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2OUTLINE

1. Motivation: Photon - to - spin interface

2. Holes in semiconductors: a brief reminder

3. Heavy-hole single-subband regime:
Anisotropic g factor, spin-orbit interactions

4. Single hole in a gated double dot: 
Coherent spin-flip tunneling – theory and experiment

5. Two holes in a double dot: Lifting of Pauli blockade,
strong g-factor anisotropy



3MOTIVATION
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4PHOTON-TO-SPIN PROCESS
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5CONDITIONS FOR P-S INTERFACE

1. Direct bandgap of the material -
we focus on GaAs devices

2. Fast, possibly electrostatic control of spin

3. Zero g factor easily achievable

4. Long spin coherence times



6HEAVY HOLES IN BULK

HHs not coupled directly
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7HEAVY HOLES IN BULK

Heavy hole spin “up” is not coupled directly
to heavy hole spin “down”

- Not by kinetic tensor elements

- Not by the Dresselhaus or Rashba spin-orbit interaction

- Not by the Zeeman term, even for the in-plane
magnetic field

Any heavy-hole spin flip has to be mediated
by the light-hole subband



8HEAVY HOLES IN QUANTUM WELLS

In bulk: HH and LH close in energy

In quantum wells:
HH and LH separated by a gap
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9HEAVY HOLES IN QUANTUM WELLS

Large heavy–light hole gap 
(quantum wells, flat quantum dots)
- perturbative regime

D. LOSS ET AL., Phys. Rev. Lett. 95, 076805 (2005)
F. PEETERS ET AL., Phys. Rev. Lett. 109, 107201 (2012)
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10HEAVY HOLES IN QUANTUM WELLS

Extreme anisotropy of the heavy-hole g-factor:
- zero for the magnetic field in-plane
- nonzero for the field in the growth direction

Spin-orbit interactions cause heavy-hole spin flips
Matrix element ~ K3 (spin rotation as HH moves)

Large heavy–light hole gap 
(quantum wells, flat quantum dots)
- perturbative regime



11GATED LATERAL DOUBLE QDOT
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12GATED LATERAL DOUBLE QDOT
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Simulations: 
Only heavy holes are confined laterally
Light hole states are not confined in dots

As a result, very weak HH-LH coupling expected in the dots
This is unlike in self-assembled dots or nanowires



13CHARGING DIAGRAMS
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14SINGLE-HOLE TRANSPORT MODEL
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15SINGLE-HOLE TRANSPORT

Measured
tunneling current
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16TUNNELING MATRIX ELEMENTS
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17TUNNELING MATRIX ELEMENTS
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18MICROWAVE MODULATION
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f=2.770GHz, B=1.0T

1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

-200.00

-100.00

0.00

100.00

200.00

300.00

400.00

T2=70 ps

D
e

tu
n

in
g
 (

V
)

Measured Calculated

Charge relaxation time:   T1 ~2.5 μs

Spin relaxation time:   T1S ~1 μs

Log MW amplitude Log MW amplitude

MICROWAVE MODULATION



20HEAVY HOLES IN QUANTUM WELLS

Now we explore the g-factor anisotropy

D. LOSS ET AL., Phys. Rev. Lett. 95, 076805 (2005)
F. PEETERS ET AL., Phys. Rev. Lett. 109, 107201 (2012)
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21RESONANT TUNNELING SPECTRA
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We start with configuration (10)

In the left-hand dot
we account for an extra pair of orbitals

Similar work (with more holes): A. Hamilton et al., Nano Lett. 16, 7685 



22RESONANT TUNNELING SPECTRA
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The two holes will relax
to the polarized triplet  T-(11)



23RESONANT TUNNELING SPECTRA
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(11) – (20) resonant tunneling

The hole will tunnel from the right to the left
Tunneling current will flow



24RESONANT TUNNELING SPECTRA
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25RESONANT TUNNELING SPECTRA

Spin-conserving tunneling
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26RESONANT TUNNELING SPECTRA
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27RESONANT TUNNELING SPECTRA
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28EXTRACTION OF g FACTOR
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The g-factor is anisotropic: g* ~ 0 for in-plane magnetic field
Our confined states are nearly pure heavy-holes
The g-factor is tunable in-situ



29CONCLUSIONS

1. Motivation: Photon - to - spin interface

2. Holes in semiconductors: a brief reminder

3. Heavy-hole single-subband regime:
Anisotropic g factor, spin-orbit interactions

4. Single hole in a gated double dot: 
Coherent spin-flip tunneling – theory and experiment

5. Two holes in a double dot: Lifting of Pauli blockade,
strong g-factor anisotropy


