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1. Motivation: Photon - to - spin interface
2. Holes in semiconductors: a brief reminder

3. Heavy-hole single-subband regime:
Anisotropic g factor, spin-orbit interactions

4. Single hole in a gated double dot:
Coherent spin-flip tunneling — theory and experiment

5. Two holes in a double dot: Lifting of Pauli blockade,
strong g-factor anisotropy

NC-CNC
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. Direct bandgap of the material -
we focus on GaAs devices

. Fast, possibly electrostatic control of spin
. Zero g factor easily achievable

. Long spin coherence times

NC-CNC
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Heavy hole spin “up” is not coupled directly
to heavy hole spin “down”

- Not by kinetic tensor elements
- Not by the Dresselhaus or Rashba spin-orbit interaction
- Not by the Zeeman term, even for the in-plane

magnetic field

Any heavy-hole spin flip has to be mediated
by the light-hole subband N3C-CNIC



In bulk: HH and LH close in energy
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Large heavy-light hole gap
(quantum wells, flat quantum dots)
- perturbative regime
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Large heavy-light hole gap
(quantum wells, flat quantum dots)
- perturbative regime

Extreme anisotropy of the heavy-hole g-factor:
- zero for the magnetic field in-plane
- nonzero for the field in the growth direction

Spin-orbit interactions cause heavy-hole spin flips
Matrix element ~ K3 (spin rotation as HH moves)

NC-CNC
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L. A. Tracy et al., Appl. Phys. Lett. 104, 123101 (2014)
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Simulations:
Only heavy holes are confined laterally
Light hole states are not confined in dots

As a result, very weak HH-LH coupling expected in the dots
This is unlike in self-assembled dots or nanowires



Transport measurement (Ipo7) Charge measurement (dlcs)
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We can empty the double dot
and readmit exactly one hole



We control the Zeeman splitting

TN\ AV, by the magnetic field
€L We control detuning by gates
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Hybrid spin-charge system NC-CNC
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tunneling current
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Both spin-conserving and spin-flip
resonances are strong
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Aelt)=Ag,+Vsinw,,,t /

LANDAU-ZENER-STUECKELBERG OSCILLATIONS



Detuning (V)

Log MW amplitude

Charge relaxation time: T,~2.5 us
Spin relaxation time: T,5~1 ps

Log MW amplitude
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Now we explore the g-factor anisotropy

1 o 1 *

— P +V(x,y)-=g 1B, 0
= 2my,, 2 1 1

0 — P* 4 V(x,y)+—g*,uBBZ
| 2my, 2 1
k> 2 3
+37/23 < Z>,B 0 KKK, _l-37/23 h Eza 0 _(K+)
A, 2m, "|K KK 0 Ay 2m, | (K) 0
D. LOSS ET AL., Phys. Rev. Lett. 95, 076805 (2005) Mc ) cmc

F. PEETERS ET AL, Phys. Rev. Lett. 109, 107201 (2012)



We start with configuration (10)
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In the left-hand dot

we account for an extra pair of orbitals

CN3C

Similar work (with more holes): A. Hamilton et al., Nano Lett. 16, 7685
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t one more hole creating (11)
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The two holes will relax
to the polarized triplet T-



We tune gate voltages to obtain
(11) — (20) resonant tunneling
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Magnetic field (T)

(20) state is a singlet
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Magnetic field (T)

(20) state is a triplet
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Magnetic field (T)

(20) state is a triplet
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Magnetic field (T)

(20) state is a triplet
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Effective g-factor in tilted magnetic field

@®M Experiment > Self-assembled dot [Belykh et al.]
—— Theory A Si Nanowire [Voisin et al.]
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The g-factor is anisotropic: g* ~ 0 for in-plane magnetic field
Our confined states are nearly pure heavy-holes
The g-factor is tunable in-situ
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