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ABSTRACT

An enriched finite element method is described for capillary
hydrodynamics including dynamic wetting. The method is en-
riched via the Conformal Decomposition Finite Element Neth
(CDFEM). Two formulations are described, one with first-erd
accuracy and one with second-order accuracy in time. Bath fo
mulations utilize a semi-implicit form for the surface tiemsthat
is shown to effectively circumvent the explicit capillarge step
limit. Sharp interface boundary conditions are developed f
capturing the dynamic contact angle as the fluid interfaceeso
along the wall. By virtue of the CDFEM, the contact line issfre
to move without risk of mesh tangling, but is sharply capdure
Multiple problems are used to demonstrate the effectiwnés
the methods.

1. INTRODUCTION

Accurate models of capillary hydrodynamics and dynamic
contact lines are important in many industrial technolegie
including coatings, microfluidics, and subsurface geoses
(e.g., enhanced oil recovery, geologic carbon storage).

Dynamic wetting, or simply wetting, refers to the displace-
ment of one fluid by another, for example gas displaced bywvate
along a solid surface. The fluids are immiscible, and a sarfac
tension,o, is exerted along their common interface. In the ab-
sence of motion, the fluid interface contacts the solid serfa
the equilibrium or static wetting anglés. With motion, the ap-
parent, macroscopically observed dynamic contact afygldif-
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fers from the equilibrium wetting angle. As discussed by|1,
among others, dynamic wetting operates at multiple scales,
the aforementioned angles are referred to as macroscogic (i
visible) angles. Theoretical models for this three-phaseing
contact line (MCL) problem are further complicated by the- si
gularity implied by the paradox of the typically applied slip
condition on the solid surface in the vicinity of the movingne
tact line. Two types of models have been posed to explain dy-
namic contact, hydrodynamic models as exemplified by [1], 3,4
and a molecular-based model [5, 6]. These theories giveethe r
lationship between velocity of the contact line and the dyica
wetting angle.

A widely-applied model is based on using a Navier slip con-
dition with either a prescribed constant contact angle,nor i
proved by imposing a theoretical relation between contaet |
speed and dynamic contact angle. The slip model regulatiezes
stress singularity at the MCL. This type of MCL model has been
applied with both volume-of-fluid (VOF) methods, e.g., [f, 8
and Level Set methods, e.g., [9, 10]. Cahn-Hilliard phadd fie
methods [11] have also been applied. It is worthwhile to note
that these types of methods approximate the fluid interface i
diffuse manner.

This paper introduces a new numerical implementation for
describing dynamic contact lines. The method is based oralt we
form specification of the balance of surface forces at theamin
line combined with a level set for tracking the fluid interdac
The force balance only weakly enforces the equilibrium aont
angle, instead producing a dynamic contact angle restitimg
a natural balance of forces at the contact line. Similar rsode
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have recently appeared for steady [12] and dynamic [13] MCLs
In contrast, our method dynamically tracks a sharp fluidrinte
face allowing a more accurate integral representationiflagy
forces.

The sharp interface method is based on the Conformal De-
composition Finite Element Method (CDFEM), which is an en-
riched finite element method that is able to describe arilitra
discontinuous physics across moving interfaces. The ndetho
was developed at Sandia National Laboratories to simulate m
tiphase and multimaterial problems with dynamic topologiyng
a finite element code that was originally designed for pnwisle
with static topology. The location of the moving interfasedie-
scribed using a level set. Nodes are added at the intersectio
of the level set surface with the edges of the input mesh, and a
conforming mesh is generated automatically. Standardwmst
tured mesh data structures are generated for the resudtirigre
mal mesh in terms of element blocks and side sets. This genera
framework allows the physics code to describe either weak or
strong discontinuities across the interface using stahfiaite
element methods.

For enriched finite element methods, careful attention must
be given to the time integration, particularly in regardtie &n-
riched degrees of freedom that are dynamically associaitd w
the moving interfaces. Recent work has shown dynamic CD-
FEM with second-order accuracy in space and time for mov-
ing interface problems with both strong and weak discontinu
ities [14]. These methods are further developed for thetismiu
of the Navier-Stokes equations for dynamic wetting apitbce
here. The finite element formulation for the Navier-Stokgsae
tions, capillary condition, and wetting conditions has eagideal
in common with the Arbitrary Lagrangian Eulerian (ALE) meth
ods presented in [13]. The proposed method is verified usiag n
merical simulations of problems with analytical solutiorghe
method is validated by comparison with the results of wgttin
experiments.

2. METHODOLOGY
Conformal Decomposition Finite Element Method

In CDFEM, the finite element approximation space is en-
riched by decomposing the finite elements that are crosséteby
zero level set into elements that simulataneously conforthe
original element and the zero level set surface. The inpstre
composed of linear triangular elments in two dimensions) @D
linear tetrahedral elements in three dimensions (3D). Asalt,
the interface consists of line segments in 2D, and triarigl8®.
The decomposition algorithm, including degeneracy haugdliis
described in [15]. The result of the decomposition is a faby-
nected finite element mesh that conforms to the instantaneou
fluid domains. The conformal decomposition algorithm is muc
like element refinement for non-conformal adaptivity. The-e

the process, and field data at newly added nodes are popwated
prolonged, using existing field data. Unlike nonconfornada
tivity, however, the new elements conform to the moving fluid
domains, and the added nodes lie on the interfaces between th
fluids.

Moving Mesh Approach for Dynamic CDFEM.

The issue of prolongation in CDFEM was covered exten-
sively in [14]. Fields that contain weak discontinuitiesick
as velocity in multiphase flows, or strong discontinuitisgch
as pressure in multiphase flows, require a prolongation ogeth
that accounts for these discontinuities. Due to interfaniztion,
some nodes of the background mesh will change material as the
interface passes over them. Discontinuous fields at thedesno
must be repopulated to account for the change in material. In
the current work, the moving mesh approach that was devélope
in [14] is used to handle the dynamic discretization for eéio
and pressure. The level set field is prolonged using simetin
erpolation since the field is continuous. The newly creatstes
on the interface and nodes that have changed material are con
sidered to have moved to their current location from a previo
location where the velocity and pressure were already dkfine
The remaining nodes are taken to be stationary. This figstio
mesh motion is accounted for by a mesh velocity correction in
the advection term of the Navier-Stokes equations. In tlaig, w
the momentum equation is modified to handle the dynamic dis-
cretization as the interface evolves. A subtle, but impurteon-
sequence of using the moving mesh approach for the dynamic
discretization is that the transport equations must beeslohiter
the conformal decomposition is performed in order to adelya
account for the interface motion. A typical algorithm inves
solving for the new fluid domain locations, decomposing the
mesh to conform to the new domains, and solving the transport
physics on the new domains, including the mesh motion term to
account for the change in domain.

Semi-implicit Finite Element Methods for Capillary Hy-
drodynamics

It is common for level set methods for capillary hydrody-
namics to use explicit time integration. The Navier-Stokgga-
tions are solved using the level set field from the previometi
plane and then the level set equation is solved using thétiresu
velocity field. These implementations are first-order aataim
time and subject to a stringent time step restriction:

pAC
\ 2o

In order to circumvent this restriction, a semi-implicit tined
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ments are subdivided into new elements and nodes are added invas proposed that includes the impact of the evolving lestl s
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field in the Navier-Stokes equations [16]. In this case, theidt-
Stokes equations are solved using the old level set values, b
semi-implicit term is added that accounts for the impacthef t
evolving level set field on the velocity. This term involves i
terface diffusion and stabilizes the system of equatioinsyim-
venting the explicit time step limit. The semi-implicit terin-
tegration has the added benefit of improving the time acgurac
of the method. In order to take advantage of the improved-accu
racy, the Navier-Stokes equations must be solved with timé-se
implicit term to account for the evolving level set field. Tte
level set equation is solved using the updated velocityeNlwat
this ordering is in conflict with the requirements for the rimgy
mesh approach for the evolving discretization. Two appteac
are proposed to work around this issue. A first-order aceurat
method in time is proposed that reorders the steps to meet the
requirements for the moving mesh approach. This approach ac
cepts an error proportional to the time step size becaudeiof t
order. A second-order method is also proposed using a poedic
corrector algorithm that meets the requirements for battmtbv-

ing mesh approach and semi-implicit method, and conselyuent
recovers second-order accuracy in space and time. Hovibeer,
method requires two Navier-Stokes solves per time step.

First-order Accurate CDFEM for Capillary Hydrody-
namics

First-order temporal accuracy can be obtained by the fellow
ing proposed algorithm:

1. Solve level set equation using the old velocity

2. Perform conformal decomposition, creating the domain
Qn+1

3. Solve the Navier-Stokes equations using the moving mesh
term and semi-implicit term

In this case, a semi-implicit term is used as a stabilizatém

along the lines of [17]. The impact of using this term in thigyw
is that the method is only first-order accurate in time. Cstesit

with this order of accuracy, backward Euler time integnati®

used.

Second-order Accurate, Semi-implicit CDFEM for Cap-
illary Hydrodynamics

Second-order temporal accuracy can be obtained by the fol-
lowing proposed algorithm:

1. Navier-Stokes predictor: Solve the Navier-Stokes equat
using semi-implicit term with old interface location foreth
predicted velocityil

2. Solve level set equation using predicted velocity

3. Perform conformal decomposition, creating the domain
Qn+l

4. Navier-Stokes corrector: Solve the Navier-Stokes égusit
using the moving mesh term and semi-implicit term, now
based on the velocity correction

Here, a semi-implicit term in the momentum predictor is used
incorporate the effect of the moving interface, since thegra-
tion conforms to the older interface location. After updgtthe
level set field using the predicted velocity, the conformedam-
position is performed, which enables the solution to captbe
weak discontinuity in the velocity and strong discontigiit the
pressure. In order to get an updated solution on the now e@dat
mesh, the momentum equation is solved again to obf4ih To
get second-order temporal accuracy, the BDF2 time integiat
used for both the level set and momentum equations.

The notable differences between the predictor and comrecto
are the domains of integration, the moving mesh term in the co
rector, and the fact that the semi-implicit term in the cotoeis
based on the velocity correction instead of the full velp€igld.
For all Navier-Stokes solves, PSPG and SUPG stabilizatien a
employed.

Sharp Interface Conditions for Dynamic Wetting

CDFEM allows for the boundary conditions to be applied in
a sharp manner along the wetting line where the fluid interfac
meets the domain boundary. Two types of boundary conditions
are combined to provide accurate wetting behavior. Firsteap
version of the Navier slip condition is applied all along thall
to capture behavior that transitions from wetting line rontto
no-slip like behavior away form the wetting line. Secondazt
tion boundary condition pulling at the equilibrium contacigle
captures the fine scale effect of wetting that cannot be oaqgbtu
well with reasonable mesh sizes.

Navier-Slip Condition for Momentum.

The Navier-Slip boundary condition imposes a traction on
the fluid proportional to the difference between the fluicbedly
and the wall velocity. This boundary condition is attraetin
dynamic wetting applications where the no-slip conditionsin
be relaxed to allow the wetting line to move along the wall][18
[4]. Using consistent finite element integration, the citmotiion
to the momentum equation for the Navier-slip condition iggi
as

u
s g (o) e, @

wherel, is used to denote wall boundary of the fluig is the

wall velocity, andB* is the slip length describing the strength of
the resistance to flow along the wall. This must be determined
from experiments. Along the lines of [13] we can recast this
equation to use a proportionality constant that depends sely
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on the mesh sizAx. In this way, the the Navier-Slip condition = Two-dimensional Decay of a Capillary Wave

can be viewed as a weakly imposed condition that approaches The damped oscillation of two immiscible viscous fluids
the no-slip condition as the mesh is refined. This equatiorbea with finite surface tensiow is simulated within the presented
recast as finite-element framework and compared with the analytiolls

tion provided by Prosperetti [19]. Here, a small amplituihels
soidal disturbance of wavelengih= 2rtis superimposed on two
fluids each occupying half of the two-dimensional compotzl
domain and separated by a common interface with surface ten-
where we replace the slip lenggt with the non-dimensional ~ S1on - The Ohnesorge numberh = “2/(ap/\)1/2 =1 30_20

slip coefficientB = Ax/B*. Often implementations will take ~ @nd the dimensionless viscostty= pk®/(pap) = 6.47x 107,

care to apply this condition only in the tangent directiomstte Here,k = A /2rtis thf wavelength andy is the frequency de-
wall. However, the normal velocity is normally set to zerings ~ f1ned asio = /(0K)?/(2p).

HB

[ i (U= u™) - ©

a Dirichlet condition, removing the normal contribution ttee Based on previous StUd'E_’S that also .examlned this
momentum equation. So here the slip condition is applied as a P€nchmark problem, the amplitude of the disturbance was
vector, since only tangent components will remain anyway. set as A = 0.014 and the domain was chosen to be

[—A/2,A/2][-A/2,A/2]. The decay of the initial sinusoidal
wave was simulated until a dimensionless tirta,, of 25. A

Sharp Interface Traction Condition for Dynamic Wet- typical numerical solution is shown along with the analgtiso-
ting. lution [19] in figure 1. Taking advantage of the interfacebsta

The Laplace-Beltrami form for surface tension incorpasate |ization term in both the first-order and second-order masho
an edge term where the fluid interface meets the externaldoun  the time step is selected to be much larger the explicit eapil

ary. As described in [13] this term can be used to weakly spec- time step limit. Regardless, no stability issues are enesad.
ify the equilibrium contact angle. This accomplished byeass

bling an additional term in the momentum equation by integra o ] )
ing along the contact line, Oscillation of an Ellipsoidal Bubble

To examine the accuracy of the proposed method in three
dimensions, the oscillatory behavior of an axisymmetriip-e
/ZMG(Coies)thrsin(Gs)nw) -widr, (4) soidal drop is simulated. The resulting frequency of thelosc
lation is compared with the analytical solution reported2a).
The frequency of the second mode for the oscillation of alétop

where( is the contact line antly is the tangent to the wall ori- immersed in another fluid is given by:

ented in the direction of fluid interface nornral,and is given

by
e a 5 aZ
= ;- T2 T (©)
Ng — (Nf-Nw) Ny
tw:’nf—(nf'n )n ’ (5)
o where
wheren,, is the wall normal. This term only weakly imposes the
equilibrium contact angle. It allows the dynamic contaaglan . 240

to develop as a natural balance of the forces at the wall. The w = R3(3pi +200) )
only free parameter in this system of boundary conditioribés

dimensionless slip coeffcieift. Just as is done for the slip con-

dition, this traction is specified as a vector conditionheatthan andR s the radius of the drop at equilibriung; is the surface
limiting it to the tangent direction. The normal directione- tension, angb;, po are the densities of the innner and outer fluids,
roed using a Dirichlet condition on the velocity componeat-n  espectively. The parametaris given by,

mal to the wall to enforce the no pentration conditon.

_ 25,/Hi i HopPo
3. COMPARISON WITH EXACT SOLUTIONS V2R(3pi+-200) (/i ++/Hopo)
Two and three dimensional benchmark problems are used to

evaluate the proposed methods. Unless otherwise spedlied,  wherey;, L, are the viscosities of the inner and outer fluids, re-
second-order, semi-implicit method is used. spectively.

(8)
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FIGURE 2. Comparison of analytical expression for the frequency of the seowde of oscillation with simulation results for the ellipsoidal drop

oscillation simulation at multiple drop radii.

The behavior of an ellipsoidal drop was simulated for 1 sec- determine the constans B,C,D, w. Figure 2 shows the an-

ond. The inner fluid was assigned the density= 1000, and
viscosity, i = 1 x 10-3. The outer fluid was assigned the den-
sity, po = 1, and viscosity, = 1.8 x 10~°. The surface ten-
sion was specified ag = 0.07. Multiple drop sizes were simu-
lated using the proposed second-order accurate schem#éend
resulting frequency of oscillation was compared to the wial
cal solution. The semi-axes of the initial ellipsoidal dnopre
initialized as[1.1 x R R R]. As the simulation progressed, the
length of the drop in the-direction was computed. To compute
the simulation frequency, this length versus time was fit tiea
caying exponential of the forn(t) = Ae Blcog wt + D) 4-C.

A commercial software program (MATLAB R2016a, The Math-
Works Inc., Natick, MA) was used to fit the exponential to

5

alytical expression for the frequency of the second mode of
oscillation along with the simulation results for drop Sizef
R=25x10233x1034x 103 5x 10 3. These simulations
were performed on a cubed domain of siz82) and the no-
stress boundary conditions were applied at the domain bound
aries. This time step is nearly twice the explicit time stee s
given in Egn. 1, but again there are no stability issues byi@ir

of the semi-implicit algorithm. Given the relatively coamnesh
size and time step, the agreement is very good for all dragssiz
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TABLE 1. Properties of the various fluids used in the capillary injec-
tion simulations, the surface tensianand static contact anglgs are
assumed with air as the non-wetting fluid.

Wetting Fluid | p (kg/m®) | u (Pa:s) | o (N/m) | 6s
Water 997 0.0011 0.073 6°
Santicizer 405 1130 112 0.043 | 67
Admex 760 1150 1093 0.043 | 69

4. VALIDATION FOR DYNAMIC WETTING APPLICA-
TIONS

Here we will compare our model with moving meniscus ex-
perimental data [21], which elucidate the importance of@ua
rate representation of the dynamics near the contact lméhd
experiments of Hoffman [21], one wall attached to the margsc
is moved at constant velocity and the dynamic angle is medsur
as a function of this velocity, often cast as a capillary namb
Ca. Here, we replicate the capillary number dependenceen th
dynamic angle reported by Hoffman [21] through a capillary i
jection problem, where the meniscus is advected at theraifo
the capillary tube at constant velocity.

In the subsequent section, the contact line spgeds mea-
sured instantaneously at the exact location of the coritecahd
the dynamic contact angl is obtained by fitting the interface to
the closest representative circle utilizing a least-segsianethod
and using the relationshigy = 11/2 —sin~1 (r /r) wherer is the
radius of the capillary tube and is the radius of the fitted cir-
cle to the meniscus. The model fitting is accomplished thinoug
parametrically fitting the slip coefficierf@* to the discrete data
points provided in the experiments for both two-dimensiamal
three-dimensional simulations. While the choice of the séipl
length is necessarily grid resolution dependent, we wilsthat
once a suitable slip length is chosen, the choic@ oén be accu-
rately made for different grid resolutions. The time steplis-
sen adaptively such that the level-set and momentum Courant
Friedrichs-Lewy (CFL) number does not exceefl. 0When the
CFL constraint is satisfied, the maximum time step should not
exceed an integer multiple of the physical capillary timalec
Atmax < N x ur /o whereu represents the average viscosity of
the wetting and non-wetting fluid.

Capillary Injection

In order to investigate the potential for our model to achiev
grid independence, we take the case of Sancticizer 405 at Ca
0.044 wherefy ~ 115°from experiment [21]. The contact angle
64 vs. time for fixedB* at various grid spacingsx is shown in
figure 3(a). For all grid spacings, the dynamic angle isaitéil
at 83 = 90°, and as the meniscus is pushed through the tube,
the dynamic angle adjusts until reaching an equilibrium.isTh
equilibrium angle changes, necessarily, since the sligtkef*

is grid dependent if the Navier slip condition is cast as inis
equation 2. However, if we recast the slip condition as eqnat
3 and holdB = Ax/3* = 625 as a constant, then the solution
becomes grid independent as shown through convergengge of
in figure 3(b) for all resolutions; supporting the conclusicof
[13].

5. CONCLUSIONS

The Conformal Decomposition Finite Element Methods
(CDFEM) described here have been shown to compare well with
exact solutions. Weak forms for the contact angle and rm-sli
conditions are shown to able to reproduce dynamic contagéan
behavior. Future verification work will show the convergernd
the methods through detailed comparisons with the exaat sol
tions as well as validation through comparison of dynamitwe
ting behavior with experiments.
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