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Physical Vapor Deposition
Background Of Explosives Challenges

This unique capabillity is centered around a custom built Physical Vapor Deposition (PVD) Substrate rotation (~50 rpm)

system designed specifically for the purpose of advanced microenergetic materials research. — > —
« Multiple deposition source capabilities allow sequential deposition of a variety of materials . bl « Substrate selection can be critical
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without breaking vacuum Substrate J - Substrate material selection may cause film stress and
« Utilization of this technology has enabled new research in energetic materials science Shadow mask delamination due to thermal expansion mismatch
« This process is being used to support modeling of energetic materials at small scales Explosive vapor « Substrate selection can play a significant role in determining
microstructure
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. Physical vapor deposition is an attractive method to produce sub-millimeter ~100-250°C Source temperatu_re_(.:ontrols deposition N
Sandla explosive samples for studying detonation behavior and microstructure effects at  Temperature is a limiting factor due to decomposition concerns
. near failure conditions and geometries. Metal vapor * Vapor pressure is determined by temperature selection
Natlﬂnal NT * Film growth rate and overall thickness can be limited by these
factors
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] Electron beam deposition source » Electron beam evaporation used for metal layers on
Excep tl on dl Schematic of the deposition system used to fabricate explosive films. : P y
explosives
. - Deposition conducted in a vacuum chamber evacuated to ~ 10 Torr * Sputtering = too much kinetic energy, embeds below surface,
Service B can cause reactions/poor adhesion
 Fast deposition rate (~ 100 zm/hr) for HNAB and PETN . .
* Deposition rate important — too much thermal energy can
. l‘b  Slower deposition rate (~ 5 um/hr) for HNS decompose explosive
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;I;]hekdeposnmn of explosive materials can range from 1 — 500 microns in . Delamination problems possible, may need adhesion layers to
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Improve stability
* Through the use of shadow masks, we are able to define geometry patterns
with sub-millimeter resolution
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- o ol f - » Metal confinement layers deposited using electron beam evaporation

interest

Framing camera images of detonation in deposited PETN lines. 1.67 million
frames per second (1/600 ns), 20 ns exposure time.

Metal films can be used to layer with explosive materials for the purpose of modifying surfaces or confining an explosive layer.

Detonation Confinement Microstructure
* Confining an explosive with a dense, inert material is known to have By varying deposition conditions, we can precisely control microstructure of the deposited films.
substantial effects on failure geometry and detonation velocity near
failure thickness . .
Surface/Interface Effects Effects of deposition condition changes
* Unigue process for producing samples with intimate contact « Adding layers between the substrate and explosive can substantially alter * Microstructure changes can be induced by
between metal and explosive layers surface energies and subsequent film morphology controlling substrate temperature

_ _ _ « Potential for significant changes in detonation behavior
* We have performed experiments to determine effects of confinement

In hexanitroazobenzene (HNAB) films confined with copper, and in
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Example of oscilloscope data used to R SEM image of the top surface of 6 mm and 35 mm thick PETN films on silicon with and SEM images of ion-polished cross-sections of
determine detonation velocity e without a 300 nm vapor-deposited aluminum layer on the substrate. The 10 um scale bar HNS films deposited at 10°C (a) and at 45°C (b).
***** applies to all images. (a) 6 gm, no Al, (b) 35 um, no Al, (c) 6 um, with Al, and (d) 35 um, with Al Image (a) illustrates a large columnar growth
o pattern with large non-uniform porosity, while
« Detonation velocities measured using an S e image (b) illustrates narrower columns with
array of fiber Opt|CS located a|ong the B R R Ay : 3 CKNowie gem ents smaller more distributed porosity.
length of each explosive line Photograph of Cu_COnfmed Iog_pOIISPHeS:é?SS_SECUOtn O|I This project was funded in part by Sandia’s Laboratory Directed Research and Development Program and
— Fibers bundled in a SMA connector HNAB and Al-confined atopper Opper stack. the Joint Department of Defense/Department of Energy Munitions Technology Development Program.
and fed into a silicon photodetector HNS films. The authors would like to gratefully acknowledge the assistance of M. Barry Ritchey with SEM imaging, and

— Fiber position plotted against time of J. Patrick Ball with detonation testing.
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