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Abstract )

The fundamental thermodynamic limits of conventional
computation are near enough to be an area of concern when
contemplating future computing technologies. Several
thermodynamic arguments imply lower limits on the energy
required for computation, when conventionally

construed. However, several of the known limits may be
circumvented by using unconventional computing

paradigms. Thermal noise limits on signal energies can
potentially be circumvented in appropriately designed chaotic
systems with sub-unity signal-to-noise ratios. And, limits on
energy dissipation due to Landauer’s Principle can be
circumvented using reversible computing. We review some
recent work in these areas, including a new general theoretical
framework for reversible computing, and a framework for
asynchronous reversible computation.




Talk Outline

Trends in Computational Energy Efficiency
Fundamental Energy Limits on Computation

= Thermodynamic limits of conventional computation
= Quantum-mechanical limits on all computation

Transcending the Thermodynamic Limits
with Unconventional Computing Paradigms
= (Generalized) Reversible Computing
= Asynchronous Reversible Computing
= Computation in Chaotic Systems?

Conclusion
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The Power-Performance Trend )
and the importance of energy efficiency

= Any system (at any scale) scoped to
have a fixed cost-of-ownership over its
operational lifetime must implicitly
carry some associated maximum
budget for all energy-related costs.
= These costs include things like:

= |n mobile devices, cost of batteries and
inconvenience to user of charging

= kWhr electricity costs for desktop owners

= Cost to build and operate high-capacity
machine room/datacenter cooling systems

= Cost to build or lease a nearby power plant if
required to supply an exascale machine

= We can’t expect the cost of energy to
ever decrease by orders of magnitude.
= Essentially, energy is “nature’s currency.”
= Thus, fundamentally, increasing
affordable performance requires
increasing computational energy
efficiency. (Useful ops done/Joule.)
= And this has, indeed, been the historical

trend, for >50 years.
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Thermodynamic Limits on Computing h

= Landauer Limit, a.k.a. Landauer’s Principle:
= Rigorous theorem of mathematical physics!

= Computational operations that eject entropy AS from the digital state
imply energy dissipation £ > TAS to an environment at temp. T.

= Special case: Erasing a uniformly-distributed bit (AS =k In 2)
— Energy dissipation Ey, 2 kT In 2

= Landauer’s Principle limits the number of conventional irreversible
operations that can be done with a given total energy dissipation

= However, (as we'll see) reversible operations circumvent the Landauer limit

= Thermal Noise Limit on Signal Energies:
= Informal conventional wisdom...
= Has never been formally stated and rigorously proven in any general way
= Roughly stated (typically) as follows:
= “Computing reliably with a probability of error p,,, = 1/R requires signal
energies (or energy barriers) of magnitude £, > kT In R”
— Informal argument based on the Boltzmann distribution
= Note: Signal energy (or barrier height) need not be dissipated

= Also: Conventional wisdom may be wrong! (See “Chaotic Logic” later)
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Information Loss = Entropy Increase @&,

= All fundamental physical dynamics is (microscopically) reversible.
= Any Hamiltonian dynamical system:
= Let the time increments dt be negative = Time-evolution runs in reverse.
"= Quantum mechanical time-evolution (generalized Schrédinger equation):
= Any two quantum states that are initially mutually distinguishable (orthogI?naI) will
always remain so, under any unitary time-evolution operator, U(t) = e™! t/h,

= . Detailed physical information can never, ever be destroyed!

= Only reversibly transformed, in place (locally)!

= At most, we can only lose track (from a modeling perspective) of the (always-still-
microscopically-reversible) transformations that have occurred.

— Uncertainty increase - Effective randomization of the detailed state
= |f this were not true, the 2" Law of Thermodynamics would not hold!

= Effectively, entropy is simply that portion of the total physical information that
happens to have already been randomized/scrambled beyond any hope of
practically transforming it back into its original form.

— .. Ifinformation could be destroyed, then entropy could simply vanish
= To “irreversibly lose information” means for that information to be
(reversibly) transformed in any way that we cannot practically undo.
= |t’s “lost” in the sense that its original form cannot be practically recovered.
= “Irreversible information loss” is exactly the same thing as “entropy increase.”




Landauer’s Principle— )
A Simplified Statement:

= For each bit’s worth of local information that is irreversibly lost
from (e.g., obliviously “erased” by, or “destructively overwritten”
by) any computational device encompassed by an external thermal
environment at temperature T, no less than an amount

EdiSS = kBTln 2

of free energy (“Landauer’s limit”) must eventually be dissipated as
heat added to that thermal environment.
= This is easily proven, as a theorem of applied mathematical physics.

=  Approachability hypothesis:

= Landauer’s bound may be approached arbitrarily closely in a suitably-
designed family of realistically-constructible physical mechanisms.

= Abstract physical procedures described in the literature support this.



Landauer’s Principle— e
A Correct General Formulation: oo

= Consider any computational device D that is designed to transform initial logical states
s; € S = {s11, S12, ---, S1n } to final logical states sg € Sg = {Sg1, Sp2, ..., Spm } @ccording to
some (in general probabilistic) transition rule, 7;(j) = Pr[SF = SF]-TSI = SIY] :

= Now consider any given probability distribution over initial states, p,(i) = Pr[s; = sy;], defining a given
statistical scenario in which D is to be operated. (An “operation context.”)

= The entropy H|[p;]| of this initial state distribution is:
1

Hip,] = Z PO

= And, after D has operated, we can derive, from p, and r;(j), the final state distribution pp, which is

pe(i) = Prfse = 565 = ) ;i@ 1 ().
i=1

= And the entropy H|[pg]of the final state distribution is:
1

Hlpg] = ;pF(/) In ()

= Then, the minimum entropy ejected from the device D as a side-effect of its operation in context p, must be:
AHp(py) = Hlp,] — Hlpgl,
since total entropy cannot decrease (by fundamental reversibility/the 2" law of thermodynamics).
= Therefore, device D, when operated in a statistical context p,, necessarily loses an amount of
information (i.e., ejects an amount of entropy) AH, (py).
= Suppose this entropy eventually ends up in some external thermal reservoir at temperature T.
= Then, by the thermodynamic definition of temperature, we must add heat AQ = TAH, (p;) to the reservoir.




Energy limits for conventional )
technology are not far away!

=  Energy of min.-width FET
gates affects channel ITRS2015 Node vs. Gate Energy (eV)
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= Real gates are often
wider (~ 20 X min.) T
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= Note: ITRS is aware of
thermal noise issue, and
so has min. gate energy
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= Node energy follows,
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Presentation Notes
An important point to be aware of is that reversible computing doesn’t just save “the last kT”, it can save the entire energy between where we are (10s of thousands of kTs) and 0.


Implications for FLOPS & power ) .,

Note: The limits suggested by the diagonal lines do not
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If we ever want to progress down into the red area of the chart, we have to move to some form of reversible computing.


Quantum-Mechanical Energy Limits @&

Quantum mechanics is not known to directly limit the energy that
must be dissipated to carry out a computation,

= But, it does appear to limit the energy that must be invested in a
computation to attain a given performance

The Margolus-Levitin bound (1996)

= The maximum rate at which a system may transition between orthogonal
states is given by v, <4E/h. (Example: 1 eV = ~1 PHz)
Generalized in Frank 2005, “On the Interpretation of Energy as the
Rate of Quantum Computation”
= For any system, its Hamiltonian energy is exactly the rate at which it
“exerts computational effort” by several measures
= We can characterize a minimum effort or difficulty for given operations
= Thus, any given computation requires a certain minimum Hamiltonian
action (energy invested X time) to carry out.
Note, however, as with the thermal noise limit, the energy invested
in the computation need not be dissipated...

= For maximizing total computation carried out given fixed free-energy
resources, the energy dissipated and the Landauer bound are essential



Transcending the Energy Limits 1)

= We can transcend the traditional thermodynamic limits of
computing using new computing paradigms:
= Reversible Computing — Absolutely required to reuse signal energies
and avoid Landauer’s limit

= Generalized Reversible Computing — Clarifies the precise requirements to
avoid Landauer’s limit. More general concept of logical reversibility

= Asynchronous Reversible Computing — A ballistic computing scheme that
avoids the clocking overheads of synchronous adiabatic approaches.

= Computing with Chaos — A possible direction to reduce signal energies
= Can also be viewed as a special case of reversible computing

= Quantum Computing — Not the focus of this talk. About finding more
efficient algorithms for some problems using coherent trajectories.

= Doesn’t address practical energy efficiency of general-purpose
computation.




Enter Reversible Computing... 1)

= Problem: Landauer’s Principle teaches us that losing
computational information (merging computational states)
implies unavoidable energy dissipation.

= Solution: Compute without losing information!
= Don’t ever try to erase bits / merge two distinct computational states.

= |nstead, transform computational states one-to-one into new states.
= No decrease in computational entropy
= No need to eject computational entropy to the physical state

= This is what we mean by reversible computing.

= Bennett (1973) showed that reversible computations can still
compute any function...

= To get rid of temporary results that are no longer needed, you can
always reversibly decompute them

= instead of erasing/overwriting them


Presenter
Presentation Notes
Reversible computing is really the only way to get around Landauer’s principle.  The principle itself applies to any physical system that we may consider as representing information.  It doesn’t matter if we use some nonstandard information encoding (such as spike timing), or if we think of the device as analog or digital (quantum mechanics guarantees that any finite system always still has some discrete set of distinguishable states).  Whatever model of computation we use, in order for it to avoid the energy dissipation limits implied by Landauer’s principle, it must also be reversible.
	A question was asked at the ECI workshop about reversible analog computing.  It’s worth noting that one way of achieving reversibility involves “analog” dynamical systems that are operating in a strongly chaotic regime.  This is because a conservative dynamical system whose dynamical orbit has converged onto a strange attractor is essentially already in a thermodynamic equilibrium state, and thus incurs no further dissipation.  (This is what I discussed in my Chaotic Logic talk last October at ICRC.)  Another example of a form of analog computation that is at least partially reversible is reservoir computing, since the dynamical evolution of the reservoir system is typically at least somewhat reversible, that is, not dissipating its dynamical energy rapidly, relative to its rate of internal transformation along its trajectory).


Unconditionally Reversible (UR) Gates e
(These are only a special case!)

= Any total, reversible, deterministic operation is simply a
permutation (bijective transformation) of the state set.

= Some example UR operations (misleadingly called “gates”)

NOT
on binary-encoded states: E

= NOT(a) a:=—a In-place bit-flip ~
= cNOT(a,b) if =1 then b := —b Controlled NOT

= ccNOT(a,b,c) if ab=1 then ¢ := —c A.k.a. “Toffoli gate”

= cSWAP(a,b,c) if a=1then b &> ¢ A.k.a. “Fredkin gate” i

= ccNOT and cSWAP are each universal UR gates
= The latter in the case of functions on dual-rail-encoded bit-strings

= No set of just 1- and 2-bit classical UR gates is universal y

= However, cNOT plus 1-bit quantum (unitary) gates comprise a
universal set

ccNOT

CcSWAP




Generalized Reversible Computing (GRC) ) i
also includes Conditional Reversibility (CR)!

= Definition: A (deterministic) operation O is conditionally reversible
under precondition P € S if and only if the restriction of O to P (as
a partial operation) is an injective (one-to-one) operation.
= Given any initial probability distribution p over states in S such that
p(x) = 0 forall x & P, the application of the operation O does not reduce

the entropy of the computational state at all, and so incurs no minimum
dissipation under Landauer’s principle.

= And, as all those p(x) — 0, so does the minimum Landauer dissipation.
= Examples of some conditionally reversible operations:
= Green denotes the restriction of the operation to the precondition
= Red: States that would result in dissipation b/c precondition not met

a a' a a rab1 ra’b'1 rab1 ra’b'1
o @ o—-b® ©-—QO @O ~»00
l ' ©D——@D
o) (9719 ohe |oha
. J C J . J J
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Reversible SET Reversible CLEAR Controlle%%%versible SET Revr(.a(rgigl)eFC):gPY
[a=0] a:=1 [a=1] a:=0 [ab=0] ifathenb:=1 [b=0] b:=a rOR — Reversible OR

[c=0] c:=avb




Implementing Conditionally- =
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Reversible Operations e
= Not very difficult! lN
= Straightfoward to do with adiabatic switching
= E.g., this CMOS structure can be used to A@l_" =
do/undo latched rOR operations
= Example of 2LAL logic family @1 '::h
= Based on CMOS transmission gates P I
u Ir_nplicit duaI-rgiI c.omp.lementgry @2
signals (PN pairs) in this notation QN
= Computation sequence: @1
1. Precondition: Output signal Q initially at logic O =
2. Driving signal D is also initially logic O ANPV
3. Attime 1l (@1), inputs A, B transition to new levels
= Connecting Dto Qif andonlyif Aor Bislogic 1 BNP ><
4. Attime 2 (@2), driver D transitions from Oto 1
= Qfollowsittolifandonlyif AorBislogicl DNI
= Now Q is the logical OR of inputs A,B
= Reversible things that we can do afterwards: On AE =

= Restore A, B to O (latching Q), or, undo above steps \—@Y:




Asynchronous Ballistic Reversible Computing ()i

Some problems with all of the existing adiabatic
schemes for reversible computing:

= |n general, numerous power/clock signals are
needed to drive adiabatic logic transitions

= Distributing these signals adds substantial
complexity overheads and parasitic power losses
Ballistic logic schemes can eliminate the clocks!
= Devices simply operate whenever data pulses arrive
= The operation energy is carried by the pulse itself
= Most of the energy is preserved in outgoing pulses
= Signal restoration can be carried out incrementally
But, synchronous ballistic logic has some issues:
=  Unrealistically precise timing alignment required
= Chaotic amplification of timing uncertainties
when signals interact
Benefits of asynchronous ballistic logic:
=  Much looser timing constraints

= Linearinstead of exponential increase in timing
uncertainty per logic stage

= Potentially simpler device designs

New effort to investigate implementing ABRC in
superconducting circuits (N&M LDRD idea)...
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Q .
Nanomechanical Rotary Logic ) .
Merkle et al., IMM Report 46 and Hogg et al., arxiv:1701.08202
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An example concept illustrating a general point that the energy-delay product (which determines energy efficiency at a given speed) of reversible computing is highly technology-dependent.  We can do many orders of magnitude better than CMOS in a well-designed reversible technology.  Merkle, by the way, also invented the concepts of public-key cryptography, and cryptographic hash functions.
	Of course, we don’t yet have the atomic precision manufacturing technology required to build these structures, but the point is that there is nothing fundamental in the laws of physics that prevents far more efficient, high-performing versions of reversible computing from being possible.  That is, the limits of reversible computing are only technology-dependent.


Rotary Logic Lock Operation
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= Videos animate schematic
geometry of a pair of locks
in a reversible shift register

= Molecular Dynamics
modeling/simulation tools
used for analysis include:
= LAMMPS, GROMACS,

AMBER Antechamber

= Simulated dissipation:

= ~4 X102 )/cycle at 100 MHz

= 74,000 X below Landauer
limit for irreversible ops!

= Speeds up into GHz range
should also be achievable
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Presentation Notes
The two videos here can be played in the PowerPoint version of the talk.  The top one shows a stage of a reversible shift register.  The bottom one shows a set of cam wheels that can be used to drive the adiabatic mechanical transitions.
	Note that based on the dissipation analysis, this technology would be several orders of magnitude more energy-efficient than any possible irreversible technology, despite still being able to run at GHz speeds.
	One critique of this approach is that the signal propagation speed is limited to the speed of sound in these nanostructured diamondoid rods (the speed of sound in bulk diamond is about 12 km/s, which is 12 microns per nanosecond)…  Faster communication speeds would be desirable… Maybe a hybrid of mechanical components for the logic, and electrical signaling for long-distance communication.
	Later in the talk (if I have time) I will mention another implementation idea involving superconducting circuits.  (We didn’t end up getting to this.)


Chaotic Logic — Summary

= Shannon teaches us that reliable
communication is still possible with
signal energies below the noise floor

= Why not also reliable computation?

= Chaotic Network Model of logic:
= Nodes are dynamic variables
= Gates are Hamiltonian interaction terms

= Node values chaotically fluctuate around
a long-term average that encodes the
result of the computation
= A simulator for this model was built...

= cs.sandia.gov = Software = Dynamic
= Page also links to a paper & a full talk

Frank & DeBenedictis ‘16, “A Novel Operational Paradigm for Thermodynamically Reversible Logic:

Adiabatic Transformation of Chaotic Nonlinear Dynamical Circuits”
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Now we get a little more complicated…  Here we are doing an AND, with input A biased to 0, and input B biased to 1.  The result of the AND is thus 0.  Again we can see that the output has more variability than the inputs since it is less directly constrained.  Yet the average value (taken here over 200 time units) is very precise.  With other values of A and B the output is the correct AND result as well.


Conclusion ) i
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= The increasing economic utility of computing has been
enabled by steadily increasing energy efficiency

= However, fundamental limits on energy efficiency threaten to prevent
further general-purpose improvements in the relatively near term

*= Transcending the practical and fundamental limits will
necessarily require the increasing application of reversible
computing principles...

= The most general form of which is described by Generalized Reversible
Computing theory (first paper to appear in RC'17)

= A particularly efficient implementation of reversible computing is the
new Asynchronous Reversible Computing (ARC) approach

= |In progress: Paper, funding effort, possible patent application

= There is another approach called Chaotic Logic which also avoids
clocks, and can potentially use signal energies below thermal noise

= Further development of these research areas will be key to
future computer performance and economic development
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Landauer’s Principle in a Nutshell (1 of 4) Wiz,
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Over any given time interval Δ𝑡, the operation of the physical dynamics 𝐷(Δ𝑡), which, in quantum models, is a unitary transformation, maps old states one-to-one onto new states (an injective map).  
	Every viable quantum theory of fundamental physics (in particular, all quantum field theories, including the Standard Model of particle physics) have this property.  It’s believed that whenever we have a working theory of quantum gravity, it will exhibit this property as well.
	If multiple distinct states could transform to the same resulting state over some time interval, then the 2nd Law of Thermodynamics would be false, because the entropy of that pair of states (if they both have nonzero probability) would necessarily be reduced when they are merged (because 𝑝 log  𝑝 −1   is subadditive), and so entropy could just vanish.  Because merging of states is not possible, entropy cannot decrease.  
	It’s also believed that fundamental quantum dynamics is deterministic, and therefore that “true” entropy cannot increase, either; however, subjectively, we perceive entropy as increasing, because in our models of the world, we discard information about the state that in principle we could know, if we knew the exact laws of physics and tracked the evolution exactly.
	The bijectivity of fundamental physics is one of the facts of physics that we are more certain of than anything else!  (Hawking eventually conceded that even black holes are unitary.)


Landauer’s Principle in a Nutshell (2 of 4) ) .
= 2. Acomputational state is justan ¢ ‘

equivalence class of distinct ¢ Cz
physical microstates that we | @ hhhhhh R
interpret alike for computational ® ® @
purposes. NN g
= E.g. any state of a circuit node in '
which its average voltage V is in | 1. ‘; :
some range, Vi1 <V < V;yg, may @ @
represent a logic “1” RN —— ' L

= But, there are many detailed physical E)ga;;ﬁb_l_e_E)_f_él_;:_c;r_n_b_u_t;t_ié)’nal

microstates consistent with this! state space C consisting of 3

distinct computational states
c1, Cy, C3, €ach defined as a set
of equivalent physical states.

— E.g., at nonzero temperature, many
electron states near Fermi level may or
may not be occupied
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Presentation Notes
Even at zero temperature, for an extended circuit node, there would still be many distinguishable states (different Fermi levels) between  𝑉 1L  and  𝑉 1H .
	And, even for quantum computers, wherein we may use a single 2-state quantum system (e.g. an electron spin) to represent a bit, there are still many physical states per computational state when we include the thermal state of other parts of the machine and its environment.


Landauer’s Principle in a Nutshell (3 of 4)

= 3. When we “erase information” in
a computer (merge computational
states), the underlying physical
microstates remain distinct

= Before the erasure, the entropy of the
detailed state s, conditioned on the
computational state, is given by... \

= H(s|c)=H(s) — H(c)
= After the erasure, there is no more
entropy in the computational state, so
* H(s|c)=H(s)
= The physical entropy (from the user’s
perspective) has increased by H(c)!

~—
L

- —

—

= Losing computational information
increases physical entropy! N

- TN —
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This is the conceptual core of Landauer’s principle.  
	Before the computational states are merged, the information about which computational state we are in may, in principle, be known information – not true entropy – if, for example, it is information that was computed from other known information.  However, if we then run those two state sets through an erasure mechanism that does not have this a priori knowledge – i.e., a mechanism that is supposed to change the bit to a 0 regardless of whether it was a 0 or a 1 originally – all of the entropy that existed in the computational state, from the device’s perspective, will simply get transferred to the non-computational state; thus, the entropy in the non-computational state is increased.
	Another way of saying this is that the amount of physical entropy conditioned on knowledge of the computational state, 𝐻 𝑠   𝑐 =𝐻 𝑠 −𝐻 𝑐 , which is the user’s view of the physical entropy, is increased, because the information entropy 𝐻 𝑐  has gone from some nonzero value to 0. 
	Another way of describing this process is that some known bit of physical information (whether the computational state was  𝑐 0  or  𝑐 1 ) got pushed out into the environment, becoming part of the non-computational state, where that bit was subsequently randomized, and became entropy.


Landauer’s Principle in a Nutshell (4 of 4) ) .

= 4. Entropy/information is measured in logarithmic units.

= Two equiprobable computational states = Entropy/information
content of computational state is one factor-of-two logarithmic unit

H(c) = [log2] = [loge]log. 2 = kgIn 2

= 5. Ifentropy AS = H(c) ends up in a thermal environment at
temperature T, this requires adding heat AQ = TAS to the
heat bath, by the definition of thermodynamic temperature:
1 a5
T 90
= .~ Merging two equally-likely computational states implies that
we must dissipate this amount of energy to the heat bath:
AE4iss = kgT In2 & Landauer limit
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Here is the “Landauer limit” in its usual form.  As we can see from this and the previous 3 slides, it’s a simple logical consequence of the bijectivity of physics, the notion of a computational state, the definition of thermodynamic temperature, and the definitions of a bit and of Boltzmann’s constant, as logarithmic units.
	The expressions in square brackets represent “indefinite logarithm” quantities, which are dimensioned in generic logarithmic units.
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