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Abstract
The fundamental thermodynamic limits of conventional 
computation are near enough to be an area of concern when 
contemplating future computing technologies. Several 
thermodynamic arguments imply lower limits on the energy 
required for computation, when conventionally 
construed. However, several of the known limits may be 
circumvented by using unconventional computing 
paradigms. Thermal noise limits on signal energies can 
potentially be circumvented in appropriately designed chaotic 
systems with sub-unity signal-to-noise ratios. And, limits on 
energy dissipation due to Landauer’s Principle can be 
circumvented using reversible computing. We review some 
recent work in these areas, including a new general theoretical 
framework for reversible computing, and a framework for 
asynchronous reversible computation.



Talk Outline

 Trends in Computational Energy Efficiency
 Fundamental Energy Limits on Computation

 Thermodynamic limits of conventional computation
 Quantum-mechanical limits on all computation

 Transcending the Thermodynamic Limits 
with Unconventional Computing Paradigms
 (Generalized) Reversible Computing
 Asynchronous Reversible Computing
 Computation in Chaotic Systems?

 Conclusion
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The Power-Performance Trend
and the importance of energy efficiency
 Any system (at any scale) scoped to 

have a fixed cost-of-ownership over its 
operational lifetime must implicitly 
carry some associated maximum 
budget for all energy-related costs.
 These costs include things like:
 In mobile devices, cost of batteries and 

inconvenience to user of charging
 kWhr electricity costs for desktop owners
 Cost to build and operate high-capacity 

machine room/datacenter cooling systems
 Cost to build or lease a nearby power plant if 

required to supply an exascale machine
 We can’t expect the cost of energy to 

ever decrease by orders of magnitude.  
 Essentially, energy is “nature’s currency.”

 Thus, fundamentally, increasing 
affordable performance requires 
increasing computational energy 
efficiency.  (Useful ops done/Joule.)
 And this has, indeed, been the historical 

trend, for >50 years.
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Thermodynamic Limits on Computing
 Landauer Limit, a.k.a. Landauer’s Principle:

 Rigorous theorem of mathematical physics!
 Computational operations that eject entropy ∆S from the digital state 

imply energy dissipation Ediss ≥ T∆S to an environment at temp. T.
 Special case:  Erasing a uniformly-distributed bit (∆S = k ln 2)

– Energy dissipation Ediss ≥ kT ln 2

 Landauer’s Principle limits the number of conventional irreversible 
operations that can be done with a given total energy dissipation
 However, (as we’ll see) reversible operations circumvent the Landauer limit

 Thermal Noise Limit on Signal Energies:
 Informal conventional wisdom…

 Has never been formally stated and rigorously proven in any general way
 Roughly stated (typically) as follows:  

 “Computing reliably with a probability of error perr = 1/R requires signal 
energies (or energy barriers) of magnitude Esig ≥ kT ln R”

– Informal argument based on the Boltzmann distribution

 Note:  Signal energy (or barrier height) need not be dissipated
 Also:  Conventional wisdom may be wrong!  (See “Chaotic Logic” later)
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Information Loss = Entropy Increase
 All fundamental physical dynamics is (microscopically) reversible.

 Any Hamiltonian dynamical system:  
 Let the time increments 𝛿𝛿𝑡𝑡 be negative  Time-evolution runs in reverse.

 Quantum mechanical time-evolution (generalized Schrödinger equation):
 Any two quantum states that are initially mutually distinguishable (orthogonal) will 

always remain so, under any unitary time-evolution operator, 𝑈𝑈(𝑡𝑡) = e−𝑖𝑖𝑖𝑖𝑖𝑖/ℏ.
 ∴ Detailed physical information can never, ever be destroyed!

 Only reversibly transformed, in place (locally)!
 At most, we can only lose track (from a modeling perspective) of the (always-still-

microscopically-reversible) transformations that have occurred.
– Uncertainty increase  Effective randomization of the detailed state

 If this were not true, the 2nd Law of Thermodynamics would not hold!
 Effectively, entropy is simply that portion of the total physical information that 

happens to have already been randomized/scrambled beyond any hope of 
practically transforming it back into its original form.

– ∴ If information could be destroyed, then entropy could simply vanish

 To “irreversibly lose information” means for that information to be 
(reversibly) transformed in any way that we cannot practically undo.
 It’s “lost” in the sense that its original form cannot be practically recovered.
 “Irreversible information loss” is exactly the same thing as “entropy increase.”
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Landauer’s Principle—
A Simplified Statement:
 For each bit’s worth of local information that is irreversibly lost 

from (e.g., obliviously “erased” by , or “destructively overwritten” 
by) any computational device encompassed by an external thermal 
environment at temperature 𝑇𝑇, no less than an amount

𝐸𝐸diss = 𝑘𝑘𝐵𝐵𝑇𝑇 ln 2

of free energy (“Landauer’s limit”) must eventually be dissipated as 
heat added to that thermal environment.
 This is easily proven, as a theorem of applied mathematical physics.

 Approachability hypothesis:
 Landauer’s bound may be approached arbitrarily closely in a suitably-

designed family of realistically-constructible physical mechanisms.
 Abstract physical procedures described in the literature support this.
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Landauer’s Principle—
A Correct General Formulation:
 Consider any computational device 𝐷𝐷 that is designed to transform initial logical states

𝑠𝑠I ∈ 𝑆𝑆I = {𝑠𝑠I1, 𝑠𝑠I2, … , 𝑠𝑠I𝑛𝑛} to final logical states 𝑠𝑠F ∈ 𝑆𝑆F = {𝑠𝑠F1, 𝑠𝑠F2, … , 𝑠𝑠F𝑚𝑚} according to 
some (in general probabilistic) transition rule, 𝑟𝑟𝑖𝑖 𝑗𝑗 = Pr 𝑠𝑠F = 𝑠𝑠F𝑗𝑗 𝑠𝑠I = 𝑠𝑠I𝑖𝑖 .
 Now consider any given probability distribution over initial states, 𝑝𝑝I 𝑖𝑖 = Pr 𝑠𝑠I = 𝑠𝑠I𝑖𝑖 , defining a given 

statistical scenario in which 𝐷𝐷 is to be operated.  (An “operation context.”)
 The entropy 𝐻𝐻 𝑝𝑝I of this initial state distribution is:

𝐻𝐻 𝑝𝑝I = �
𝑖𝑖=1

𝑛𝑛

𝑝𝑝I 𝑖𝑖 ln
1

𝑝𝑝I(𝑖𝑖)
.

 And, after 𝐷𝐷 has operated, we can derive, from 𝑝𝑝I and 𝑟𝑟𝑖𝑖 𝑗𝑗 , the final state distribution 𝑝𝑝𝐹𝐹, which is

𝑝𝑝F 𝑗𝑗 = Pr 𝑠𝑠F = 𝑠𝑠F𝑗𝑗 = �
𝑖𝑖=1

𝑛𝑛

𝑝𝑝I 𝑖𝑖 ⋅ 𝑟𝑟𝑖𝑖(𝑗𝑗) .

 And the entropy 𝐻𝐻 𝑝𝑝F of the final state distribution is:

𝐻𝐻 𝑝𝑝F = �
𝑗𝑗=1

𝑚𝑚

𝑝𝑝F 𝑗𝑗 ln
1

𝑝𝑝F(𝑗𝑗)
.

 Then, the minimum entropy ejected from the device D as a side-effect of its operation in context 𝑝𝑝I must be:
Δ𝐻𝐻𝐷𝐷 𝑝𝑝I = 𝐻𝐻 𝑝𝑝I −𝐻𝐻 𝑝𝑝F ,

since total entropy cannot decrease (by fundamental reversibility/the 2nd law of thermodynamics).
 Therefore, device 𝐷𝐷, when operated in a statistical context 𝑝𝑝I, necessarily loses an amount of 

information (i.e., ejects an amount of entropy) Δ𝐻𝐻𝐷𝐷 𝑝𝑝I .  
 Suppose this entropy eventually ends up in some external thermal reservoir at temperature T.
 Then, by the thermodynamic definition of temperature, we must add heat Δ𝑄𝑄 = 𝑇𝑇Δ𝐻𝐻𝐷𝐷 𝑝𝑝I to the reservoir.
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Energy limits for conventional 
technology are not far away!

 Energy of min.-width FET 
gates affects channel 
fluctuations < ~1-2 eV
 Impact on leakage

 Real gates are often 
wider (~ 20× min.)
 Also there is fanout,

wire capacitance, etc.
 Note: ITRS is aware of 

thermal noise issue, and 
so has min. gate energy 
asymptoting to ~2 eV
 Node energy follows, 

asymptoting to ~1 keV
 Practical circuit 

architectures can’t just 
magically cross this gap!
 ∴ Fundamental thermal 

limits translate to much 
larger practical limits!

(~40 kT)

4

1-2 eV =
40-80 kT

~1 keV
= 40,000

kT

Presenter
Presentation Notes
An important point to be aware of is that reversible computing doesn’t just save “the last kT”, it can save the entire energy between where we are (10s of thousands of kTs) and 0.



Implications for FLOPS & power
Note: The limits suggested by the diagonal lines do not
even include power for interconnects, memory, or cooling!

>1MW near
thermal noise

10s of kW
at Landauer

The “Forever
Forbidden Zone”
for All Irreversible

Computing

Any Hope of 
Sustained

Long-Term 
Progress

Absolutely
Requires

Reversible
Computing!

>10GW today
>1GW in 2030

Prohibitively Large Total System Power Levels!

What would it
take for a 
zettaFLOP?

9

System Performance (FLOPS/s)

Presenter
Presentation Notes
If we ever want to progress down into the red area of the chart, we have to move to some form of reversible computing.



Quantum-Mechanical Energy Limits
 Quantum mechanics is not known to directly limit the energy that 

must be dissipated to carry out a computation,
 But, it does appear to limit the energy that must be invested in a 

computation to attain a given performance
 The Margolus-Levitin bound (1996)

 The maximum rate at which a system may transition between orthogonal 
states is given by ν⊥ ≤ 4E/h. (Example:  1 eV  ~1 PHz)

 Generalized in Frank 2005, “On the Interpretation of Energy as the 
Rate of Quantum Computation”
 For any system, its Hamiltonian energy is exactly the rate at which it 

“exerts computational effort” by several measures
 We can characterize a minimum effort or difficulty for given operations

 Thus, any given computation requires a certain minimum Hamiltonian 
action (energy invested × time) to carry out.

 Note, however, as with the thermal noise limit, the energy invested 
in the computation need not be dissipated…
 For maximizing total computation carried out given fixed free-energy 

resources, the energy dissipated and the Landauer bound are essential
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Transcending the Energy Limits
 We can transcend the traditional thermodynamic limits of 

computing using new computing paradigms:
 Reversible Computing – Absolutely required to reuse signal energies 

and avoid Landauer’s limit
 Generalized Reversible Computing – Clarifies the precise requirements to 

avoid Landauer’s limit.  More general concept of logical reversibility
 Asynchronous Reversible Computing – A ballistic computing scheme that 

avoids the clocking overheads of synchronous adiabatic approaches.
 Computing with Chaos – A possible direction to reduce signal energies

 Can also be viewed as a special case of reversible computing
 Quantum Computing – Not the focus of this talk.  About finding more 

efficient algorithms for some problems using coherent trajectories.
 Doesn’t address practical energy efficiency of general-purpose 

computation.
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Enter Reversible Computing…
 Problem: Landauer’s Principle teaches us that losing 

computational information (merging computational states) 
implies unavoidable energy dissipation.

 Solution: Compute without losing information!
 Don’t ever try to erase bits / merge two distinct computational states.
 Instead, transform computational states one-to-one into new states.

 No decrease in computational entropy
 No need to eject computational entropy to the physical state

 This is what we mean by reversible computing.

 Bennett (1973) showed that reversible computations can still 
compute any function…
 To get rid of temporary results that are no longer needed, you can 

always reversibly decompute them 
 instead of erasing/overwriting them

13

Presenter
Presentation Notes
Reversible computing is really the only way to get around Landauer’s principle.  The principle itself applies to any physical system that we may consider as representing information.  It doesn’t matter if we use some nonstandard information encoding (such as spike timing), or if we think of the device as analog or digital (quantum mechanics guarantees that any finite system always still has some discrete set of distinguishable states).  Whatever model of computation we use, in order for it to avoid the energy dissipation limits implied by Landauer’s principle, it must also be reversible.
	A question was asked at the ECI workshop about reversible analog computing.  It’s worth noting that one way of achieving reversibility involves “analog” dynamical systems that are operating in a strongly chaotic regime.  This is because a conservative dynamical system whose dynamical orbit has converged onto a strange attractor is essentially already in a thermodynamic equilibrium state, and thus incurs no further dissipation.  (This is what I discussed in my Chaotic Logic talk last October at ICRC.)  Another example of a form of analog computation that is at least partially reversible is reservoir computing, since the dynamical evolution of the reservoir system is typically at least somewhat reversible, that is, not dissipating its dynamical energy rapidly, relative to its rate of internal transformation along its trajectory).



Unconditionally Reversible (UR) Gates
(These are only a special case!)
 Any total, reversible, deterministic operation is simply a 

permutation (bijective transformation) of the state set.
 Some example UR operations (misleadingly called “gates”) 

on binary-encoded states:
 NOT(a) a := ¬a In-place bit-flip
 cNOT(a,b) if a=1 then b := ¬b Controlled NOT
 ccNOT(a,b,c) if ab=1 then c := ¬c A.k.a. “Toffoli gate”
 cSWAP(a,b,c) if a=1 then b ↔ c A.k.a. “Fredkin gate”

 ccNOT and cSWAP are each universal UR gates
 The latter in the case of functions on dual-rail-encoded bit-strings

 No set of just 1- and 2-bit classical UR gates is universal
 However, cNOT plus 1-bit quantum (unitary) gates comprise a 

universal set

14
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Generalized Reversible Computing (GRC)
also includes Conditional Reversibility (CR)!
 Definition:  A (deterministic) operation 𝑂𝑂 is conditionally reversible

under precondition 𝑃𝑃 ⊆ 𝑆𝑆 if and only if the restriction of 𝑂𝑂 to 𝑃𝑃 (as 
a partial operation) is an injective (one-to-one) operation.
 Given any initial probability distribution 𝑝𝑝 over states in 𝑆𝑆 such that 
𝑝𝑝 𝑥𝑥 = 0 for all 𝑥𝑥 ∉ 𝑃𝑃, the application of the operation 𝑂𝑂 does not reduce 
the entropy of the computational state at all, and so incurs no minimum 
dissipation under Landauer’s principle.
 And, as all those 𝑝𝑝 𝑥𝑥 → 0, so does the minimum Landauer dissipation.

 Examples of some conditionally reversible operations:
 Green denotes the restriction of the operation to the precondition
 Red:  States that would result in dissipation b/c precondition not met
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0

rSET
Reversible SET

[a=0] a := 1

0 0
0 1
1 0
1 1

1 0
0 1
0 0

1 1

rCOPY
Reversible COPY

[b=0] b := a

0 0
0 1
1 0
1 1

1 0

0 0

1 1

crSET
Controlled Reversible SET

[ab=0] if a then b := 1

0 1
0

11

0

rCLR
Reversible CLEAR

[a=1] a := 0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 1 1

1 0 1
1 0 0

1 1 1
1 1 0

0 1 0

rOR – Reversible OR
[c=0] c := a∨b

0 0 1
0 0 0a a′ a a′ a b a′ b′ a b a′ b′
a b c a′ b′ c′



Implementing Conditionally-
Reversible Operations
 Not very difficult!

 Straightfoward to do with adiabatic switching
 E.g., this CMOS structure can be used to 

do/undo latched rOR operations
 Example of 2LAL logic family

 Based on CMOS transmission gates
 Implicit dual-rail complementary 

signals (PN pairs) in this notation
 Computation sequence:

1. Precondition:  Output signal Q initially at logic 0
2. Driving signal D is also initially logic 0
3. At time 1 (@1), inputs A, B transition to new levels

 Connecting D to Q if and only if A or B is logic 1
4. At time 2 (@2), driver D transitions from 0 to 1

 Q follows it to 1 if and only if A or B is logic 1
 Now Q is the logical OR of inputs A,B

 Reversible things that we can do afterwards:
 Restore A, B to 0 (latching Q), or, undo above steps
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Asynchronous Ballistic Reversible Computing
 Some problems with all of the existing adiabatic

schemes for reversible computing:
 In general, numerous power/clock signals are 

needed to drive adiabatic logic transitions
 Distributing these signals adds substantial 

complexity overheads and parasitic power losses
 Ballistic logic schemes can eliminate the clocks!

 Devices simply operate whenever data pulses arrive
 The operation energy is carried by the pulse itself

 Most of the energy is preserved in outgoing pulses
 Signal restoration can be carried out incrementally 

 But, synchronous ballistic logic has some issues:
 Unrealistically precise timing alignment required
 Chaotic amplification of timing uncertainties

when signals interact
 Benefits of asynchronous ballistic logic:

 Much looser timing constraints
 Linear instead of exponential increase in timing 

uncertainty per logic stage
 Potentially simpler device designs

 New effort to investigate implementing ABRC in 
superconducting circuits (N&M LDRD idea)…
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B
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alignment
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Rotary 
(Circulator)

Toggled
Barrier

Example ABR device functions



Nanomechanical Rotary Logic
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Merkle et al., IMM Report 46 and Hogg et al., arxiv:1701.08202
(reproduced with permission)

(RESP charges
from AMBER
Antechamber)

Presenter
Presentation Notes
An example concept illustrating a general point that the energy-delay product (which determines energy efficiency at a given speed) of reversible computing is highly technology-dependent.  We can do many orders of magnitude better than CMOS in a well-designed reversible technology.  Merkle, by the way, also invented the concepts of public-key cryptography, and cryptographic hash functions.
	Of course, we don’t yet have the atomic precision manufacturing technology required to build these structures, but the point is that there is nothing fundamental in the laws of physics that prevents far more efficient, high-performing versions of reversible computing from being possible.  That is, the limits of reversible computing are only technology-dependent.



Rotary Logic Lock Operation
 Videos animate schematic

geometry of a pair of locks
in a reversible shift register

 Molecular Dynamics 
modeling/simulation tools 
used for analysis include:  
 LAMMPS, GROMACS, 

AMBER Antechamber

 Simulated dissipation: 
 ~4×10-26 J/cycle at 100 MHz

 74,000× below Landauer 
limit for irreversible ops!

 Speeds up into GHz range 
should also be achievable
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Presenter
Presentation Notes
The two videos here can be played in the PowerPoint version of the talk.  The top one shows a stage of a reversible shift register.  The bottom one shows a set of cam wheels that can be used to drive the adiabatic mechanical transitions.
	Note that based on the dissipation analysis, this technology would be several orders of magnitude more energy-efficient than any possible irreversible technology, despite still being able to run at GHz speeds.
	One critique of this approach is that the signal propagation speed is limited to the speed of sound in these nanostructured diamondoid rods (the speed of sound in bulk diamond is about 12 km/s, which is 12 microns per nanosecond)…  Faster communication speeds would be desirable… Maybe a hybrid of mechanical components for the logic, and electrical signaling for long-distance communication.
	Later in the talk (if I have time) I will mention another implementation idea involving superconducting circuits.  (We didn’t end up getting to this.)



Chaotic Logic – Summary
 Shannon teaches us that reliable

communication is still possible with
signal energies below the noise floor
 Why not also reliable computation?

 Chaotic Network Model of logic:
 Nodes are dynamic variables
 Gates are Hamiltonian interaction terms
 Node values chaotically fluctuate around

a long-term average that encodes the 
result of the computation

 A simulator for this model was built…
 cs.sandia.gov  Software  Dynamic

 Page also links to a paper & a full talk
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𝐶𝐶 = 𝐵𝐵 log2 1 +
𝑆𝑆
𝑁𝑁

Frank & DeBenedictis ‘16, “A Novel Operational Paradigm for Thermodynamically Reversible Logic:
Adiabatic Transformation of Chaotic Nonlinear Dynamical Circuits” 

Channel capacity theorem

Full Adder dynamical network

Logic gates implemented by
potential energy surfaces
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Mean A = -0.001531, B = 0.975105, Q = 0.001710

A

B

Q

Presenter
Presentation Notes
Now we get a little more complicated…  Here we are doing an AND, with input A biased to 0, and input B biased to 1.  The result of the AND is thus 0.  Again we can see that the output has more variability than the inputs since it is less directly constrained.  Yet the average value (taken here over 200 time units) is very precise.  With other values of A and B the output is the correct AND result as well.



Conclusion
 The increasing economic utility of computing has been 

enabled by steadily increasing energy efficiency
 However, fundamental limits on energy efficiency threaten to prevent 

further general-purpose improvements in the relatively near term

 Transcending the practical and fundamental limits will 
necessarily require the increasing application of reversible 
computing principles…
 The most general form of which is described by Generalized Reversible 

Computing theory (first paper to appear in RC’17)
 A particularly efficient implementation of reversible computing is the 

new Asynchronous Reversible Computing (ARC) approach
 In progress:  Paper, funding effort, possible patent application

 There is another approach called Chaotic Logic which also avoids 
clocks, and can potentially use signal energies below thermal noise

 Further development of these research areas will be key to 
future computer performance and economic development
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Landauer’s Principle in a Nutshell (1 of 4)

 1.  Fact:  Fundamental 
Physics is Reversible
 Dynamical evolution over 

time transforms old sets of 
distinguishable physical 
microstates (orthogonal 
quantum states) one-to-
one to new distinguishable 
sets of physical microstates
 Follows from unitarity of 

gen. Schrödinger equation
 If it wasn’t true, the Second 

Law of Thermodynamics 
would not hold!

24

Presenter
Presentation Notes
Over any given time interval Δ𝑡, the operation of the physical dynamics 𝐷(Δ𝑡), which, in quantum models, is a unitary transformation, maps old states one-to-one onto new states (an injective map).  
	Every viable quantum theory of fundamental physics (in particular, all quantum field theories, including the Standard Model of particle physics) have this property.  It’s believed that whenever we have a working theory of quantum gravity, it will exhibit this property as well.
	If multiple distinct states could transform to the same resulting state over some time interval, then the 2nd Law of Thermodynamics would be false, because the entropy of that pair of states (if they both have nonzero probability) would necessarily be reduced when they are merged (because 𝑝 log  𝑝 −1   is subadditive), and so entropy could just vanish.  Because merging of states is not possible, entropy cannot decrease.  
	It’s also believed that fundamental quantum dynamics is deterministic, and therefore that “true” entropy cannot increase, either; however, subjectively, we perceive entropy as increasing, because in our models of the world, we discard information about the state that in principle we could know, if we knew the exact laws of physics and tracked the evolution exactly.
	The bijectivity of fundamental physics is one of the facts of physics that we are more certain of than anything else!  (Hawking eventually conceded that even black holes are unitary.)



 2. A computational state is just an 
equivalence class of distinct  
physical microstates that we 
interpret alike for computational 
purposes.
 E.g. any state of a circuit node in 

which its average voltage 𝑉𝑉 is in 
some range, 𝑉𝑉1L < 𝑉𝑉 < 𝑉𝑉1H, may 
represent a logic “1”
 But, there are many detailed physical 

microstates consistent with this!
– E.g., at nonzero temperature, many 

electron states near Fermi level may or 
may not be occupied
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Landauer’s Principle in a Nutshell (2 of 4)

Example of a computational
state space C consisting of 3
distinct computational states
𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, each defined as a set 
of equivalent physical states.

Presenter
Presentation Notes
Even at zero temperature, for an extended circuit node, there would still be many distinguishable states (different Fermi levels) between  𝑉 1L  and  𝑉 1H .
	And, even for quantum computers, wherein we may use a single 2-state quantum system (e.g. an electron spin) to represent a bit, there are still many physical states per computational state when we include the thermal state of other parts of the machine and its environment.



 3.  When we “erase information” in 
a computer (merge computational 
states), the underlying physical 
microstates remain distinct
 Before the erasure, the entropy of the 

detailed state s, conditioned on the 
computational state, is given by…
 𝐻𝐻 𝑠𝑠 𝑐𝑐 = 𝐻𝐻 𝑠𝑠 − 𝐻𝐻 𝑐𝑐

 After the erasure, there is no more 
entropy in the computational state, so
 𝐻𝐻 𝑠𝑠 𝑐𝑐 = 𝐻𝐻 𝑠𝑠

 The physical entropy (from the user’s 
perspective) has increased by 𝐻𝐻(𝑐𝑐)!

 Losing computational information 
increases physical entropy!
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Landauer’s Principle in a Nutshell (3 of 4)

Presenter
Presentation Notes
This is the conceptual core of Landauer’s principle.  
	Before the computational states are merged, the information about which computational state we are in may, in principle, be known information – not true entropy – if, for example, it is information that was computed from other known information.  However, if we then run those two state sets through an erasure mechanism that does not have this a priori knowledge – i.e., a mechanism that is supposed to change the bit to a 0 regardless of whether it was a 0 or a 1 originally – all of the entropy that existed in the computational state, from the device’s perspective, will simply get transferred to the non-computational state; thus, the entropy in the non-computational state is increased.
	Another way of saying this is that the amount of physical entropy conditioned on knowledge of the computational state, 𝐻 𝑠   𝑐 =𝐻 𝑠 −𝐻 𝑐 , which is the user’s view of the physical entropy, is increased, because the information entropy 𝐻 𝑐  has gone from some nonzero value to 0. 
	Another way of describing this process is that some known bit of physical information (whether the computational state was  𝑐 0  or  𝑐 1 ) got pushed out into the environment, becoming part of the non-computational state, where that bit was subsequently randomized, and became entropy.



Landauer’s Principle in a Nutshell (4 of 4)

 4. Entropy/information is measured in logarithmic units.
 Two equiprobable computational states  Entropy/information 

content of computational state is one factor-of-two logarithmic unit 

 5. If entropy Δ𝑆𝑆 = 𝐻𝐻(𝑐𝑐) ends up in a thermal environment at 
temperature 𝑇𝑇, this requires adding heat Δ𝑄𝑄 = 𝑇𝑇Δ𝑆𝑆 to the 
heat bath, by the definition of thermodynamic temperature:

1
𝑇𝑇

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 ∴ Merging two equally-likely computational states implies that 
we must dissipate this amount of energy to the heat bath:

Δ𝐸𝐸diss = 𝑘𝑘B𝑇𝑇 ln 2
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𝐻𝐻(𝑐𝑐) = [log 2] = [log e] loge 2 = 𝑘𝑘B ln 2

 Landauer limit

Presenter
Presentation Notes
Here is the “Landauer limit” in its usual form.  As we can see from this and the previous 3 slides, it’s a simple logical consequence of the bijectivity of physics, the notion of a computational state, the definition of thermodynamic temperature, and the definitions of a bit and of Boltzmann’s constant, as logarithmic units.
	The expressions in square brackets represent “indefinite logarithm” quantities, which are dimensioned in generic logarithmic units.
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