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SIERRA/Thermal-Fluid/Fuego 
 SIERRA: Sandia’s engineering mechanics simulation code suite

 Solid mechanics: Adagio, Presto

 Structural dynamics: SD

 Thermal-fluid: Aria, Arpeggio, Aero, Fuego, Syrinx

 Tools: Encore, Percept, STK, & python scripts

 Fuego: low-Ma, turbulent combustion flow solver
 Various RANS and LES models

 Smagorinsky-type and KSGS LES models

 Two turbulent combustion models

 EDC with fast chemistry and flamelet

 Unstructured (co-located)

 Requires some level of numerical dissipation; prefers hexahedron 

 Finite element 

 Insufficient amount of LES validation works has been performed
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List of Validation Works

 DNS 
 Channel

 Pipe

 LES 
 Channel

 Round jet

 Solid combustion
 TGA 

 Heated panel 
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Previous Channel LES 

 LES without wall model was tested on a channel using wall-
resolved mesh
 Result was similar to that from coarse resolution or diffusive numerics

 Not enough efforts were made to fix or understand why
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Channel LES without wall 
model (SAND2015-7938)

Known effect of resolution and numerics in 
turbulent boundary layer (H. Koo thesis)

Coarser mesh or
diffusive numerics

Coarser mesh or
diffusive numerics



DNS of a Channel 

 Target Reb~13000, Reτ~400
 Reb=ρUmeanh/μ; Reτ=ρUτ(h/2)/μ

 h=Reτ
+; half height is 400+

 I.C.: laminar profile + randomness

 Central differencing is used

 Collect statistics after flow becomes statistically stationary
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J. Kim, 2011
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Structured Mesh

 Denser mesh or larger domain improves the result

 Mean velocity does not reach theoretical profile

 Cell aspect ratio could be the reason, near wall or 
at the center
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ΔX ΔY (+) ΔZ Mesh Re_b Re_τ

26 1.08-40 20 0.4M, 96x72x64 21500 391

Twice the domain size 1.7M 17400 392

13 0.68-40 10 2.0M, 192x80x128 16700 403

Twice the domain size 7.9M 16200 394

8.7 0.68-40 6.4 4.5M, 288x80x196 15700 398

6.5 1.08-40 4.9 7.1M, 384x72x256 15400 393

6.5 0.68-40 4.9 7.9M, 384x80x256 15500 392

ΔZ ΔX

ΔY



Layered Mesh

 Denser mesh or larger domain improves the result

 Mean velocity does not reach theoretical profile

 Cell aspect ratio could be the reason, near wall or at the center

 Wedge-shape cell layers are placed to ensure cell AR < 6 everywhere
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ΔX ΔY (+) ΔZ Mesh Re_b Re_τ

26 1.08-40 20 0.4M, 96x72x64 21500 391

Twice the domain size 1.7M 17400 392

13 0.68-40 10 2.0M, 192x80x128 16700 403

Twice the domain size 7.9M 16200 394

8.7 0.68-40 6.4 4.5M, 288x80x196 15700 398

6.5 1.08-40 4.9 7.1M, 384x72x256 15400 393

6.5 0.68-40 4.9 7.9M, 384x80x256 15500 392

6.5
-26

1.08-40 4.9-
20

4.0M, layered 12300 400

26x1.08-40x20

Near wall resolution:
6.5x1.08-40x4.9



Layered Mesh

 Denser mesh or larger domain improves the result

 Mean velocity does not reach theoretical profile

 Cell aspect ratio could be the reason, near wall or at the center

 Wedge-shape cell layers are placed to ensure cell AR < 6 everywhere

 Result now matches to other channel DNS
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ΔX ΔY (+) ΔZ Mesh Re_b Re_τ

26 1.08-40 20 0.4M, 96x72x64 21500 391

Twice the domain size 1.7M 17400 392

13 0.68-40 10 2.0M, 192x80x128 16700 403

Twice the domain size 7.9M 16200 394

8.7 0.68-40 6.4 4.5M, 288x80x196 15700 398

6.5 1.08-40 4.9 7.1M, 384x72x256 15400 393

6.5 0.68-40 4.9 7.9M, 384x80x256 15500 392

6.5
-26

1.08-40 4.9-
20

4.0M, layered 12300 400



DNS of a Pipe
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Bulk velocity

4d

periodic

0.4M mesh Layered 0.5M mesh

nx nr nθ Total

128 ~50 64 0.4M

256 ~55 128 1.8M

64-256 ~50 32-128 0.5M (layered)

128-512 ~55 64-256 2.0M (layered)



Similar Behavior
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nx nr nθ Total

128 ~50 64 0.4M

256 ~55 128 1.8M

64-256 ~50 32-128 0.5M (layered)

128-512 ~55 64-256 2.0M (layered)

not 
layered

layered



Summary so far

 DNS was performed on canonical problems 
 Being a generalized solver, mesh requirement is tighter

 Sensitive to grid aspect ratio

 Theoretical velocity profiles were obtained with a layered mesh
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LES on Wall-Bounded Flows
 KSGS model solves transport equation of subgrid kinetic energy

 An equilibrium wall model is available with KSGS model

 Velocity approaches log-law profile even at large Re
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cf> Smagorinsky-type:

Channel Pipe Pipe, not in log scale



Resolution Yield Test

 For KSGS, wall shear stress reduces to below expected value 
without a wall resolved mesh
 Coarse resolution results are still acceptable
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Δymin= 1/400, 1/80, 1/20

x

y

1



LES on a Jet

 Fully developed turbulent pipe is incorporated into a jet LES
 Many jet experiments use a long pipe to eliminate BC uncertainties

 Useful for comparing near exit profiles, predicting lift-off flame for a 
moderate Re jet

 Dynamic Smag. found superior than other approaches
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Time-varying inflow boundary condition
from a fully-developed turbulent pipe

Centerline velocity



Summary so far

 DNS was performed on canonical problems 
 Being a generalized solver, mesh requirement is tighter

 Sensitive to grid aspect ratio

 Theoretical velocity profiles were obtained with a layered mesh

 LES models work as expected
 KSGS performance is not too sensitive to the mesh resolution near wall, 

thereby can be used for a wide range of problems

 Jet breakdown is well predicted using dynamic Smagorinsky model
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Composites in the Aviation Industry
 Modern aircraft uses increasing quantities of composites

 Reduce weight while preserving strength

 Lower fuel consump�on: efficiency ↑, emission ↓
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Composites in the Aviation Industry
 Modern aircraft uses increasing quantities of composites

 Reduce weight while preserving strength

 Lower fuel consump�on: efficiency ↑, emission ↓

 Carbon fiber-epoxy materials are heavily used in new design
 65% carbon fiber, 35% epoxy resin

 Fabric (woven) or uni-tape sheets, in multiple layers thick 

 Woven CYTEC 977-3, cured in 1 atm oven with IM7 fibers, is tested
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5μm

from utsi.edu



TGA Study

 20oC/min

 Epoxy pyrolysis generates 
gaseous fuel and char

 In air, epoxy oxidizes before 
char and carbon fiber
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Dodd et al. (2013), Brown et al. (2012)



TGA Study

 20oC/min

 Epoxy pyrolysis generates 
gaseous fuel and char

 In air, epoxy oxidizes before 
char and carbon fiber

 Fuego solid combustion does 
not match the fitted chemistry
 Why?

19

Dodd et al. (2013), Brown et al. (2012)



Reaction Mechanism

 Fitted mechanism with the TGA (Dodd et al. 2013)

 For a solid-gas reaction, defining pre-exponent factor needs a 
caution
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Epoxy  0.5 CharA + 0.5 CH4

Epoxy + O2  CharB + CH4

CharA + O2  Residue + CO
CharB + O2  Residue + CO

Carbon-Fiber + O2  Residue + CO2

A=3.33E15, Ea/R=27200
A=5.3E15/ρg, Ea/R=27200
A=7.58E2/ρg, Ea/R=10000, ΔH=12730kJ/kg
A=7.58E2/ρg, Ea/R=10000, ΔH=12730kJ/kg
A=3.79E15/ρg, Ea/R=38000, ΔH=24770kJ/kg

1 pyrolysis
2 oxid.
3 oxid.
4 oxid.
5 oxid.

Gas species:

Solid composition:

Reaction rates:



TGA Simulation

 An immovable Lagrangian particle represents TGA sample

 Fuego result closely matches to the TGA of air at 20oC/min 
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4cm

2cm

d~1mm, m~1mg 
composite particle



Composite Panel Experiment

 Exposed composite panel degrades under a radiant heat 
(Hubbard et al., 2011)

 Upper panel is heated up to 800oC

 Duration of visible gasification (smoke) and backside panel 
temperature profiles are available
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Composite Panel Experiment

 Exposed composite panel degrades under a radiant heat 
(Hubbard et al., 2011)

 Upper panel is heated up to 800oC

 Duration of visible gasification (smoke) and backside panel 
temperature profiles are available

 Directional BC: panel is discretized normal to the wall
 Mesh size ~ 5mm, total 0.1M grid; no gas-phase reaction
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Side view:

Fluid

Composite 
panel
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Smoke in the experiments

Smoke duration



Summary
 DNS was performed on canonical problems 

 Being a generalized solver, mesh requirement is tighter

 Sensitive to grid aspect ratio

 Theoretical velocity profiles were obtained with a layered mesh

 LES models work as expected
 KSGS performance is not too sensitive to the mesh resolution, thereby 

can be used for a wide range of problems

 Jet breakdown is well predicted using dynamic Smagorinsky model

 Composite pyrolysis and oxidation procedures were verified
 Reaction parameter definitions were revisited

 Solid mass response and heat transfer on the panel were correctly 
predicted

 Detailed composition of the gas phase release needs further work

 So does missing physics such as swelling
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