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ABSTRACT

Structural dynamics models with localized nonlinearities
can be reduced using Hurty/Craig-Bampton component mode
synthesis methods. The interior degrees-of-freedom of the linear
subcomponents are reduced with a set of dynamic fixed-
interface modes while the static constraint modes preserve the
physical coordinates at which the nonlinear restoring forces are
applied. For finite element models with a highly refined mesh at
the boundary, a secondary modal analysis can be performed to
reduce the interface down to a truncated set of local-level
characteristic constraint modes. In this research, the cost
savings and accuracy of the interface reduction technique are
evaluated on a simple example problem involving two elastic
blocks coming into contact.

INTRODUCTION

Nonlinear structural dynamic models often consist of a set
of linear substructures connected through a nonlinear
constitutive law that acts locally on the interface(s). Typical
localized nonlinearities include friction or contact, and
connections with bilateral or nonlinear stiffness characteristics.
Since the interior portion of the linear models do not have
nonlinear restoring forces, component mode synthesis methods
are well suited to reduce the interior portion with a set of
dynamic modes while retaining the boundary degrees-of-
freedom (DOF) for the nonlinear forces to act.

Substructuring methods can be categorized as free- or
fixed-interface methods, or hybrid methods. Two of the
commonly referenced free-interface approaches include the
Rubin method [1] and the MacNeal method [2]. The most well-
known fixed-interface approach is the Hurty/Craig-Bampton
(HCB) method that was originally proposed by Hurty in 1960

[3] and later simplified by Craig and Bampton in [4]. The HCB
method reduces each subcomponent using a truncated set of
fixed-interface (FI) vibration modes along with a set of static
constraint modes. Finite element models tend to have highly
refined meshes at the interface resulting in a reduced order
model with a prohibitively large number of DOF retained at the
boundary. Many types of interface reduction techniques have
been developed to further decrease the model size; a review of
these methods for HCB models can be found in [5].

In this research, the HCB method with local-level interface
reduction [6] is used to model two substructures coming into
contact with one another in an effort to reduce the
computational cost associated with numerical time integration.
The contact at the interface is modeled using the penalty
method and there are no friction forces enabled during the
simulation. This research explores HCB models of varying
basis fidelity as a starting point to understand whether a
significant number of modes can be truncated and still capture
the rebound characteristics of two elastic substructures.

THEORY

Hurty/Craig-Bampton Substructures

The finite element models of interest are linear
subcomponents that interact with one another at the boundary
DOF via frictionless contact. It is assumed that each
substructure individually behaves linearly and that the
introduction of contact forces at the interface is the only source
of nonlinearity. While many reduction schemes are available for
representing linear subcomponent models, this work starts with
the HCB equations of motion [4, 7] to reduce each linear
subcomponent with the mathematical form,
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The N, x1 vector q, represents the fixed-interface modal
coordinates and the Ny x1 vector X, corresponds to the
physical boundary DOF. The overdot represents the derivative
with respect to time and the N, x1 vector f(t) corresponds to

externally applied forces. The unknown N, x1 vector r(t) is

included to account for the unknown forces applied at the
boundary through interactions with adjacent structures.

Without loss of generality, assume that two subcomponents
are defined with superscripts (A) and (B). During the assembly
process, the contact model is applied only at the physical
boundary DOF, x;,. These interface forces replace the unknown
reaction force, r(t), resulting in the assembled equations of
motion,
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The nonlinear contact forces generally depend on the physical
displacements, x,, as well as the undeformed position of each

node. The frictionless contact model is described in more detail
later in the theory section.

Interface Reduction

The model in Eq. (2), with an appropriately defined contact
algorithm, is integrated numerically in time using central
difference explicit time integration. This direct integration
scheme is conditionally stable and the time step is dictated by
the highest frequency in the system of equations. The critical
time step for the central difference scheme [8] is defined as,
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The frequency ., corresponds to the highest natural
frequency of the assembled eigenvalue  problem,
(K—QZM}p:O, from the model in Eq. (2) that accounts for
the penalty stiffness at the interface. The highest frequency

content generally comes from the retention of the static
constraint modes due to their localized kinematics. In an effort
to increase the critical time step as well as further reduce the
model size, an interface reduction step is applied to the
boundary DOF using the local characteristic constraint (L-CC)
modes described in [5, 6, 9].

Starting with the HCB subcomponent model in Eg. (1), the
L-CC modes are computed from a secondary modal analysis on
the boundary partition of the mass and stiffness matrices,
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where (pCC is the local characteristic constraint mode with

corresponding natural frequency, @. The L-CC modes are
truncated and used to assemble the secondary subcomponent
transformation matrix,
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The N, x1 vector g, corresponds to the L-CC generalized
coordinates. Applying this transformation to Eq. (1) results in,
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which is more compactly rewritten as,
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Assembling the equations of motion for substructure (A) and
(B) results in
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Now the contact forces are explicitly computed through the L-
CC generalized coordinates, q., using the transformation

between physical and modal DOF.

Contact Modeling

A penalty method [10] is used to enforce the contact
constraint at the boundary DOF of the HCB model. The
constraint between two contacting node pairs is defined such
that the gap must either be open or closed with no overlap.
Mathematically, this is written as,

9(xy)=0 9)

The gap, g(xb), is positive when open, negative when the

contacting nodes overlap and zero when the nodes are in perfect
contact.

The penalty method formulation defines the contact force
at a particular node with superscript j as,

Tl (xp) =267 (x, )0 (10)

where ¢, is the penalty stiffness value and n' is the interface
normal direction. The gap used within the contact force

A

equation, §’(x,,), is defined as,

gj(xb):{gj(xb)a QJ:(Xb)<0 (11)

The variable g!(x,) is the gap between node j and the

opposing contact node. In this research, the contact surface is
defined over a mesh where the interface nodes align and the
deformations are assumed to be small. This simplifies the
analysis by predefining the contact node pairs and assuming
these do not change during the simulation.

The gap is computed between two node pairs: j on the
master node and m on the slave node. Thus, the gap becomes,

0/ (x,)=—-d™"|-sign(d™ -n?) (12)
and the distance vector between the two nodes is,
dim = (xJ +x3)-(X™ +x™) (13)

The distance is a function of the undeformed nodal position,
X1, and the physical displacement x /.

NUMERICAL RESULTS

Model Description

The model under consideration consists of two blocks of
equal dimensions (25.4 x 38.1 x 50.8 mm), separated by an
initial 15.24 mm gap. Each block is discretized with 400 linear
hexahedral elements, resulting in 1,782 DOF, as shown in Fig.
1. The blocks are made of an idealized elastic material with
Young’s Modulus of 5,171 GPa, Poisson’s ratio of 0.2 and a
mass density of 0.6522 g/cc. At the beginning of the analysis,
the “right” block has zero initial velocity and the “left” block
has an initial velocity of 3,810 m/s towards the opposing block.
This high initial velocity is selected to reduce overall analysis
time. All the nodes on the contacting faces of each block are
defined as the boundary DOF for the HCB formulation. This
results in two HCB models each having a total of 162 boundary
DOF, leaving a possible 1,620 fixed-interface modal DOF.

1.5 mm

1.0 mm

V=0 m/s

\m‘

Figure 1. Finite Element Model Under Consideration

The response of the block models is numerically computed
with a conditionally stable and second order accurate central
difference explicit time integration scheme [8]. A penalty
stiffness value of 175E+09 N/m was used to define the node-to-
node contact. Preliminary simulations of the impact reveal some
common issues related to contact modeling with the penalty
method. Defining a penalty stiffness that is too small allows
excessive penetration between structures during contact, but too
high of stiffness values introduce convergence issues and
numerical instabilities. The advantage to using this approach is
that it is simple to implement numerically and requires no
iterative solvers when using explicit integration schemes.

HCB Model Reduction

The critical time steps were computed for the assembled
HCB models with the penalty springs engaged at all the
interface DOF; these values are listed in Table 1 for models of
varying fixed-interface mode fidelity. The mean solve time
corresponds to the amount of CPU time required to solve for
1,000 time steps when the blocks come in and out of contact.
The HCB model with 1,619 fixed-interface modes truncates
only one fixed-interface mode, so it is assumed to be the
reference model for comparison.
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Table 1. Comparison of critical time step and solver
time for various HCB models

FI Modes Max FI At Mean | Model
per Frequency | (sec) Solve | Size
Substructure (Hz) Time | (DOF)
(sec)
1619 4.18E+06 | 1.38E-08 | 22.6 3562
500 1.76E+06 | 1.48E-08 | 2.59 1324
250 1.30E+06 | 1.49E-08 | 0.96 824
100 8.49E+05 | 1.49E-08 | 0.71 524
20 3.97E+05 | 1.49E-08 | 0.67 364
1 3.59E+04 | 1.49E-08 | 0.61 326

Truncating the fixed-interface modes drastically reduced
the size of the system matrix and the mean solve time, but did
not improve the critical time step. When going from 1,619
fixed-interface modes down to one, the critical time step only
increased by ~8% but the solve time decreased by 97%! When
modeling contact with the penalty method, the critical time step
remained unaffected by the truncation of the dynamic modes,
but the overall reduction in model size significantly sped up
simulation time.

Each of the models presented in Table 1 were used to
compare their accuracy relative to the reference solution (i.e.
the 1,619 FI mode model) when there is no lateral offset of the
impacting interfaces. The time histories of each simulation are
shown in Fig. 2; the responses along the vertical axis
correspond to the average x-position of all the nodes on the
contacting faces. The solid lines correspond to the “left” block
assigned with the initial velocity, and the dashed lines are the
“right” block which was initially at rest. The blocks first come
into contact around 0.4E-05 seconds. After this point, the blocks
move in unison until about 0.8E-05 seconds, after which they
separate and move forward with different velocities.
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Figure 2. Average Nodal Displacements for Various HCB
Models

A comparison of the reduced order models revealed that
most of the predicted responses agreed well with the reference
solution except for the 1 FI mode model and possibly the 20 FI
mode model. Each of the two lowest fidelity models showed
some discrepancy when visually comparing the signals. The
contact impulse that occurred during impact produced an
internal force with a 2/t frequency of approximately 5.0E+05
Hz. The maximum fixed-interface mode frequencies in Table 1
revealed that the 20 FI mode model only kept modes up to
3.97E+05 Hz and that some of the dynamically important
modes were not included in the model. This internal contact
force was not known a priori, so it was difficult to know exactly
at what frequency to truncate the dynamic modes. However, as
with all finite element analyses, a convergence study should be
performed to determine when a sufficient number of modes
have been included in the basis.

HCB with Interface Reduction

Next, the interface reduction was applied to the boundary
DOF of the two HCB models by computing the L-CC modes of
the interface partition of each block. Based on the observed
accuracy in the previous subsection, an incremental reduction to
the interface was applied to the 100 FI mode HCB model. The
results in Table 2 compare the maximum characteristic
constraint mode frequency, critical time steps, mean solve
times, and system model size, exactly as was done in Table 1.
The 162 CC mode model was essentially the same as the 100 FI
mode HCB model except that the boundary DOF span modal
space rather than physical space. Note that the mean solve times
increased for the models with the modal interface DOF (i.e.
0.71 sec to 3.33 sec). This cost was associated with the
numerical implementation of the penalty method and the added
computation needed to transform between modal and physical
space at each time step.

Table 2. Comparison of critical time step and solver
time for various L-CC interface reduced models

CC Modes Max CC At Mean | Model
per Frequency (sec) Solve Size
Substructure (Hz2) Time | (DOF)
(sec)

162 3.56E+06 | 1.49E-08 | 3.33 524
100 2.21E+06 | 2.27E-08 | 3.42 400
75 1.89E+06 | 2.65E-08 | 3.24 350
50 1.46E+06 | 3.41E-08 | 3.11 300
25 8.91E+05 | 4.69E-08 | 3.01 250
6 0.05E+00 | 6.42E-08 | 2.89 212

As the interface was incrementally reduced, two
observations were made. First, going from 162 DOF down to 6
DOF increased the critical time step by a factor of about four.
Theoretically, this would allow for fewer steps to reach a
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predetermined simulation period, hence reducing the cost of
numerical time integration. (Care should be taken when
increasing the time step with the penalty method, however,
since this may produce convergence issues.) The second
observation was that there was no drastic improvement in the
mean solve time. This could be attributed to the numerical
implementation of the penalty method and transformation
between physical and modal coordinates, but this issue has not
yet been resolved.

The interface reduced models in Table 2 were used to
simulate the contact response when there was no lateral offset of
the impacting surfaces and the time history results are shown in
Fig. 3. As before, the solid line is the “left” block and dashed is
the “right”, and the plot corresponds to the average x-position
of all nodes on the contacting surface.
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Figure 3. Average Nodal Displacements for Various HCB
Models with L-CC Interface Reduction

Visual comparison of the various interface reduced models
revealed that all models agreed well with the original HCB
model. The 6 CC mode model only included rigid body modes,
suggesting that these were the most important to capture the
interaction between the two blocks. The fact that the two blocks
come into contact in a uniform way suggested that this was a
physically reasonable result and that no higher order
deformation shapes at the interface were needed to capture the
rebound. By going from the 1,619 FI mode HCB model down
to the 6 CC mode model, the system model size reduced from
3,562 DOF down to 212 DOF, and the mean solve time for
1,000 time steps went from 22.6 sec down to 2.89 sec. The
critical time step went from 1.38E-08 sec to 6.42E-08 sec, all
while preserving the accuracy of the reference model.

Blocks with 50% Lateral Offset
The cases studied in the previous two subsections explored
in detail the case when the blocks come together in a completely

uniform way, such that the interface surfaces had no lateral
offset with one another when they came into contact. In this
subsection and the next, two other cases are explored such that
there was only 50% and 75% lateral offset of the interface
surfaces. This was achieved by offsetting the undeformed
position of the “left” block by the appropriate amount. The
HCB reduced models in Table 1 and the interface reduced
models in Table 2 were used to simulate the contact response
when the interfaces are offset laterally by 50% and the time
history results are shown in Figs. 4 and 5, respectively. These
results produced the same conclusions as the no lateral offset
case presented earlier. The HCB model required only 100 FlI
modes due to the period of the contact impulse, and only 6 CC
modes (i.e. rigid body modes) were needed to capture the
contact interaction with interface reduction.
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Figure 4. Average Nodal Displacements for Various HCB
Models and 50% Lateral Offset
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Figure 5. Average Nodal Displacements for Various HCB
Models with L-CC Interface Reduction and 50% Lateral
Offset
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Blocks with 75% Lateral Offset

Here the HCB reduced models in Table 1 and the interface
reduced models in Table 2 were used to simulate the contact
response when the interfaces had lateral offset of 75%; the time
history results are shown in Figs. 6 and 7, respectively. This
case produced different conclusions compared to the 50% and
0% lateral offset cases. In the time histories, it was observed
that the period of the contact impulse was longer for the 75%
lateral offset case. As a result, the 2/t frequency of the impact
force was approximately 3.3E+05 Hz. The 20 FI HCB model
performed quite well since the highest FI mode frequency was
4.0E+05 Hz. As discussed earlier, the duration of the contact
forces appeared to dictate the number of FI modes needed to
retain in basis. Visual inspection of the results from the interface
reduced models in Fig. 7 suggested that more than just the 6 CC
modes were needed to capture the response of the 75% lateral
offset case. The next highest fidelity model with 25 CC modes
was deemed accurate enough and appeared to converge with the
higher fidelity models. The contact forces occurred over a
smaller patch on the interface surface and excited the higher
order CC modes during the impact event.
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Figure 6. Average Nodal Displacements for Various HCB
Models and 75% Lateral Offset

100 . .
— 162 CC Modes
80 F| —— 100 CC Modes e
75 CC Modes Pred
| | ——50 CC Modes P |
60 -
25 CC Modes g
— 6 CC Modes /‘/

X Position, mm

0 0.5 1 15 2 25
Time, s %107

Figure 7. Average Nodal Displacements for Various HCB
Models with L-CC Interface Reduction and 75% Lateral
Offset

It should be noted here that all of the numerical simulations
used the same time step in an effort to make fair comparisons
between model fidelities. In practice, it is common to set the
time step to 90% of the critical value, but this may be adjusted
as necessary to obtain convergence. It was discovered that, for
the 25 L-CC mode model, that the 90% critical time step was
not sufficient to reach convergence, and that 80% was deemed
accurate relative to the reference solution. Analysts should be
careful when determining the step size for highly nonlinear
problems involving contact.

CONCLUSIONS

The Hurty/Craig-Bampton substructuring method is applied
to a finite element model with a frictionless contacting surface
and an interface reduction technique is implemented to further
reduce the model size and simulation time. The local-level
characteristic constraint modes provide a secondary reduction
to the HCB method by transforming the physical DOF to a
truncated set of interface modes. The contact at the interface is
modeled with the penalty method assuming that the
deformations are small and that the finite element mesh aligns
such that the contacting node pairs are defined a priori. The
method is demonstrated on a model where two elastic blocks
come into contact and rebound off one another. Three cases are
explored such that the interface surfaces have no lateral offset,
and are offset by 50% or 75%. The HCB method shows a
reduction in the simulation time but no useful increase in the
critical time step for the explicit integrator. Comparisons of the
time histories suggest that the reduction basis needs fixed-
interface modes that capture the 2/t frequency of the impact
force, which depends on the amount of lateral offset on the
interface surfaces. As with most finite element analyses, a
convergence study should be performed to determine when a
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sufficient number of modes has been included in the basis.
When applying interface reduction with characteristic constraint
modes to the 100 fixed-interface mode HCB model, the model
size decreases further and the critical time step increases. The
results presented in this research reveal that the required
number of characteristic constraint modes depends on the shape
of the contact force profile at the interface. In the worst case of
75% lateral offset, the interface reduction increases the critical
time step by a factor of about three. This provides a significant
improvement in the computational cost associated with
numerical time simulations.

This work is a preliminary study to explore the feasibility
of using substructuring techniques to reduce the computational
burden of models involving contact. Future work will explore
other contact models, such as augmented Lagrange multipliers,
and the addition of friction laws at the interface.
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