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ABSTRACT
An enriched finite element method is described for capillary

hydrodynamics including dynamic wetting. The method is en-
riched via the Conformal Decomposition Finite Element Method
(CDFEM). Two formulations are described, one with first-order
accuracy and one with second-order accuracy in time. Both for-
mulations utilize a semi-implicit form for the surface tension that
is shown to effectively circumvent the explicit capillary time step
limit. Sharp interface boundary conditions are developed for
capturing the dynamic contact angle as the fluid interface moves
along the wall. By virtue of the CDFEM, the contact line is free
to move without risk of mesh tangling, but is sharply captured.
Multiple problems are used to demonstrate the effectiveness of
the methods.

1. INTRODUCTION
Accurate models of capillary hydrodynamics and dynamic

contact lines are important in many industrial technologies
including coatings, microfluidics, and subsurface geosciences
(e.g., enhanced oil recovery, geologic carbon storage).

Dynamic wetting, or simply wetting, refers to the displace-
ment of one fluid by another, for example gas displaced by water,
along a solid surface. The fluids are immiscible, and a surface
tension,σ , is exerted along their common interface. In the ab-
sence of motion, the fluid interface contacts the solid surface at
the equilibrium or static wetting angle,θs. With motion, the ap-
parent, macroscopically observed dynamic contact angle,θd dif-
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fers from the equilibrium wetting angle. As discussed by [1,2],
among others, dynamic wetting operates at multiple scales,and
the aforementioned angles are referred to as macroscopic (i.e.
visible) angles. Theoretical models for this three-phase moving
contact line (MCL) problem are further complicated by the sin-
gularity implied by the paradox of the typically applied no-slip
condition on the solid surface in the vicinity of the moving con-
tact line. Two types of models have been posed to explain dy-
namic contact, hydrodynamic models as exemplified by [1, 3, 4]
and a molecular-based model [5, 6]. These theories give the re-
lationship between velocity of the contact line and the dynamic
wetting angle.

A widely-applied model is based on using a Navier slip con-
dition with either a prescribed constant contact angle, or im-
proved by imposing a theoretical relation between contact line
speed and dynamic contact angle. The slip model regularizesthe
stress singularity at the MCL. This type of MCL model has been
applied with both volume-of-fluid (VOF) methods, e.g., [7, 8]
and Level Set methods, e.g., [9, 10]. Cahn-Hilliard phase field
methods [11] have also been applied. It is worthwhile to note
that these types of methods approximate the fluid interface in a
diffuse manner.

This paper introduces a new numerical implementation for
describing dynamic contact lines. The method is based on a weak
form specification of the balance of surface forces at the contact
line combined with a level set for tracking the fluid interface.
The force balance only weakly enforces the equilibrium contact
angle, instead producing a dynamic contact angle resultingfrom
a natural balance of forces at the contact line. Similar models
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have recently appeared for steady [12] and dynamic [13] MCLs.
In contrast, our method dynamically tracks a sharp fluid inter-
face allowing a more accurate integral representation of capillary
forces.

The sharp interface method is based on the Conformal De-
composition Finite Element Method (CDFEM), which is an en-
riched finite element method that is able to describe arbitrarily
discontinuous physics across moving interfaces. The method
was developed at Sandia National Laboratories to simulate mul-
tiphase and multimaterial problems with dynamic topology using
a finite element code that was originally designed for problems
with static topology. The location of the moving interface is de-
scribed using a level set. Nodes are added at the intersection
of the level set surface with the edges of the input mesh, and a
conforming mesh is generated automatically. Standard unstruc-
tured mesh data structures are generated for the resulting confor-
mal mesh in terms of element blocks and side sets. This general
framework allows the physics code to describe either weak or
strong discontinuities across the interface using standard finite
element methods.

For enriched finite element methods, careful attention must
be given to the time integration, particularly in regard to the en-
riched degrees of freedom that are dynamically associated with
the moving interfaces. Recent work has shown dynamic CD-
FEM with second-order accuracy in space and time for mov-
ing interface problems with both strong and weak discontinu-
ities [14]. These methods are further developed for the solution
of the Navier-Stokes equations for dynamic wetting applications
here. The finite element formulation for the Navier-Stokes equa-
tions, capillary condition, and wetting conditions has a great deal
in common with the Arbitrary Lagrangian Eulerian (ALE) meth-
ods presented in [13]. The proposed method is verified using nu-
merical simulations of problems with analytical solutions. The
method is validated by comparison with the results of wetting
experiments.

2. METHODOLOGY
Conformal Decomposition Finite Element Method

In CDFEM, the finite element approximation space is en-
riched by decomposing the finite elements that are crossed bythe
zero level set into elements that simulataneously conform to the
original element and the zero level set surface. The input mesh is
composed of linear triangular elments in two dimensions (2D) or
linear tetrahedral elements in three dimensions (3D). As a result,
the interface consists of line segments in 2D, and trianglesin 3D.
The decomposition algorithm, including degeneracy handling, is
described in [15]. The result of the decomposition is a fullycon-
nected finite element mesh that conforms to the instantaneous
fluid domains. The conformal decomposition algorithm is much
like element refinement for non-conformal adaptivity. The ele-
ments are subdivided into new elements and nodes are added in

the process, and field data at newly added nodes are populated, or
prolonged, using existing field data. Unlike nonconformal adap-
tivity, however, the new elements conform to the moving fluid
domains, and the added nodes lie on the interfaces between the
fluids.

Moving Mesh Approach for Dynamic CDFEM.
The issue of prolongation in CDFEM was covered exten-

sively in [14]. Fields that contain weak discontinuities, such
as velocity in multiphase flows, or strong discontinuities,such
as pressure in multiphase flows, require a prolongation method
that accounts for these discontinuities. Due to interfacial motion,
some nodes of the background mesh will change material as the
interface passes over them. Discontinuous fields at these nodes
must be repopulated to account for the change in material. In
the current work, the moving mesh approach that was developed
in [14] is used to handle the dynamic discretization for velocity
and pressure. The level set field is prolonged using simple intert-
erpolation since the field is continuous. The newly created nodes
on the interface and nodes that have changed material are con-
sidered to have moved to their current location from a previous
location where the velocity and pressure were already defined.
The remaining nodes are taken to be stationary. This fictitious
mesh motion is accounted for by a mesh velocity correction in
the advection term of the Navier-Stokes equations. In this way,
the momentum equation is modified to handle the dynamic dis-
cretization as the interface evolves. A subtle, but important, con-
sequence of using the moving mesh approach for the dynamic
discretization is that the transport equations must be solved after
the conformal decomposition is performed in order to accurately
account for the interface motion. A typical algorithm involves
solving for the new fluid domain locations, decomposing the
mesh to conform to the new domains, and solving the transport
physics on the new domains, including the mesh motion term to
account for the change in domain.

Semi-implicit Finite Element Methods for Capillary Hy-
drodynamics

It is common for level set methods for capillary hydrody-
namics to use explicit time integration. The Navier-Stokesequa-
tions are solved using the level set field from the previous time
plane and then the level set equation is solved using the resulting
velocity field. These implementations are first-order accurate in
time and subject to a stringent time step restriction:

∆t ≤

√

ρ∆x3

2πσ
. (1)

In order to circumvent this restriction, a semi-implicit method
was proposed that includes the impact of the evolving level set
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field in the Navier-Stokes equations [16]. In this case, the Navier-
Stokes equations are solved using the old level set values, but a
semi-implicit term is added that accounts for the impact of the
evolving level set field on the velocity. This term involves in-
terface diffusion and stabilizes the system of equations, circum-
venting the explicit time step limit. The semi-implicit time in-
tegration has the added benefit of improving the time accuracy
of the method. In order to take advantage of the improved accu-
racy, the Navier-Stokes equations must be solved with the semi-
implicit term to account for the evolving level set field. Thethe
level set equation is solved using the updated velocity. Note that
this ordering is in conflict with the requirements for the moving
mesh approach for the evolving discretization. Two approaches
are proposed to work around this issue. A first-order accurate
method in time is proposed that reorders the steps to meet the
requirements for the moving mesh approach. This approach ac-
cepts an error proportional to the time step size because of this
order. A second-order method is also proposed using a predictor-
corrector algorithm that meets the requirements for both the mov-
ing mesh approach and semi-implicit method, and consequently
recovers second-order accuracy in space and time. However,the
method requires two Navier-Stokes solves per time step.

First-order Accurate CDFEM for Capillary Hydrody-
namics

First-order temporal accuracy can be obtained by the follow-
ing proposed algorithm:

1. Solve level set equation using the old velocity
2. Perform conformal decomposition, creating the domain

Ωn+1

3. Solve the Navier-Stokes equations using the moving mesh
term and semi-implicit term

In this case, a semi-implicit term is used as a stabilizationterm
along the lines of [17]. The impact of using this term in this way
is that the method is only first-order accurate in time. Consistent
with this order of accuracy, backward Euler time integration is
used.

Second-order Accurate, Semi-implicit CDFEM for Cap-
illary Hydrodynamics

Second-order temporal accuracy can be obtained by the fol-
lowing proposed algorithm:

1. Navier-Stokes predictor: Solve the Navier-Stokes equations
using semi-implicit term with old interface location for the
predicted velocity,̃u

2. Solve level set equation using predicted velocity
3. Perform conformal decomposition, creating the domain

Ωn+1

4. Navier-Stokes corrector: Solve the Navier-Stokes equations
using the moving mesh term and semi-implicit term, now
based on the velocity correction

Here, a semi-implicit term in the momentum predictor is usedto
incorporate the effect of the moving interface, since the integra-
tion conforms to the older interface location. After updating the
level set field using the predicted velocity, the conformal decom-
position is performed, which enables the solution to capture the
weak discontinuity in the velocity and strong discontinuity in the
pressure. In order to get an updated solution on the now updated
mesh, the momentum equation is solved again to obtainun+1. To
get second-order temporal accuracy, the BDF2 time integrator is
used for both the level set and momentum equations.

The notable differences between the predictor and corrector
are the domains of integration, the moving mesh term in the cor-
rector, and the fact that the semi-implicit term in the corrector is
based on the velocity correction instead of the full velocity field.
For all Navier-Stokes solves, PSPG and SUPG stabilization are
employed.

Sharp Interface Conditions for Dynamic Wetting
CDFEM allows for the boundary conditions to be applied in

a sharp manner along the wetting line where the fluid interface
meets the domain boundary. Two types of boundary conditions
are combined to provide accurate wetting behavior. First, asharp
version of the Navier slip condition is applied all along thewall
to capture behavior that transitions from wetting line motion to
no-slip like behavior away form the wetting line. Second, a trac-
tion boundary condition pulling at the equilibrium contactangle
captures the fine scale effect of wetting that cannot be captured
well with reasonable mesh sizes.

Navier-Slip Condition for Momentum.
The Navier-Slip boundary condition imposes a traction on

the fluid proportional to the difference between the fluid velocity
and the wall velocity. This boundary condition is attractive in
dynamic wetting applications where the no-slip condition must
be relaxed to allow the wetting line to move along the wall [18]
[4]. Using consistent finite element integration, the contribution
to the momentum equation for the Navier-slip condition is given
as

∫

Γn+1
w

µ
β ∗

(

uw−un+1) ·widΓ, (2)

whereΓw is used to denote wall boundary of the fluid,uw is the
wall velocity, andβ ∗ is the slip length describing the strength of
the resistance to flow along the wall. This must be determined
from experiments. Along the lines of [13] we can recast this
equation to use a proportionality constant that depends inversely
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on the mesh size∆x. In this way, the the Navier-Slip condition
can be viewed as a weakly imposed condition that approaches
the no-slip condition as the mesh is refined. This equation can be
recast as

∫

Γn+1
w

µβ
∆x

(

uw−un+1) ·widΓ, (3)

where we replace the slip lengthβ ∗ with the non-dimensional
slip coefficientβ = ∆x/β ∗. Often implementations will take
care to apply this condition only in the tangent directions to the
wall. However, the normal velocity is normally set to zero using
a Dirichlet condition, removing the normal contribution tothe
momentum equation. So here the slip condition is applied as a
vector, since only tangent components will remain anyway.

Sharp Interface Traction Condition for Dynamic Wet-
ting.

The Laplace-Beltrami form for surface tension incorporates
an edge term where the fluid interface meets the external bound-
ary. As described in [13] this term can be used to weakly spec-
ify the equilibrium contact angle. This accomplished by assem-
bling an additional term in the momentum equation by integrat-
ing along the contact line,

∫

ζ n+1
σ (cos(θs)tw +sin(θs)nw) ·widΓ, (4)

whereζ is the contact line andtw is the tangent to the wall ori-
ented in the direction of fluid interface normal,n f and is given
by

tw =
n f −

(

n f ·nw
)

nw
∣

∣n f −
(

n f ·nw
)

nw
∣

∣

, (5)

wherenw is the wall normal. This term only weakly imposes the
equilibrium contact angle. It allows the dynamic contact angle
to develop as a natural balance of the forces at the wall. The
only free parameter in this system of boundary conditions isthe
dimensionless slip coeffcientβ . Just as is done for the slip con-
dition, this traction is specified as a vector condition, rather than
limiting it to the tangent direction. The normal direction is ze-
roed using a Dirichlet condition on the velocity component nor-
mal to the wall to enforce the no pentration conditon.

3. COMPARISON WITH EXACT SOLUTIONS
Two and three dimensional benchmark problems are used to

evaluate the proposed methods. Unless otherwise specified,the
second-order, semi-implicit method is used.

Two-dimensional Decay of a Capillary Wave
The damped oscillation of two immiscible viscous fluids

with finite surface tensionσ is simulated within the presented
finite-element framework and compared with the analytical solu-
tion provided by Prosperetti [19]. Here, a small amplitude sinu-
soidal disturbance of wavelengthλ = 2π is superimposed on two
fluids each occupying half of the two-dimensional computational
domain and separated by a common interface with surface ten-
sionσ . The Ohnesorge numberOh= µ/(σρλ )1/2 = 1/

√
3000

and the dimensionless viscosityε = µκ2/(ρω0) = 6.47×10−2.
Here,κ = λ/2π is the wavelength andω0 is the frequency de-
fined asω0 =

√

(σκ)3/(2ρ).
Based on previous studies that also examined this

benchmark problem, the amplitude of the disturbance was
set as A = 0.01λ and the domain was chosen to be
[−λ/2,λ/2] [−λ/2,λ/2]. The decay of the initial sinusoidal
wave was simulated until a dimensionless time,tω0, of 25. A
typical numerical solution is shown along with the analytical so-
lution [19] in figure 1. Taking advantage of the interface stabi-
lization term in both the first-order and second-order methods,
the time step is selected to be much larger the explicit capillary
time step limit. Regardless, no stability issues are encountered.

Oscillation of an Ellipsoidal Bubble
To examine the accuracy of the proposed method in three

dimensions, the oscillatory behavior of an axisymmetric, ellip-
soidal drop is simulated. The resulting frequency of the oscil-
lation is compared with the analytical solution reported in[20].
The frequency of the second mode for the oscillation of a droplet
immersed in another fluid is given by:

ω2 = ω∗
2 −

α
√

ω∗
2

2
+

α2

4
, (6)

where

ω∗
2 =

√

24σ
R3 (3ρi +2ρo)

, (7)

andR is the radius of the drop at equilibrium,σ is the surface
tension, andρi , ρo are the densities of the innner and outer fluids,
respectively. The parameterα is given by,

α =
25
√µiρi µoρo√

2R(3ρi +2ρo)
(√µiρi +

√µoρo
) , (8)

whereµi , µo are the viscosities of the inner and outer fluids, re-
spectively.
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FIGURE 1. Model comparisons with analytic results of Prosperetti [19] for the sinusoidal temporal wave decay of fluid interface amplitude.
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FIGURE 2. Comparison of analytical expression for the frequency of the second mode of oscillation with simulation results for the ellipsoidal drop
oscillation simulation at multiple drop radii.

The behavior of an ellipsoidal drop was simulated for 1 sec-
ond. The inner fluid was assigned the density,ρi = 1000, and
viscosity,µi = 1×10−3. The outer fluid was assigned the den-
sity, ρo = 1, and viscosity,µo = 1.8× 10−5. The surface ten-
sion was specified asσ = 0.07. Multiple drop sizes were simu-
lated using the proposed second-order accurate scheme, andthe
resulting frequency of oscillation was compared to the analyti-
cal solution. The semi-axes of the initial ellipsoidal dropwere
initialized as[1.1×R,R,R]. As the simulation progressed, the
length of the drop in thex-direction was computed. To compute
the simulation frequency, this length versus time was fit to ade-
caying exponential of the form,Lx(t) = Ae−Bt cos(ωt +D)+C.
A commercial software program (MATLAB R2016a, The Math-
Works Inc., Natick, MA) was used to fit the exponential to

determine the constantsA,B,C,D,ω. Figure 2 shows the an-
alytical expression for the frequency of the second mode of
oscillation along with the simulation results for drop sizes of
R= 2.5×10−3,3×10−3,4×10−3,5×10−3. These simulations
were performed on a cubed domain of size 0.02, and the no-
stress boundary conditions were applied at the domain bound-
aries. This time step is nearly twice the explicit time step size
given in Eqn. 1, but again there are no stability issues by virtue
of the semi-implicit algorithm. Given the relatively coarse mesh
size and time step, the agreement is very good for all drop sizes.
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TABLE 1. Properties of the various fluids used in the capillary injec-
tion simulations, the surface tensionσ and static contact angleθs are
assumed with air as the non-wetting fluid.

Wetting Fluid ρ (kg/m3) µ (Pa·s) σ (N/m) θs

Water 997 0.0011 0.073 6◦

Santicizer 405 1130 11.2 0.043 67◦

Admex 760 1150 109.3 0.043 69◦

4. VALIDATION FOR DYNAMIC WETTING APPLICA-
TIONS

Here we will compare our model with moving meniscus ex-
perimental data [21], which elucidate the importance of an accu-
rate representation of the dynamics near the contact line. In the
experiments of Hoffman [21], one wall attached to the meniscus
is moved at constant velocity and the dynamic angle is measured
as a function of this velocity, often cast as a capillary number
Ca. Here, we replicate the capillary number dependence on the
dynamic angle reported by Hoffman [21] through a capillary in-
jection problem, where the meniscus is advected at the bottom of
the capillary tube at constant velocity.

In the subsequent section, the contact line speedVCL is mea-
sured instantaneously at the exact location of the contact line and
the dynamic contact angleθd is obtained by fitting the interface to
the closest representative circle utilizing a least-squares method
and using the relationshipθd = π/2−sin−1 (r/rf) wherer is the
radius of the capillary tube andrf is the radius of the fitted cir-
cle to the meniscus. The model fitting is accomplished through
parametrically fitting the slip coefficientβ ∗ to the discrete data
points provided in the experiments for both two-dimensional and
three-dimensional simulations. While the choice of the realslip
length is necessarily grid resolution dependent, we will show that
once a suitable slip length is chosen, the choice ofβ can be accu-
rately made for different grid resolutions. The time step ischo-
sen adaptively such that the level-set and momentum Courant-
Friedrichs-Lewy (CFL) number does not exceed 0.5. When the
CFL constraint is satisfied, the maximum time step should not
exceed an integer multiple of the physical capillary time scale
∆tmax ≤ n× µ̄r/σ where µ̄ represents the average viscosity of
the wetting and non-wetting fluid.

Capillary Injection
In order to investigate the potential for our model to achieve

grid independence, we take the case of Sancticizer 405 at Ca=
0.044 whereθd ≈ 115◦from experiment [21]. The contact angle
θd vs. time for fixedβ ∗ at various grid spacings∆x is shown in
figure 3(a). For all grid spacings, the dynamic angle is initiated
at θd = 90◦, and as the meniscus is pushed through the tube,
the dynamic angle adjusts until reaching an equilibrium. This
equilibrium angle changes, necessarily, since the slip length β ∗

is grid dependent if the Navier slip condition is cast as it isin
equation 2. However, if we recast the slip condition as equation
3 and holdβ = ∆x/β ∗ = 62.5 as a constant, then the solution
becomes grid independent as shown through convergence ofθd

in figure 3(b) for all resolutions; supporting the conclusions of
[13].

5. CONCLUSIONS
The Conformal Decomposition Finite Element Methods

(CDFEM) described here have been shown to compare well with
exact solutions. Weak forms for the contact angle and no-slip
conditions are shown to able to reproduce dynamic contact angle
behavior. Future verification work will show the convergence of
the methods through detailed comparisons with the exact solu-
tions as well as validation through comparison of dynamic wet-
ting behavior with experiments.
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