

VFR coupling has been deployed in Sandia’s Forte software.  
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VerificaFon	
  of	
  Forte+VFR	
  

Official	
  Use	
  Only	
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Axial pulse bar test 

Alegra: 10x10x50 

Sierra:  15x15x50 

Alegra: 10x10x50 
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Conclusions	
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•  Developed a general framework that reduces a DAE 2 to a DAE 1 and is 
based on Lagrange multipliers. 

•  Framework provides a way to generate partitioned approaches that can be 
traced back to a well-posed system including both direct and indirect contact 
force representation methods. 

•  Operator simplification allows for a diagonal mass update to the indirect 
approach, avoiding complicated linear solves in an explicit approach. 

•  Equivalence to a monolithic solution (proved) in the case of matching 
nodes, passing a patch test (proved), and second order convergence 
rates observed in numerical experiments. 


