
Compiling Statecharts into Why3

Rob Armstrong, Jon Aytac, Geoff Hulette, Jackson Mayo,
Karla Morris

Sandia National Laboratories is a multimission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of

Energys National Nuclear Security Administration under contract DE-NA0003525.

SAND2017-4962PE

Compiling Statecharts into Why3

The subcategory E of reactive hierarchical statecharts allowing
communication strictly between consecutive layers in the
hierarchy may, following Argos, be given a semantics
F : E →M in terms of Mealy machines M and operations
(parallel composition, encapsulation, and refinement) thereon.

Given an alphabet A with formulae B(A), Mealy Machines
are tuples(S , s0, I ,O,T) of states S , initial states s0, inputs
I ⊂ A, outputs O ⊂ V, and transitions
T ⊂ S × B(I)× BO × S

The indicator function of the set of transitions T gives a
Boolean predicate, so that the Mealy Machine may be readily
expressed as a theory in Why3.

Mealy Machines in Why3

The indicator function of T gives a Boolean predicate PT , so
that the Mealy Machine may be readily expressed as a theory
in Why3. Allowing non-determinism, let next : S → P(S) a
map from the set of states to the set of sets of states. Then

PT =
∨
s∈S

∨
(s,b,•,s′)

(
s ∧ b ∧

(
next 3 s ′

))

Mealy Machines in Why3

Consider the simple example

A

B

C

the why3 listing for this simple chart in the follows:

theory KarlaTypeDefs

use import set.Set as S

type states = AA | BB | CC

function next states : S.set states

end

theory KarlaTransitions

use import KarlaTypeDefs

axiom nextStep: forall s:states.

((s=AA) /\ (next s = (add BB empty)))

\/ ((s=BB) /\ (next s = (add CC (add AA empty))))

\/ ((s=CC) /\ (next s = (add CC empty)))

end

theory KarlaPropery

use import KarlaTransitions

predicate ccFixedPoint =

((next CC) = (add CC empty))

goal ccFixedPointProperty =

ccFixedPoint

end

Moving Forward

Argos semantics gives a map1 into Mealy Machines

Compiling Mealy Machines as Boolean constraints into Why3
is fairly straightforward

When we later augment Argos Semantics with variables,
WhyML allows great flexibility, extending FOL while
preserving tractability

1a monoidal functor, even

