

Laboratory Testing Approach for Intermediate Scale Borehole Heater Test

Melissa Mills
Sandia National Laboratories

SFWST Working Group Meeting
May 23, 2017

Spent Fuel and Waste Science and Technology

Overview

- Pre-field test materials interaction experiments
- Laboratory investigations and experiments of samples before and after the test include:
 - Core Analysis
 - Brine Evaporation
 - Gas Analysis
 - Brine Analysis

Spent Fuel and Waste Science and Technology

Core Analysis

■ Impurities

- Hydrous minerals that influence gas and brine samples

■ Microstructural

- Details of any apparent deformation mechanisms
- Micro-mechanic processes are important for long-term performance of heat-generating repositories

■ Flow and Pore Properties

- Porosity (He porosimetry)
- Pore size distribution (Hg-injection porosimetry)
- Pore network and brine distribution (small-angle neutron scattering, Robo-Met 3D)

Gas

- **Gas Chromatograph**
 - Major and key noble gases (e.g. He and Ar)
- **Gas specific field detection equipment**
 - Anticipated HCl gas

Brine

- **Thermal-gravimetric analysis (TGA)**
 - Estimate inter- and intra-granular brine as well as moisture associated with different mineral and their phases (gas chromatograph could also be connected)
- **Ion Chromatography (IC)**
 - Cations (Na^+ , K^+ , Mg^{2+} , Ca^{2+} , NH_4^+ , Li^+) and Anions (Cl^- , Br^- , F^- , NO_3^- , SO_4^{2-})
- **Ion Coupled Plasma (ICP)**
 - Other major and minor ions

- Natural WIPP brine chemistry is difficult to accurately measure
- Deal et al. 1989 did extensive natural brine analysis but problems existed
- Current WIPP procedures use correction factors and simulated synthetic brines
 - Synthetic brines do not include the level of complexity found in natural WIPP brines
- Properties interested in are as follows:
 - pH
 - Alkalinity
 - TDS
 - Density
 - Electrical Conductivity

■ pH

- pH meter with high ionic strength pH standards for calibration to correct for electrode junction potential errors

■ Alkalinity

- Titration by autotitrator

■ TDS

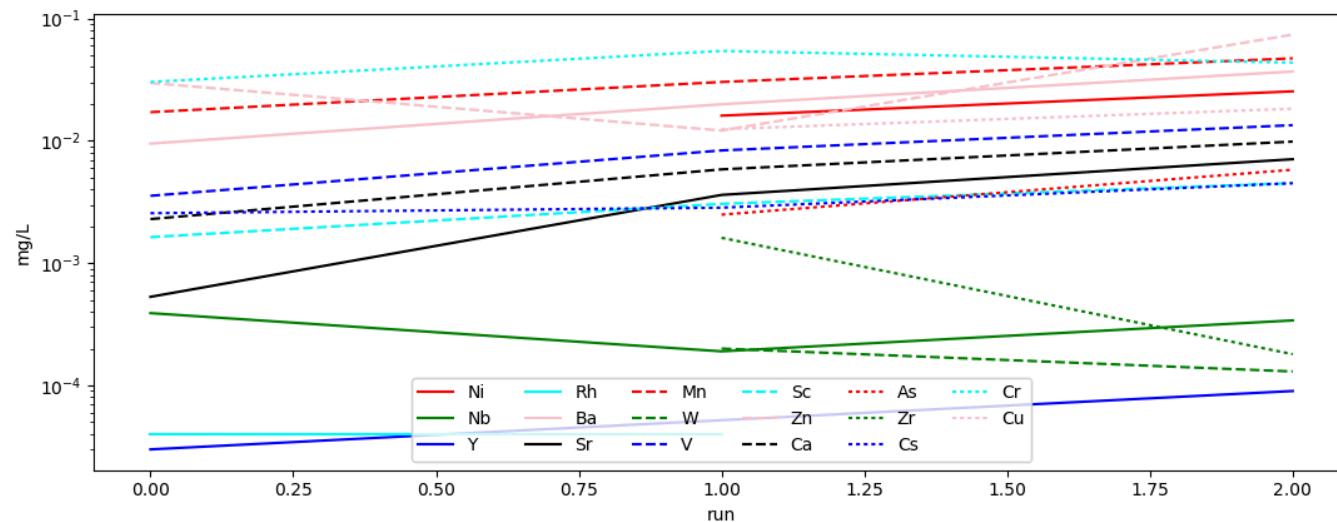
- Evaporation and mass measurements

■ Density or specific gravity

- Hydrometer

■ Electrical Conductivity

- Conductivity meter


- Three samples gathered from Feb. 2017 visit from previously drilled horizontal boreholes
- Filtered and diluted 1:1000 (IC) and 1:10000 (ICP)
- Na-Mg-Cl brine

Sample	Concentration (g/L)											
	F	Cl	Br	NO ₃	SO ₄	Li	Na	NH ₄	K	Mg	Ca	
SNLCH114(yellow)	0.02	259	2.9	0.03	29.9	0.04	44.9	3.05	30.5	49.6	0.01	
SNLCH111 #1	0.02	271	3.1	0.04	32.1	0.04	44.0	2.88	32.2	52.3	0.01	
SNLCH111 #2	0.02	280	3.2	0.02	33.1	0.04	45.0	2.97	33.0	53.7	0.04	

IC Analysis

■ ICP-Mass Spectrometry Semi-Quant scan

