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History	of	Equation	of	State	at	Sandia
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High	pressure,	temperature	EOS	basics

3

BKW,	covolume based JCZ,	intermolecular	
potential	based

center
of mass

CH2O

!!
PV
RT

=1+ Xexp(βX)

!

X =
Κ niki∑
V T +θ( )α

!!
P =

G V ,T ,ϕ( )nRT
V

+P
o
V ,ϕ( )

Thermodynamics

!!
Cp /R = aiT

i−3

i=1

7

∑

!!
Cp = ∂H / ∂T( )

P

!
h= Cp∫ dT

!!
∂S / ∂T( ) =Cp /T

!
S = Cp

T dT∫
!!µ /RT =H /RT − S /R

0

2

5000

4

10000 15000

6

20000
Temperature, K

CO2

CO

C

200

8

10

C
p/R

JCZS2i & NASA-CEA3

(Piecewise fits)
JCZS1 JANNAF

Data11



Water	EOS
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Detonation	predictions
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           Mean Absolute Error  RMS Error
JCZSa   1.76%     2.37%
Exp-6b   1.90%     2.51%
JCZS2i  1.73%     2.34%
aHobbs, M. L., Baer, M. R., McGee, B. C., Propellants, Explosives, Pyrotechnics, 24, 269-279 (1999).
bFried, L. E., Howard, W. M., Souers, P. C. 12th International Detonation Symposium, San Diego, CA p. 567 (2002)

Awesome!



Air	at	low	pressure,	high	temperature
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Air at 0.01 atm
P = 0.01 atm, improved Cp
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NASA-CEC	and	CTH-TIGER	give	same	results	at	low	pressure.



Air	at	high	temperature	and	pressure
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Air	shock	from	TNT	detonation
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Quick	hands	on	tutorial
(best	to	do	while	running	TIGER)

§ CTH-TIGER	is	
distributed	with	CTH

§ CTH-TIGER	can	be	
coupled	to	CTH	or	run	
as	a	stand-alone-code.

§ The	users	manual	is	
built	into	the	code.

§ Philosophy	for	code	is	
to	provide	a	fast,	
robust,	explosives	
calculator	to	answer	
many	questions.	We’ll	
discuss	a	few.
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Adiabatic	flame	calculation	(H2 +	0.5O2)
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Adiabatic	flame	calculation	(H2 +	0.5O2)
1	atm:	Glassman	says	3080	K 20	atm

3073	K Cheetah	V8	gives	2990	K Cheetah	V8	gives	3427	K



CJ	Calculation	(HMX	at	1.89	g/cc)
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Point	calculations	for	quick	cookoff	mechanism
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Run	with	input	file,	in

Here’s	the	generic	reaction	
and	reaction	enthalpy



Summary	and	Conclusions
§ JCZS	database	was	improved	with	piecewise	specific	heat	fits	of	

NASA’s	latest	specific	heat	parameters	(15th Det.	Symp).	Two	
new	databases	were	created: JCZS2	(no	ions)	and	JCZS2i	(ions).

§ We	have	combined	these	two	databases	into	one:	JCZS3.	A	key	
word	is	used	to	toggle	ions	on	or	off.	We	have	also	
implemented	a	molecular	weight	limiter	when	selecting	
possible	product	species.

§ We	have	refit	all	condensed specific	heat	fits	to	avoid	spurious	
roots	when	calculating	the	chemical	potential.	All	melting	
points	have	been	checked	with	data.

§ We	are	currently	collecting	EOS	data	to	fine	tune	the	JCZS3	
database.	Got	any	data?
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