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ABSTRACT 
Structural dynamics models with localized nonlinearities 

can be reduced using Hurty/Craig-Bampton component mode 

synthesis methods. The interior degrees-of-freedom of the linear 

subcomponents are reduced with a set of dynamic fixed-

interface modes while the static constraint modes preserve the 

physical coordinates at which the nonlinear restoring forces are 

applied. For finite element models with a highly refined mesh at 

the boundary, a secondary modal analysis can be performed to 

reduce the interface down to a truncated set of local-level 

characteristic constraint modes. In this research, the cost 

savings and accuracy of the interface reduction technique are 

evaluated on a simple example problem involving two elastic 

blocks coming into contact.  

 

INTRODUCTION 
 Nonlinear structural dynamic models often consist of a set 

of linear substructures connected through a nonlinear 

constitutive law that acts locally on the interface(s). Typical 

localized nonlinearities include friction or contact, and 

connections with bilateral or nonlinear stiffness characteristics. 

Since the interior portion of the linear models do not have 

nonlinear restoring forces, component mode synthesis methods 

are well suited to reduce the interior portion with a set of 

dynamic modes while retaining the boundary degrees-of-

freedom (DOF) for the nonlinear forces to act.   

Substructuring methods can be categorized as free- or 

fixed-interface methods, or hybrid methods. Two of the 

commonly referenced free-interface approaches include the 

Rubin method [1] and the MacNeal method [2]. The most well-

known fixed-interface approach is the Hurty/Craig-Bampton 

(HCB) method that was originally proposed by Hurty in 1960 

[3] and later simplified by Craig and Bampton in [4]. The HCB 

method reduces each subcomponent using a truncated set of 

fixed-interface (FI) vibration modes along with a set of static 

constraint modes. Finite element models tend to have highly 

refined meshes at the interface resulting in a reduced order 

model with a prohibitively large number of DOF retained at the 

boundary. Many types of interface reduction techniques have 

been developed to further decrease the model size; a review of 

these methods for HCB models can be found in [5].    

In this research, the HCB method with local-level interface 

reduction [6] is used to model two substructures coming into 

contact with one another in an effort to reduce the 

computational cost associated with numerical time integration. 

The contact at the interface is modeled using the penalty 

method and there are no friction forces enabled during the 

simulation. This research explores HCB models of varying 

basis fidelity as a starting point to understand whether a 

significant number of modes can be truncated and still capture 

the rebound characteristics of two elastic substructures.  

THEORY 

Hurty/Craig-Bampton Substructures 
The finite element models of interest are linear 

subcomponents that interact with one another at the boundary 

DOF via frictionless contact. It is assumed that each 

substructure individually behaves linearly and that the 

introduction of contact forces at the interface is the only source 

of nonlinearity. While many reduction schemes are available for 

representing linear subcomponent models, this work starts with 

the HCB equations of motion [4, 7] to reduce each linear 

subcomponent with the mathematical form, 
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The 1kN  vector kq  represents the fixed-interface modal 

coordinates and the 1bN  vector bx  corresponds to the 

physical boundary DOF. The overdot represents the derivative 

with respect to time and the 1bN  vector  tf   corresponds to 

externally applied forces. The unknown 1bN  vector  tr  is 

included to account for the unknown forces applied at the 

boundary through interactions with adjacent structures.   

Without loss of generality, assume that two subcomponents 

are defined with superscripts (A) and (B). During the assembly 

process, the contact model is applied only at the physical 

boundary DOF, bx . These interface forces replace the unknown 

reaction force,  tr , resulting in the assembled equations of 

motion, 
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The nonlinear contact forces generally depend on the physical 

displacements, bx , as well as the undeformed position of each 

node. The frictionless contact model is described in more detail 

later in the theory section.  

Interface Reduction 
The model in Eq. (2), with an appropriately defined contact 

algorithm, is integrated numerically in time using central 

difference explicit time integration. This direct integration 

scheme is conditionally stable and the time step is dictated by 

the highest frequency in the system of equations. The critical 

time step for the central difference scheme [8] is defined as,  

 

max

2


 crt                                 (3) 

 

The frequency max  corresponds to the highest natural 

frequency of the assembled eigenvalue problem, 

  0φMK  ˆˆ 2 , from the model in Eq. (2) that accounts for 

the penalty stiffness at the interface. The highest frequency 

content generally comes from the retention of the static 

constraint modes due to their localized kinematics. In an effort 

to increase the critical time step as well as further reduce the 

model size, an interface reduction step is applied to the 

boundary DOF using the local characteristic constraint (L-CC) 

modes described in [5, 6, 9].  

       Starting with the HCB subcomponent model in Eq. (1), the 

L-CC modes are computed from a secondary modal analysis on 

the boundary partition of the mass and stiffness matrices, 

 

  0φMK  CC
bbbb

ˆˆ 2                          (4) 

 

where CC
φ  is the local characteristic constraint mode with 

corresponding natural frequency,  . The L-CC modes are 

truncated and used to assemble the secondary subcomponent 

transformation matrix, 
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The 1cN  vector cq  corresponds to the L-CC generalized 

coordinates. Applying this transformation to Eq. (1) results in, 
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which is more compactly rewritten as, 
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Assembling the equations of motion for substructure (A) and 

(B) results in  
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Now the contact forces are explicitly computed through the L-

CC generalized coordinates, cq , using the transformation 

between physical and modal DOF. 

Contact Modeling 
A penalty method [10] is used to enforce the contact 

constraint at the boundary DOF of the HCB model. The 

constraint between two contacting node pairs is defined such 

that the gap must either be open or closed with no overlap. 

Mathematically, this is written as,  

 

  0bg x                                    (9) 

 

The gap,  bg x , is positive when open, negative when the 

contacting nodes overlap and zero when the nodes are in perfect 

contact.  

The penalty method formulation defines the contact force 

at a particular node with superscript j as, 

 

    j
b

j
cb

j
NL g nxxf ˆ               (10) 

   

where c  is the penalty stiffness value and j
n  is the interface 

normal direction. The gap used within the contact force 

equation,  b
jg xˆ , is defined as, 
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The variable  b
jg x  is the gap between node j and the 

opposing contact node. In this research, the contact surface is 

defined over a mesh where the interface nodes align and the 

deformations are assumed to be small. This simplifies the 

analysis by predefining the contact node pairs and assuming 

these do not change during the simulation.   

      The gap is computed between two node pairs: j on the 

master node and m on the slave node. Thus, the gap becomes, 

 

   jjmjm
b

j signg nddx                       (12) 

 

and the distance vector between the two nodes is, 

 

   mmjjjm
xXxXd                         (13) 

  

The distance is a function of the undeformed nodal position, 
j

X , and the physical displacement j
x . 

NUMERICAL RESULTS 

Model Description 
        The model under consideration consists of two blocks of 

equal dimensions (25.4 x 38.1 x 50.8 mm), separated by an 

initial 15.24 mm gap.  Each block is discretized with 400 linear 

hexahedral elements, resulting in 1,782 DOF, as shown in Fig. 

1. The blocks are made of an idealized elastic material with 

Young’s Modulus of 5,171 GPa, Poisson’s ratio of 0.2 and a 

mass density of 0.6522 g/cc.  At the beginning of the analysis, 

the “right” block has zero initial velocity and the “left” block 

has an initial velocity of 3,810 m/s towards the opposing block. 

This high initial velocity is selected to reduce overall analysis 

time. All the nodes on the contacting faces of each block are 

defined as the boundary DOF for the HCB formulation. This 

results in two HCB models each having a total of 162 boundary 

DOF, leaving a possible 1,620 fixed-interface modal DOF. 

 

 
Figure 1. Finite Element Model Under Consideration 

 

      The response of the block models is numerically computed 

with a conditionally stable and second order accurate central 

difference explicit time integration scheme [8]. A penalty 

stiffness value of 175E+09 N/m was used to define the node-to-

node contact. Preliminary simulations of the impact reveal some 

common issues related to contact modeling with the penalty 

method. Defining a penalty stiffness that is too small allows 

excessive penetration between structures during contact, but too 

high of stiffness values introduce convergence issues and 

numerical instabilities. The advantage to using this approach is 

that it is simple to implement numerically and requires no 

iterative solvers when using explicit integration schemes.  

HCB Model Reduction 
The critical time steps were computed for the assembled 

HCB models with the penalty springs engaged at all the 

interface DOF; these values are listed in Table 1 for models of 

varying fixed-interface mode fidelity. The mean solve time 

corresponds to the amount of CPU time required to solve for 

1,000 time steps when the blocks come in and out of contact. 

The HCB model with 1,619 fixed-interface modes truncates 

only one fixed-interface mode, so it is assumed to be the 

reference model for comparison.  
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Table 1. Comparison of critical time step and solver 

time for various HCB models 

FI Modes 

per 

Substructure 

Max FI 

Frequency 

(Hz) 

crt   

(sec) 

Mean 

Solve 

Time 

(sec) 

Model 

Size 

(DOF) 

1619 4.18E+06 1.38E-08 22.6 3562 

500 1.76E+06 1.48E-08 2.59 1324 

250 1.30E+06 1.49E-08 0.96 824 

100 8.49E+05 1.49E-08 0.71 524 

20 3.97E+05 1.49E-08 0.67 364 

1 3.59E+04 1.49E-08 0.61 326 

 

Truncating the fixed-interface modes drastically reduced 

the size of the system matrix and the mean solve time, but did 

not improve the critical time step. When going from 1,619 

fixed-interface modes down to one, the critical time step only 

increased by ~8% but the solve time decreased by 97%! When 

modeling contact with the penalty method, the critical time step 

remained unaffected by the truncation of the dynamic modes, 

but the overall reduction in model size significantly sped up 

simulation time.   

Each of the models presented in Table 1 were used to 

compare their accuracy relative to the reference solution (i.e. 

the 1,619 FI mode model) when there is no lateral offset of the 

impacting interfaces. The time histories of each simulation are 

shown in Fig. 2; the responses along the vertical axis 

correspond to the average x-position of all the nodes on the 

contacting faces. The solid lines correspond to the “left” block 

assigned with the initial velocity, and the dashed lines are the 

“right” block which was initially at rest. The blocks first come 

into contact around 0.4E-05 seconds. After this point, the blocks 

move in unison until about 0.8E-05 seconds, after which they 

separate and move forward with different velocities. 

 
Figure 2. Average Nodal Displacements for Various HCB 

Models 

 

A comparison of the reduced order models revealed that 

most of the predicted responses agreed well with the reference 

solution except for the 1 FI mode model and possibly the 20 FI 

mode model. Each of the two lowest fidelity models showed 

some discrepancy when visually comparing the signals. The 

contact impulse that occurred during impact produced an 

internal force with a 2/τ frequency of approximately 5.0E+05 

Hz. The maximum fixed-interface mode frequencies in Table 1 

revealed that the 20 FI mode model only kept modes up to 

3.97E+05 Hz and that some of the dynamically important 

modes were not included in the model. This internal contact 

force was not known a priori, so it was difficult to know exactly 

at what frequency to truncate the dynamic modes. However, as 

with all finite element analyses, a convergence study should be 

performed to determine when a sufficient number of modes 

have been included in the basis. 

HCB with Interface Reduction 
Next, the interface reduction was applied to the boundary 

DOF of the two HCB models by computing the L-CC modes of 

the interface partition of each block. Based on the observed 

accuracy in the previous subsection, an incremental reduction to 

the interface was applied to the 100 FI mode HCB model. The 

results in Table 2 compare the maximum characteristic 

constraint mode frequency, critical time steps, mean solve 

times, and system model size, exactly as was done in Table 1. 

The 162 CC mode model was essentially the same as the 100 FI 

mode HCB model except that the boundary DOF span modal 

space rather than physical space. Note that the mean solve times 

increased for the models with the modal interface DOF (i.e. 

0.71 sec to 3.33 sec). This cost was associated with the 

numerical implementation of the penalty method and the added 

computation needed to transform between modal and physical 

space at each time step. 

 

Table 2. Comparison of critical time step and solver 

time for various L-CC interface reduced models 

CC Modes 

per 

Substructure 

Max CC 

Frequency 

(Hz) 

crt   

(sec) 

Mean 

Solve 

Time 

(sec) 

Model 

Size 

(DOF) 

162 3.56E+06 1.49E-08 3.33 524 

100 2.21E+06 2.27E-08 3.42 400 

75 1.89E+06 2.65E-08 3.24 350 

50 1.46E+06 3.41E-08 3.11 300 

25 8.91E+05 4.69E-08 3.01 250 

6 0.05E+00 6.42E-08 2.89 212 

 

As the interface was incrementally reduced, two 

observations were made. First, going from 162 DOF down to 6 

DOF increased the critical time step by a factor of about four. 

Theoretically, this would allow for fewer steps to reach a 
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predetermined simulation period, hence reducing the cost of 

numerical time integration. (Care should be taken when 

increasing the time step with the penalty method, however, 

since this may produce convergence issues.) The second 

observation was that there was no drastic improvement in the 

mean solve time. This could be attributed to the numerical 

implementation of the penalty method and transformation 

between physical and modal coordinates, but this issue has not 

yet been resolved.  

The interface reduced models in Table 2 were used to 

simulate the contact response when there was no lateral offset of 

the impacting surfaces and the time history results are shown in 

Fig. 3.  As before, the solid line is the “left” block and dashed is 

the “right”, and the plot corresponds to the average x-position 

of all nodes on the contacting surface.  

 

 
Figure 3. Average Nodal Displacements for Various HCB 

Models with L-CC Interface Reduction 

 

Visual comparison of the various interface reduced models 

revealed that all models agreed well with the original HCB 

model. The 6 CC mode model only included rigid body modes, 

suggesting that these were the most important to capture the 

interaction between the two blocks. The fact that the two blocks 

come into contact in a uniform way suggested that this was a 

physically reasonable result and that no higher order 

deformation shapes at the interface were needed to capture the 

rebound. By going from the 1,619 FI mode HCB model down 

to the 6 CC mode model, the system model size reduced from 

3,562 DOF down to 212 DOF, and the mean solve time for 

1,000 time steps went from 22.6 sec down to 2.89 sec. The 

critical time step went from 1.38E-08 sec to 6.42E-08 sec, all 

while preserving the accuracy of the reference model.   

Blocks with 50% Lateral Offset 
The cases studied in the previous two subsections explored 

in detail the case when the blocks come together in a completely 

uniform way, such that the interface surfaces had no lateral 

offset with one another when they came into contact. In this 

subsection and the next, two other cases are explored such that 

there was only 50% and 75% lateral offset of the interface 

surfaces. This was achieved by offsetting the undeformed 

position of the “left” block by the appropriate amount. The 

HCB reduced models in Table 1 and the interface reduced 

models in Table 2 were used to simulate the contact response 

when the interfaces are offset laterally by 50% and the time 

history results are shown in Figs. 4 and 5, respectively. These 

results produced the same conclusions as the no lateral offset 

case presented earlier. The HCB model required only 100 FI 

modes due to the period of the contact impulse, and only 6 CC 

modes (i.e. rigid body modes) were needed to capture the 

contact interaction with interface reduction. 

 

 
Figure 4. Average Nodal Displacements for Various HCB 

Models and 50% Lateral Offset 

 
Figure 5. Average Nodal Displacements for Various HCB 

Models with L-CC Interface Reduction and 50% Lateral 

Offset 
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Blocks with 75% Lateral Offset 
Here the HCB reduced models in Table 1 and the interface 

reduced models in Table 2 were used to simulate the contact 

response when the interfaces had lateral offset of 75%; the time 

history results are shown in Figs. 6 and 7, respectively. This 

case produced different conclusions compared to the 50% and 

0% lateral offset cases. In the time histories, it was observed 

that the period of the contact impulse was longer for the 75% 

lateral offset case. As a result, the 2/τ frequency of the impact 

force was approximately 3.3E+05 Hz. The 20 FI HCB model 

performed quite well since the highest FI mode frequency was 

4.0E+05 Hz. As discussed earlier, the duration of the contact 

forces appeared to dictate the number of FI modes needed to 

retain in basis. Visual inspection of the results from the interface 

reduced models in Fig. 7 suggested that more than just the 6 CC 

modes were needed to capture the response of the 75% lateral 

offset case. The next highest fidelity model with 25 CC modes 

was deemed accurate enough and appeared to converge with the 

higher fidelity models. The contact forces occurred over a 

smaller patch on the interface surface and excited the higher 

order CC modes during the impact event. 

 

 
Figure 6. Average Nodal Displacements for Various HCB 

Models and 75% Lateral Offset 

 

 
Figure 7. Average Nodal Displacements for Various HCB 

Models with L-CC Interface Reduction and 75% Lateral 

Offset 

 

It should be noted here that all of the numerical simulations 

used the same time step in an effort to make fair comparisons 

between model fidelities. In practice, it is common to set the 

time step to 90% of the critical value, but this may be adjusted 

as necessary to obtain convergence. It was discovered that, for 

the 25 L-CC mode model, that the 90% critical time step was 

not sufficient to reach convergence, and that 80% was deemed 

accurate relative to the reference solution. Analysts should be 

careful when determining the step size for highly nonlinear 

problems involving contact. 

CONCLUSIONS 
The Hurty/Craig-Bampton substructuring method is applied 

to a finite element model with a frictionless contacting surface 

and an interface reduction technique is implemented to further 

reduce the model size and simulation time. The local-level 

characteristic constraint modes provide a secondary reduction 

to the HCB method by transforming the physical DOF to a 

truncated set of interface modes. The contact at the interface is 

modeled with the penalty method assuming that the 

deformations are small and that the finite element mesh aligns 

such that the contacting node pairs are defined a priori.  The 

method is demonstrated on a model where two elastic blocks 

come into contact and rebound off one another. Three cases are 

explored such that the interface surfaces have no lateral offset, 

and are offset by 50% or 75%. The HCB method shows a 

reduction in the simulation time but no useful increase in the 

critical time step for the explicit integrator. Comparisons of the 

time histories suggest that the reduction basis needs fixed-

interface modes that capture the 2/τ frequency of the impact 

force, which depends on the amount of lateral offset on the 

interface surfaces. As with most finite element analyses, a 

convergence study should be performed to determine when a 
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sufficient number of modes has been included in the basis. 

When applying interface reduction with characteristic constraint 

modes to the 100 fixed-interface mode HCB model, the model 

size decreases further and the critical time step increases. The 

results presented in this research reveal that the required 

number of characteristic constraint modes depends on the shape 

of the contact force profile at the interface. In the worst case of 

75% lateral offset, the interface reduction increases the critical 

time step by a factor of about three. This provides a significant 

improvement in the computational cost associated with 

numerical time simulations. 

This work is a preliminary study to explore the feasibility 

of using substructuring techniques to reduce the computational 

burden of models involving contact. Future work will explore 

other contact models, such as augmented Lagrange multipliers, 

and the addition of friction laws at the interface. 
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