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SIERRA/Thermal-Fluid/Fuego UL

= SIERRA: Sandia’s engineering mechanics simulation code suite
= Solid mechanics: Adagio, Presto
= Structural dynamics: SD
= Thermal-fluid: Aria, Arpeggio, Aero, Fuego, Syrinx
= Tools: Encore, Percept, STK, & python scripts

= Fuego: low-Ma, turbulent combustion flow solver
= Various RANS and LES models
= Smagorinsky-type and K¢;s LES models
= Two turbulent combustion models
= EDC with fast chemistry and flamelet
= Unstructured (co-located)
= Requires some level of numerical dissipation; prefers hexahedron

= Finite element
= |nsufficient amount of LES validation works has been performed
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List of Validation Works ) S,

= DNS
= Channel
= Pipe

= LES

= Channel
= Round jet

= Solid combustion
= TGA
= Heated panel




Previous Channel LES

7| Netora

= LES without wall model was tested on a channel using wall-

resolved mesh

= Result was similar to that from coarse resolution or diffusive numerics

= Not enough efforts were made to fix or understand why
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DNS of a Channel L

= Target Re,~13000, Re,~400

" Rep=pUpe.nh/1; Re=pU.(h/2)/p
h=Re_*; half height is 400+

|.C.: laminar profile + randomness

Central differencing is used

Collect statistics after flow becomes statistically stationary

Re vs Re_
J. Kim, 2011
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Structured Mesh

= Denser mesh or larger domain improves the result
= Mean velocity does not reach theoretical profile
= Cell aspect ratio could be the reason, near wall or

at the center
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Layered Mesh UL

= Denser mesh or larger domain improves the result

= Mean velocity does not reach theoretical profile

= Cell aspect ratio could be the reason, near wall or at the center

= Wedge-shape cell layers are placed to ensure cell AR < 6 everywhere
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1.08-40 0.4M, 96x72x64 Near wall resolution:
Twice the domain size 1.7M --0-

4.5M, 288x80x196 15700 398

8.7 0.68-40
1.08-40 7.1M, 384x72x256 15400 393
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Layered Mesh UL

= Denser mesh or larger domain improves the result

= Mean velocity does not reach theoretical profile

= Cell aspect ratio could be the reason, near wall or at the center

= Wedge-shape cell layers are placed to ensure cell AR < 6 everywhere

= Result now matches to other channel DNS
DNS study of Ret=395
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DNS of a Pipe UL
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Similar Behavior
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Summary so far .

= DNS was performed on canonical problems
= Being a generalized solver, mesh requirement is tighter
= Sensitive to grid aspect ratio

= Theoretical velocity profiles were obtained with a layered mesh




LES on Wall-Bounded Flows &=

Ksgs model solves transport equation of subgrid kinetic energy

aﬁk‘SgS . o Lt Ok*es sgs sgs
5 dV—I—/pk ujanS—ka 6333 dS+]( D;?)dV

e = pC‘,uAIfSQS% cf> Smagorinsky-type: u: = p (C,A)* |8

= An equilibrium wall model is available with K., model

= Velocity approaches log-law profile even at large Re

Channel Pipe Pipe, not in log scale
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Resolution Yield Test

th

" For K¢, Wall shear stress reduces to below expected value

without a wall resolved mesh

= Coarse resolution results are still acceptable
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LES on a Jet ) =

= Fully developed turbulent pipe is incorporated into a jet LES
= Many jet experiments use a long pipe to eliminate BC uncertainties

= Useful for comparing near exit profiles, predicting lift-off flame for a
moderate Re jet

= Dynamic Smag. found superior than other approaches

Dynamic Smagorinsky
LES (DSMAG)
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Summary so far .

= DNS was performed on canonical problems
= Being a generalized solver, mesh requirement is tighter
= Sensitive to grid aspect ratio

= Theoretical velocity profiles were obtained with a layered mesh

= LES models work as expected

Ksgs performance is not too sensitive to the mesh resolution near wall,
thereby can be used for a wide range of problems

= Jet breakdown is well predicted using dynamic Smagorinsky model




Composites in the Aviation Industry @&

= Modern aircraft uses increasing quantities of composites
= Reduce weight while preserving strength
= Lower fuel consumption: efficiency 1%, emission {,

Commercial Aerospace — Composites Penetration
Composite Content by Weight
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Composites in the Aviation Industry @&

= Modern aircraft uses increasing quantities of composites
= Reduce weight while preserving strength
= Lower fuel consumption: efficiency 1%, emission {,

= Carbon fiber-epoxy materials are heavily used in new design
= 65% carbon fiber, 35% epoxy resin

= Fabric (woven) or uni-tape sheets, in multiple layers thick
= Woven CYTEC 977-3, cured in 1 atm oven with IM7 fibers, is tested

m Il Carbon Fibers
Epoxy Resin
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TGA Study ) e

Dodd et al. (2013), Brown et al. (2012)

= 20°C/min R
= Epoxy pyrolysis generates 807
gaseous fuel and char X 60}
- . « g go
In air, epoxy oxidizes before = 400 [ A
char and carbon fiber o0 | L==—Nitrogen
i 0\
........ 0 200 400 600 800 1000
— e Temperature (°C)

.. (1) Epoxy Decomposition (both

Thermal and Oxidative Pyrolysis)
and Char Formation

(2) Slow Char Oxidation

(3) Carbon Fiber Oxidation
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TGA Study s,

Dodd et al. (2013), Brown et al. (2012)

= 20°C/min
= Epoxy pyrolysis generates

gaseous fuel and char )
= In air, epoxy oxidizes before £ 4! o

char and carbon fiber o0 | L==—Nitrogen |

........ - 1000
— ﬁb ................. 08}
e eos| |
£ blysis)

0.4}

= Fuego solid combustion does
not match the fitted chemistry | oz}
= Why?

—oa—— Experiment
Fitted Chemistry
Fuego

L | I ! I | L L L | L L S
200 400 600 800
Temperature (°C)
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Reaction Mechanism ) B

= Fitted mechanism with the TGA (Dodd et al. 2013)
= For a solid-gas reaction, defining pre-exponent factor needs a

caution
Gas species: % + V- (pguXcH, + peDVYcH,) = WEpc +0.50) + @
Solid composition: dpsf;# =—0) — Wy
Reaction rates: & = pyYy Ae Ea/RT

W_5 = psYr,sngr,gAe_Ea/RT

1 pyrolysis Epoxy - 0.5 CharA + 0.5 CH, A=3.33E15, E,/R=27200

2 oxid. Epoxy + O, - CharB + CH, A=5.3E15/p,, E,/R=27200
3 oxid. CharA + O, = Residue + CO A=7.58E2/p,, E,/R=10000, AH=12730kJ/kg
4 oxid. CharB + O, - Residue + CO A=7.58E2/p,, E,/R=10000, AH=12730kJ/kg

Soxid.  Carbon-Fiber + O, > Residue + CO, A=3.79E15/p,, E,/R=38000, AH=24770kJ/kg
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TGA Simulation ) .

= An immovable Lagrangian particle represents TGA sample
= Fuego result closely matches to the TGA of air at 20°C/min
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Composite Panel Experiment UL

= Exposed composite panel degrades under a radiant heat
(Hubbard et al., 2011)

= Upper panel is heated up to 800°C

= Duration of visible gasification (smoke) and backside panel
temperature profiles are available

radiant
3mm thick  %184m _}heat source

composite panel

0.4m 0.076m




Composite Panel Experiment .

= Exposed composite panel degrades under a radiant heat
(Hubbard et al., 2011)

= Upper panel is heated up to 800°C

= Duration of visible gasification (smoke) and backside panel
temperature profiles are available

= Directional BC: panel is discretized normal to the wall

= Mesh size ¥ 5mm, total 0.1M grid; no gas-phase reaction

. 0:184m

radiant

RIS ALILAN, heat source F.\ b
composite p{A ' 1 Side view:
distance 0.14m Fluid
o.1ozk
0.4m 0.076m . Composite

panel
adiabatiC wall 0.4m
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Summary UL

= DNS was performed on canonical problems
= Being a generalized solver, mesh requirement is tighter
= Sensitive to grid aspect ratio

= Theoretical velocity profiles were obtained with a layered mesh

= LES models work as expected

= KSGS performance is not too sensitive to the mesh resolution, thereby
can be used for a wide range of problems

= Jet breakdown is well predicted using dynamic Smagorinsky model

= Composite pyrolysis and oxidation procedures were verified
= Reaction parameter definitions were revisited

= Solid mass response and heat transfer on the panel were correctly
predicted
= Detailed composition of the gas phase release needs further work
= So does missing physics such as swelling
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