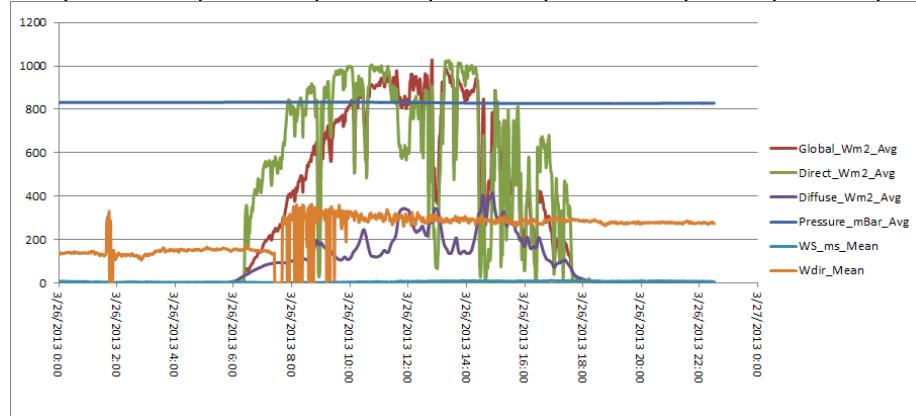
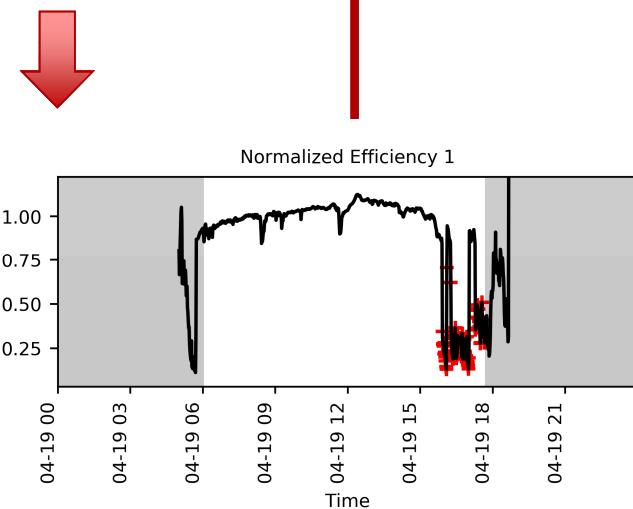
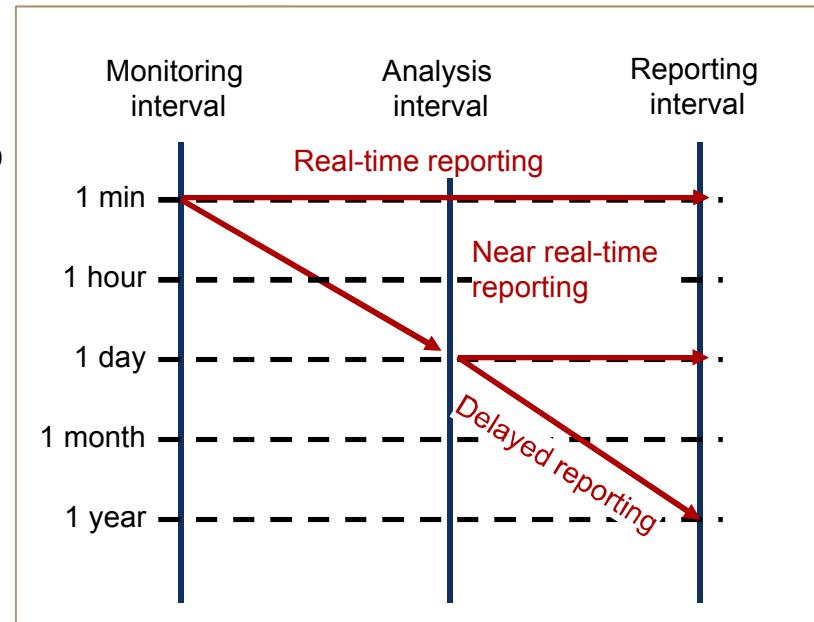


Pecos, Open Source Software for PV Performance Monitoring


8th PV Performance Modeling and Monitoring Workshop
Albuquerque, NM, May 9-10, 2017

Katherine A. Klise
Sandia National Laboratories, Albuquerque, NM

Overview



- What is Pecos?
 - Software for automated quality control and performance monitoring of time series data
- Why use Pecos?
 - Collect large amounts of data on multiple systems and locations
 - Run automatic quality control tests on that data
 - Alert system operators when the system has changed
 - Generate reports
 - Collect performance statistics to track long term system health
 - Compare system performance across sites

TOA5	CR1000	46385	CR1000.Std.24	CPU:ABQ_RTC_M ET_2013_03_21.C R1	58869	DataOut
TIMESTAMP	Global_Wm2_Avg	Direct_Wm2_Avg	Diffuse_Wm2_Avg	Pressure_mBar_Avg	WS_ms_Mean	Wdir_Mean
TS						Deg
3/26/2013 0:00	-1.16195	-0.45458	0	832.121	6.338	135.7
3/26/2013 0:01	-1.14918	-0.5455	0	832.123	5.8	136.4
3/26/2013 0:02	-1.14918	-0.52277	0	832.106	5.988	131.2
3/26/2013 0:03	-1.14918	-0.45458	0	832.0875	6.838	139.6
3/26/2013 0:04	-1.14918	-0.45458	0	832.0799	6.825	136.8
3/26/2013 0:05	-1.14918	-0.45458	0	832.0693	6.775	137
3/26/2013 0:06	-1.14919	-0.40155	0	832.0547	6.825	135.2
3/26/2013 0:07	-1.14919	-0.31063	0	832.0114	6.85	137.4
3/26/2013 0:08	-1.14921	-0.46217	0	832.0062	7.013	136.3
3/26/2013 0:09	-1.14922	-0.45459	0	832.0159	7	135.1
3/26/2013 0:10	-1.14922	-0.45459	0	832.0093	6.063	136.4
3/26/2013 0:11	-1.14921	-0.45459	0	832.0027	6.825	134.6
3/26/2013 0:12	-1.14921	-0.45459	0	831.9932	6.813	135.8
3/26/2013 0:13	-1.14921	-0.36367	0	831.9811	6.65	137.2
3/26/2013 0:14	-1.14921	-0.28791	0	832.0098	7	137.1
3/26/2013 0:15	-1.14921	-0.45459	0	832.0153	6.738	138.6
3/26/2013 0:16	-1.1492	-0.45459	0	831.9963	6.613	141.1
3/26/2013 0:17	-1.1492	-0.60612	0	832.0099	6.125	139.8
3/26/2013 0:18	-1.1492	-0.84099	0	832.0046	6.113	139.9

Getting started

- Retrieve data
 - From sensor, database, files, or from the web
 - 3Vs (volume, velocity, and variety)
 - Historical or real-time
 - Single or repeat (automated)
- Define analysis
 - Analysis/reporting time interval
 - Filters
 - Integrate models
 - Quality control tests
 - Metrics
- Final product
 - Simple to complex
 - Red/yellow/green approach
 - Time series or interactive graphics
 - Performance history
 - Dashboards hosted on the web
 - Email alerts

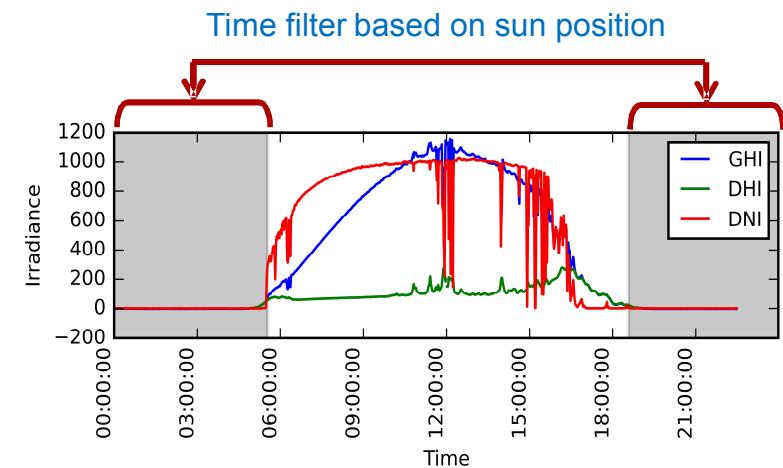
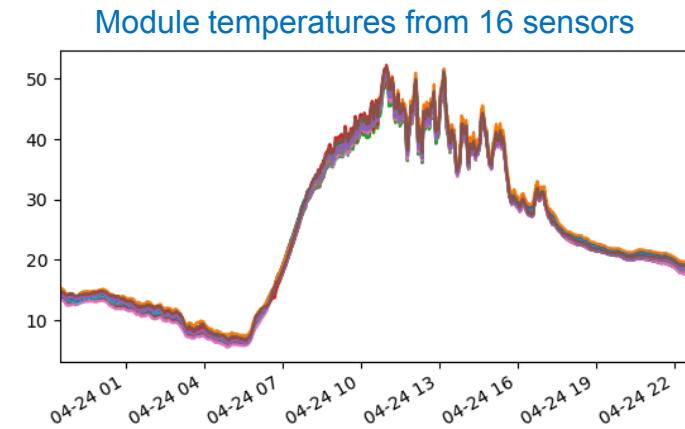
Time series data

- Time series data loaded into Pecos as a Pandas DataFrame
 - Data can be easily loaded from database, file, or web
 - Powerful time series analysis options
 - Datetime and timezone recognition
 - Merge multiple DataFrames in a single analysis (i.e. electrical and weather)
- Data acquisition methods recently added to Pecos
 - Transfer data from sensors to an SQL database
- User defines the analysis timeframe (minute, hour, day, month, ...)
- Data can be grouped and renamed according to type
- Repeat analysis automated using OS task scheduler (cron, tasks)

From database

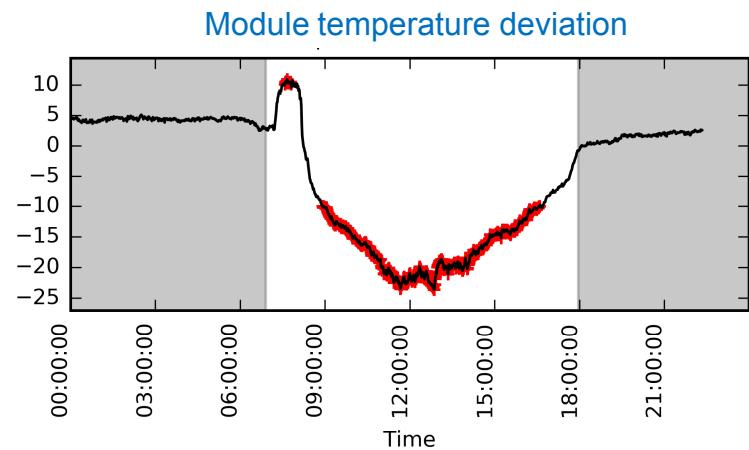
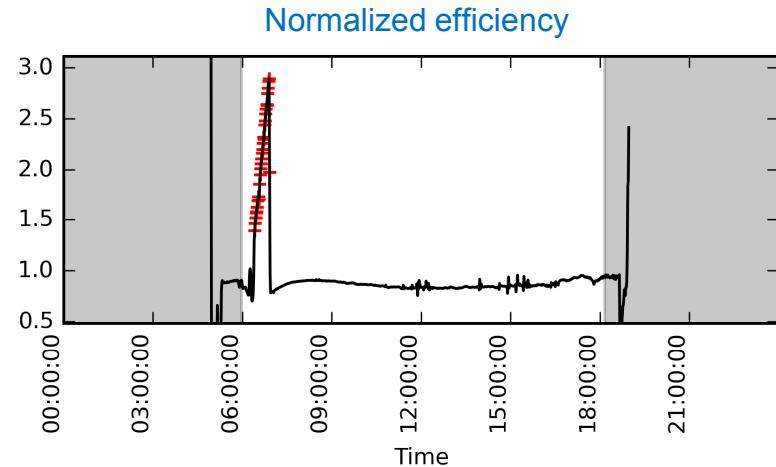
```
sql_con= MySQLdb.connect(host=ip_address, port=...)
sql_query = "SELECT * FROM table..."
df = pandas.read_sql(sql_query, con=sql_con)
```

From file



```
df = pandas.read_csv(filename)
```

From the web

```
response = requests.get(url=http://developer.nrel.gov/pvdaq/api...)
data = json.loads(response.text)
df = pandas.DataFrame(data=data['outputs']['data'])
```



Pre-processing filters

- Filter data
 - Smoothing
 - Upscale/downscale
- Fill missing data
 - Interpolation (linear, polynomial, etc.)
 - Duplicate sensors
 - Historic/regional data
 - Data generated from models
- Time filter
 - Conditional statement that exclude specific timestamps from quality control tests
 - Time filter can be based on:
 - Time of day (i.e. before 8 am and after 5 pm)
 - Sun position (i.e. sun elevation < 10 degrees)
 - Data properties (i.e. irradiance < 200 W/m²)

Composite signals

- Composite signals are used to create new data from existing data or from a model
 - Compute relationships between data columns
 - Compare measured data to a model
 - PVLIB performance model
 - Machine learning
- Examples
 - DC Power from current and voltage
 - Inverter efficiency from DC and AC power
 - Normalized efficiency from power and irradiance
 - Module temperature deviation
 - Relative error between model and data
- Composite signals can be used in the quality control tests

Quality Control tests

- Quality controls tests fall into five categories
 - Timestamp test
 - Missing data test
 - Corrupt data test
 - Range test
 - Dead sensor/abrupt change test
- When a test fails, information is stored in a summary table which can be included in automated reports and saved to file/database. Graphics can be produced that pin point the data points that caused the failure.

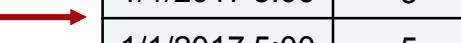
System Name	Variable Name	Start Date	End Date	Timesteps	Error Flag
PV System 1	ModTemp3_Avg	2015-06-09 19:08:00	2015-06-09 20:36:00	89.0	Data > upper bound, 90

Quality Control tests

- **Timestamp test** identifies duplicate, non-monotonic, and missing timestamps. Irregular timestamps can be preserved.
- **Missing data test** identifies column-time pairs that are missing.
- **Corrupt data test** screens for datalogger values that indicate corrupt data.

Original data

TIMESTAMP	Column A	Column B
1/1/2017 0:00	0	1
1/1/2017 1:00	2	2
1/1/2017 2:00	2	3
1/1/2017 3:00	3	4
1/1/2017 5:00	5	1
1/1/2017 6:00	6	2
1/1/2017 8:00	8	1
1/1/2017 7:00	7	1
1/1/2017 9:00	9	1
1/1/2017 9:00	9.5	2


Corrected data

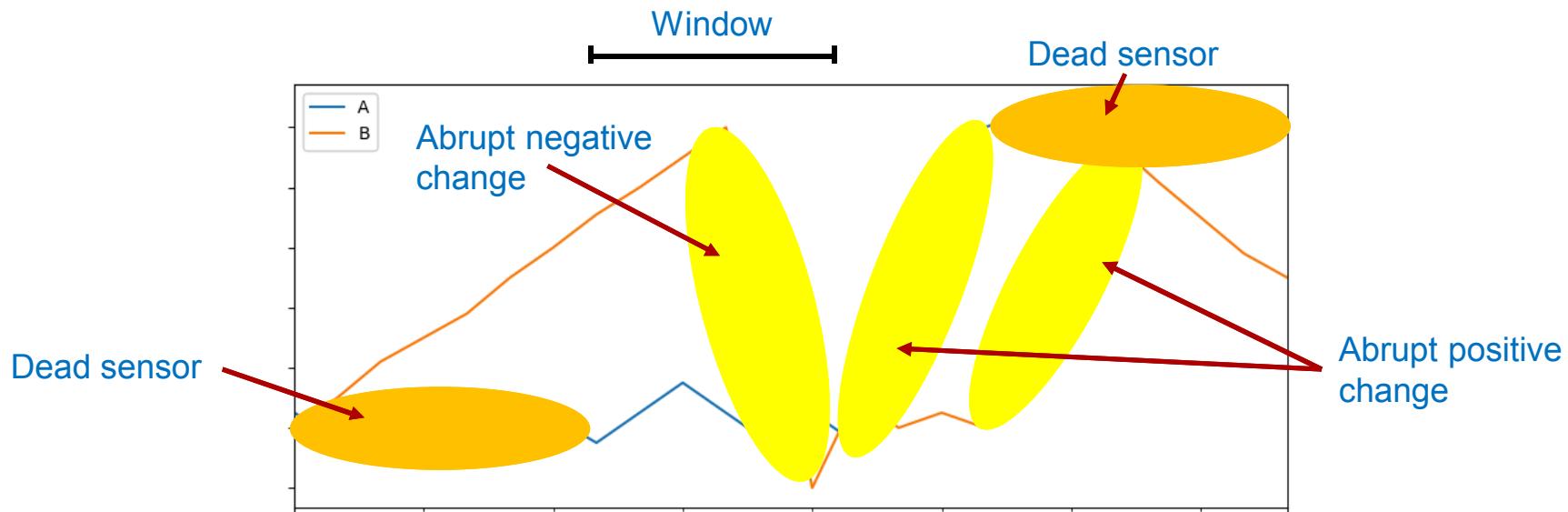
TIMESTAMP	Column A	Column B
1/1/2017 0:00	0	1
1/1/2017 1:00	NaN	2
1/1/2017 2:00	2	3
1/1/2017 3:00	3	4
1/1/2017 4:00	NaN	NaN
1/1/2017 5:00	5	1
1/1/2017 6:00	6	2
1/1/2017 7:00	7	NaN
1/1/2017 8:00	8	NaN
1/1/2017 9:00	9	1

Missing data

Missing timestamp

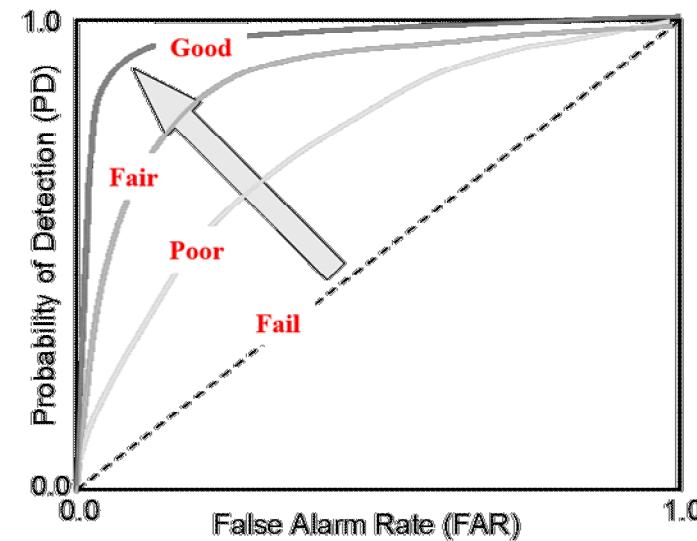
Non-monotonic timestamp

Duplicate timestamp

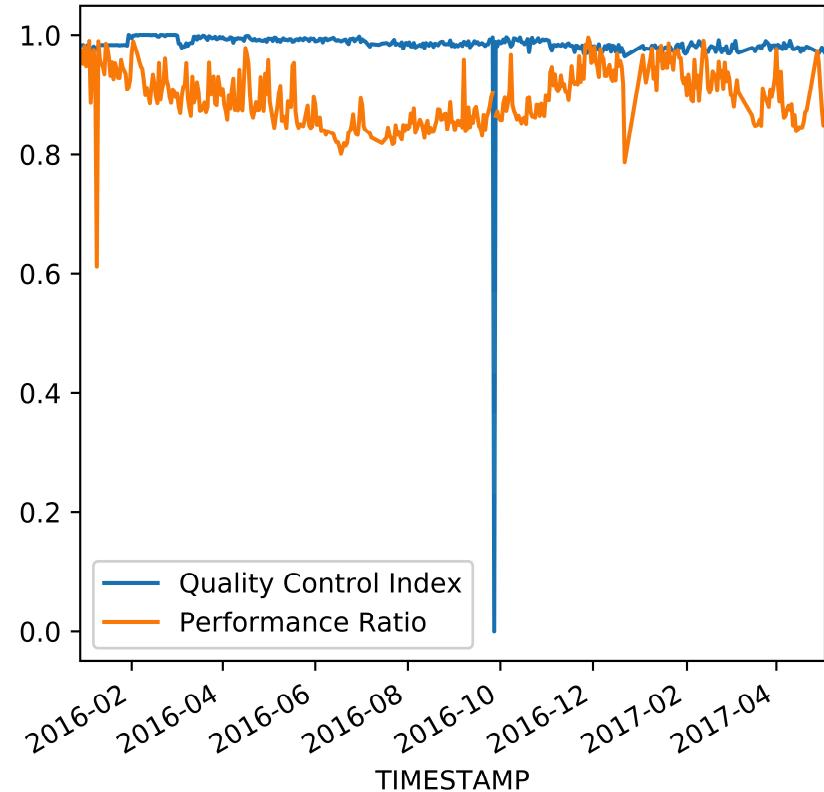


Corrupt data

Quality Control tests


- **Range tests** checks if data is within expected bounds
 - Ambient temperature should be between -30 and 50 degrees C
 - Normalized efficiency (composite signal) should be between 0.5 and 1
- **Dead sensor/abrupt change test** checks if the difference between min and max is within expected bounds over a given time span
 - Voltage should not change by more than 80% rating within 3 hours
 - The rain gauge should not increase by more than 2 inches in an hour
 - If the irradiance sensor changes by less than 0.0001 in 5 hours, it's probably dead

Evaluating quality control tests


- Evaluate how well a quality control test (or set of quality control tests) distinguishes normal from anomalous conditions.
 - Probability of detection
 - False alarm rate
- Strategies to reduce false positives and false negatives
 - Adjust thresholds
 - Specify the minimum number of consecutive failures needed to signal a warning
 - Smooth data before running quality control tests

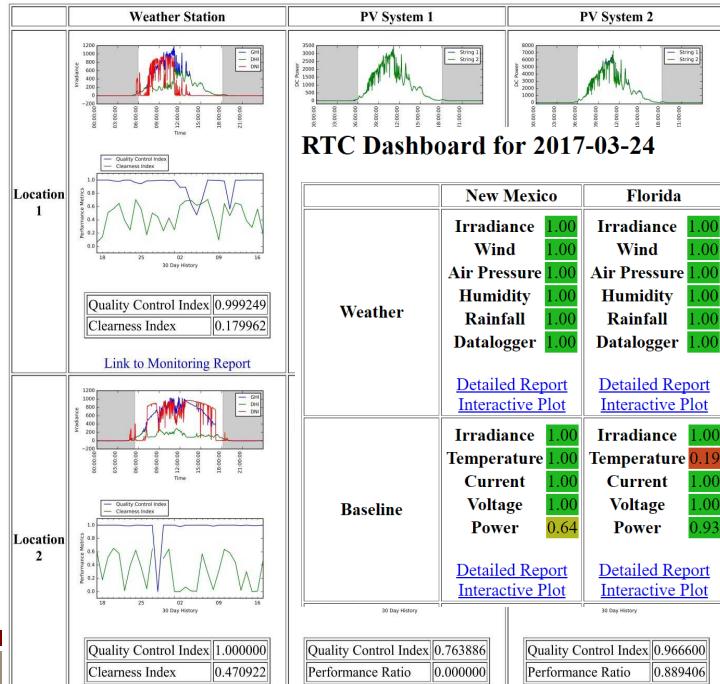
	Actual normal condition	Actual anomalous condition
Estimated normal condition	True negative (TN)	False negative (FN)
Estimated anomalous condition	False positive (FP)	True positive (TP)
	$FAR = TN / (TN+FP)$ $FAR = 1 - Specificity$	$PD = TP / (TP+FN)$ $PD = Sensitivity$

Performance metrics

- Track long term system health
- Example metrics
 - **Data availability**: percent of data that was recorded
 - **Quality control index**: percent of available data that passed all quality control tests
 - **System availability**: percent of data associated with I, V, P, inverter efficiency, and normalized efficiency that passed all quality control tests.
 - **Performance ratio**: Ratio of normalized energy to normalized irradiance
 - **Energy performance index**: ratio of measured energy to expected energy.
- Metrics can be included in automated reports and saved to file/database.

Reports, Dashboards, Results

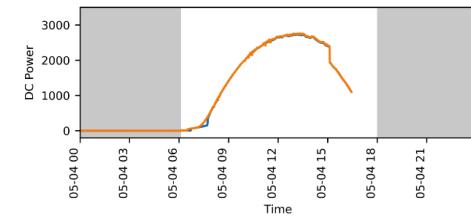
Test results (file/database)


	System Name	Variable Name	Start Date	End Date	Timesteps	Error Flag
1	SNLA_Baseline6kW	LocalAmbientTemp	2016-09-26 22:30:00-07:00	2016-09-27 21:00:00-07:00	1351	Missing data
2	SNLA_Baseline6kW	ModTemp10	2016-01-08 11:21:00-07:00	2016-01-08 11:36:00-07:00	16	Delta > upper bound, 20
3	SNLA_Baseline6kW	Sys2Iac	2016-02-08 10:17:00-07:00	2016-02-08 14:07:00-07:00	231	Data > upper bound, 10.42
4	SNLA_MET	Wdir_Mean	2016-07-22 06:29:00-07:00	2016-07-22 18:14:00-07:00	706	Delta < lower bound, 0.0001

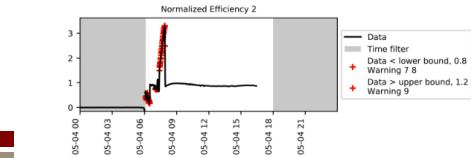
Performance metrics (file/database)

TIMESTAMP	Quality Control Index	Performance Ratio
1/1/2016	0.981411	0.981115
1/2/2016	0.980317	0.947567
1/3/2016	0.983019	0.955536
1/4/2016	0.981449	0.98997
1/5/2016	0.974129	0.886877
1/6/2016	0.97772	0.935395

Dashboards (html)


Pecos Dashboard

Monitoring reports (html)

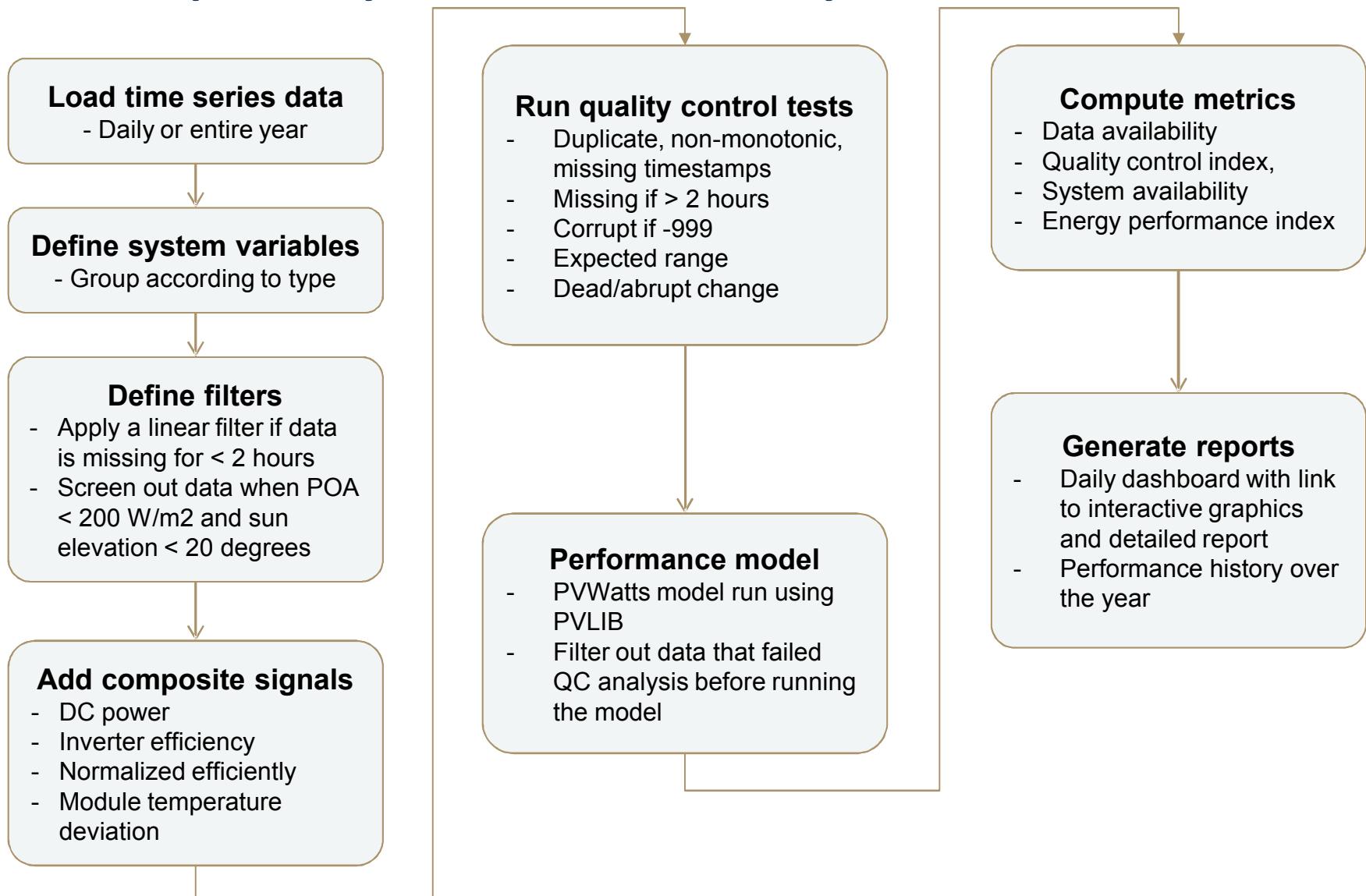

SNLA_Baseline_2017-05-04

Start time: 2017-05-04 00:00:00-07:00
 End time: 2017-05-04 23:59:00-07:00
 Test Failures: 60
 Notes: 0

Test Results:

System Name	Variable Name	Start Date	End Date	Timesteps	Error Flag
1		2017-05-04 14:08:00-07:00	2017-05-04 15:07:00-07:00	60	Duplicate timestamp
2	Normalized Efficiency	2017-05-04 06:07:00-07:00	2017-05-04 06:30:00-07:00	24	Data < lower bound, 0.8
3	Normalized Efficiency	2017-05-04 07:01:00-07:00	2017-05-04 07:10:00-07:00	10	Data < lower bound, 0.8
4	Normalized Efficiency	2017-05-04 07:24:00-07:00	2017-05-04 07:55:00-07:00	32	Data > upper bound, 1.2
...					

RTC quality control analysis


- Regional Test Center Baseline and Weather systems
 - New Mexico, Florida, Vermont, Nevada
 - 2 strings of 12 Suniva Optimus 270 Black modules
- Quality control tests and performance metrics based on IEC 61724
 - Check for data outside expected range, dead sensors, and abrupt changes
 - Compute in-service and all-in energy performance index
- Analysis run daily (near real-time), results emailed to stakeholders.
 - Two tiered reporting: Red/yellow/green dashboard with links to detailed reports and interactive graphics
- End of year report

Module specs: $P_{max} = 270 \text{ W}$, $V_{mp} = 31.2 \text{ V}$,
 $V_{oc} = 38.5 \text{ V}$, $I_{mp} = 8.68 \text{ A}$, $I_{sc} = 9.15 \text{ A}$

Weather data	Baseline PV data
GHI, DNI, DHI, air pressure, wind speed, wind direction, relative humidity	For each string: DC voltage, DC current, AC voltage, AC current, AC power, power factor, frequency, reference cell irradiance, and reference cell temperature

RTC quality control analysis

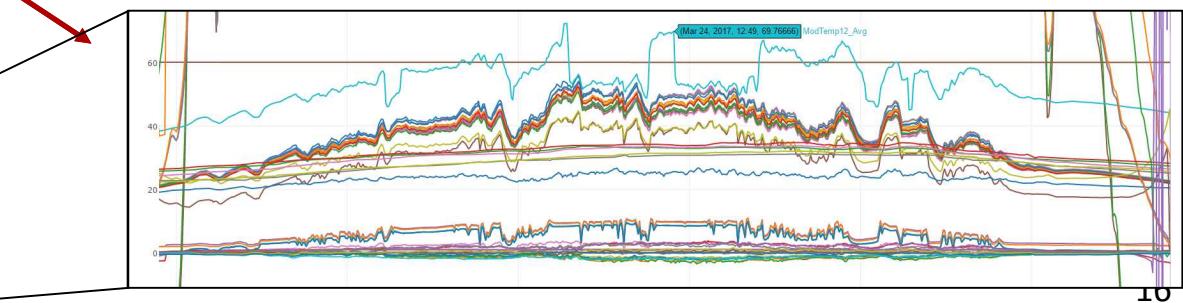
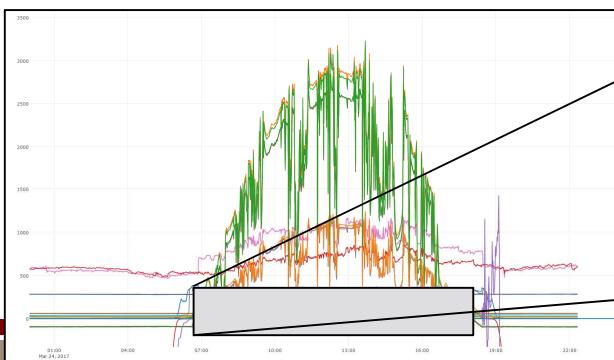
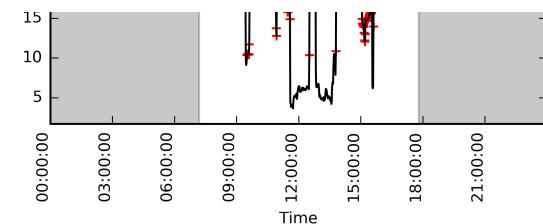
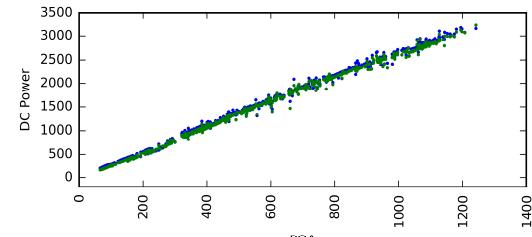
RTC quality control analysis

- Expected range, dead sensor, abrupt change thresholds

Variable	Expected range	Dead sensor threshold	Abrupt change threshold
DC current and AC current (A)	> 0 and < $Imp \times 1.5$	< 0.0001 in 5 hours	> $Imp \times 0.8$ in 15 minutes
DC voltage and AC voltage (V)	> 0 and < $Vmp \times 12 \times 1.5$	< 0.0001 in 5 hours	> $Vmp \times 12 \times 0.8$ in 15 min
DC power* and AC power (W)	> 0 and < $Pmp \times 12 \times 1.5$	< 0.0001 in 5 hours	> $Pmp \times 12 \times 0.8$ in 15 min
Power factor	> -1 and < 1	< 0.0001 in 5 hours	
Frequency(Hz)	> 57 and < 63	< 0.0001 in 5 hours	
POA, DNI, GHI, and ref cell irradiance (W/m ²)	> 0 and < 1500	< 0.0001 in 5 hours	
DHI (W/m ²)	> 0 and < 500	< 0.0001 in 5 hours	
Air pressure (mbar)	> 800 and < 1020	< 0.0001 in 5 hours	> 100 in 15 minutes
Wind speed (m/s)	> 0 and < 32	< 0.0001 in 5 hours	
Wind direction	> 0 and < 360	< 0.0001 in 5 hours	
Relative humidity	> 0 and < 100	< 0.0001 in 5 hours	> 50 in 15 minutes
Ambient temperature (°C)	> -30 and < 50	< 0.0001 in 5 hours	> 20 in 15 minutes
Module and ref cell temp (°C)	> -30 and < 90	< 0.0001 in 5 hours	> 20 in 15 minutes
Module temp deviation (°C)*	> -10 and < 10		
Inverter efficiency*	> 0.5 and < 1		> 0.25 in 15 minutes
Normalized efficiency*	> 0.5 and < 1		> 0.25 in 15 minutes

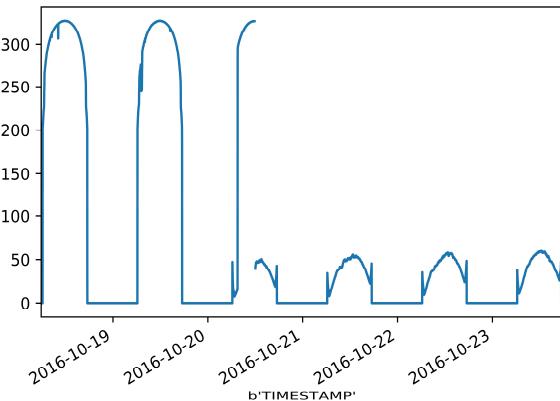
* Composite signal

RTC quality control analysis

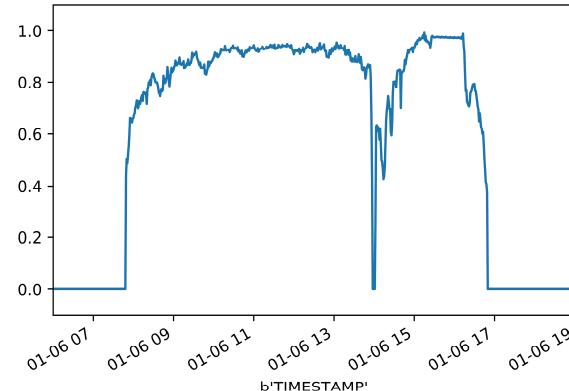




Daily report, red/yellow/green dashboard with links to details and interactive graphics

RTC Dashboard for 2017-03-24

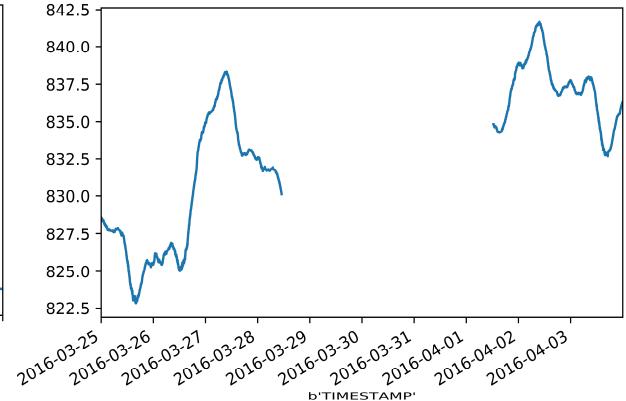
	New Mexico	Florida	Vermont	Nevada
Weather	Irradiance 1.00	Irradiance 1.00	Irradiance 0.57	Irradiance 1.00
	Wind 1.00	Wind 1.00	Wind 1.00	Wind 1.00
	Air Pressure 1.00	Air Pressure 1.00	Air Pressure 1.00	Air Pressure 1.00
	Humidity 1.00	Humidity 1.00	Humidity 1.00	Humidity 1.00
	Rainfall 1.00	Rainfall 1.00	Rainfall 1.00	Rainfall 1.00
	Datalogger 1.00	Datalogger 1.00	Datalogger 1.00	Datalogger 1.00
Detailed Report		Detailed Report	Detailed Report	Detailed Report
Interactive Plot		Interactive Plot	Interactive Plot	Interactive Plot

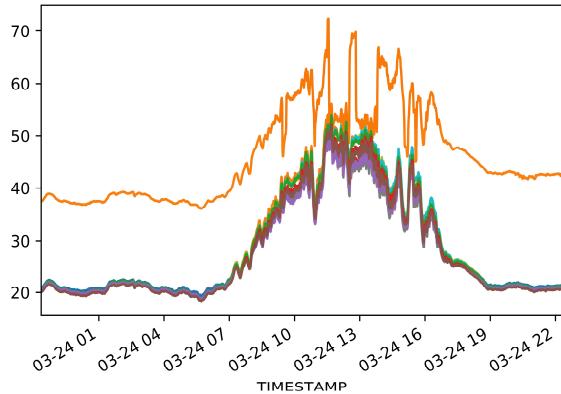


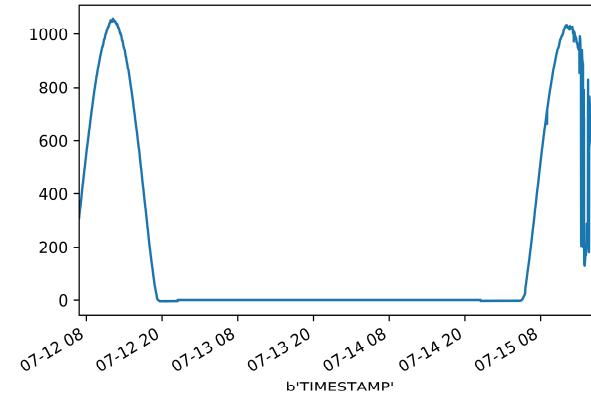
	New Mexico	Florida	Vermont	Nevada
Baseline	Irradiance 1.00	Irradiance 1.00	Irradiance 1.00	Irradiance 1.00
	Temperature 1.00	Temperature 0.19	Temperature 1.00	Temperature 1.00
	Current 1.00	Current 1.00	Current 0.27	Current 1.00
	Voltage 1.00	Voltage 1.00	Voltage 1.00	Voltage 1.00
	Power 0.64	Power 0.93	Power 0.24	Power 1.00
	Detailed Report	Detailed Report	Detailed Report	Detailed Report
Interactive Plot		Interactive Plot	Interactive Plot	Interactive Plot



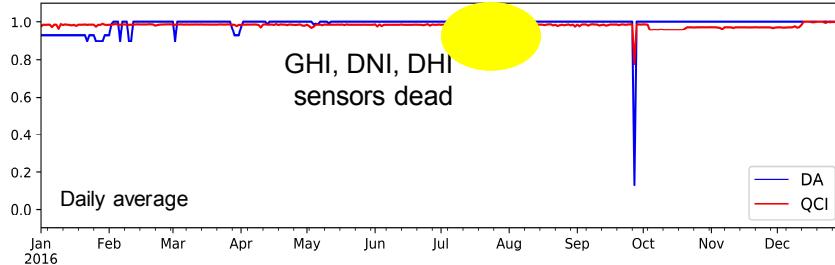
RTC quality control analysis


Data > upper bound


Abrupt change

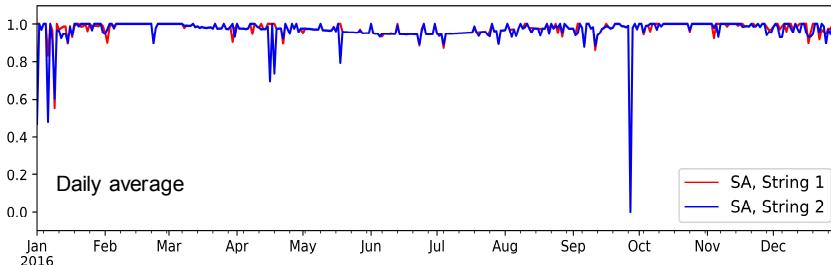

Missing data

Mismatch

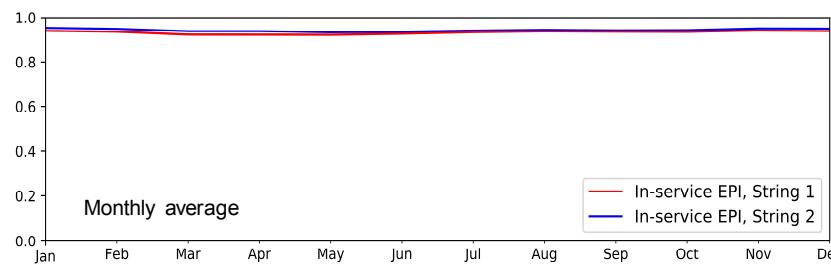

Dead sensor

RTC quality control analysis

Yearly report, daily and monthly metrics

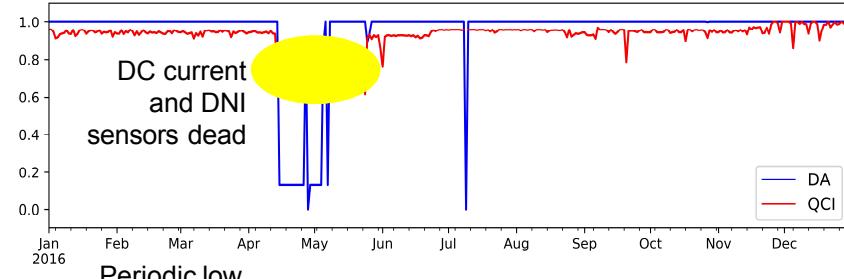

New Mexico

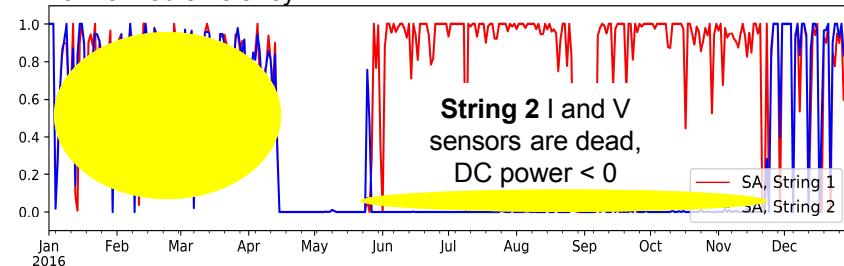
GHI, DNI, DHI
sensors dead


Daily average

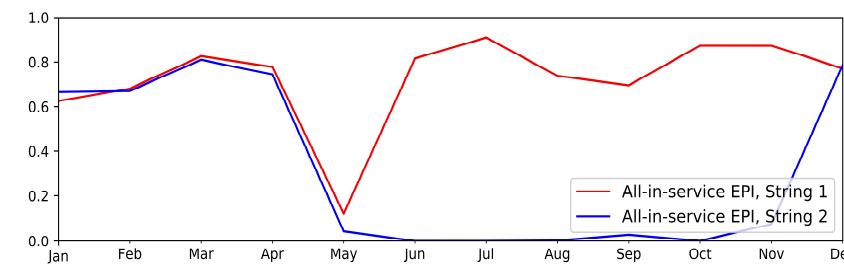
DA
QCI

Daily average

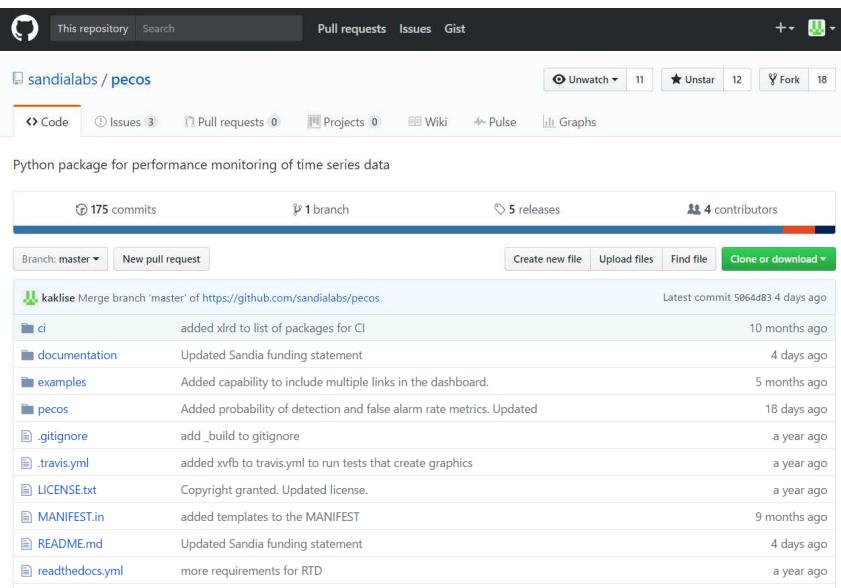

SA, String 1
SA, String 2


Monthly average

In-service EPI, String 1
In-service EPI, String 2


Vermont

Periodic low
normalized efficiency


String 2 I and V
sensors are dead,
DC power < 0

All-in-service EPI, String 1
All-in-service EPI, String 2

Pecos

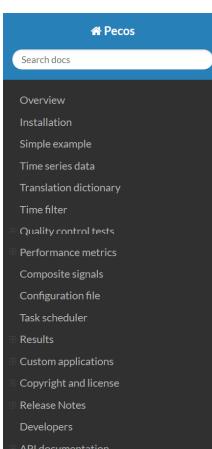
- Open-source python package
 - Python 2.7, 3.4, or 3.5
 - Revised BSD License
- Software repository
 - <https://github.com/sandialabs/pecos>
- Documentation
 - <http://pecos.readthedocs.io>
- Software testing
 - <https://travis-ci.org/sandialabs/pecos>
- ‘Getting started’ examples included with the software
- Version 0.1.5 (master branch)
 - New features include data acquisition, more flexible dashboards, PD and FAR metrics, compatibility with irregular timestamps, improved efficiency

GitHub repository: sandialabs / pecos

Code Issues Pull requests Projects Wiki Pulse Graphs

Unwatch 11 Unstar 12 Fork 18

sandialabs / pecos


Python package for performance monitoring of time series data

175 commits 1 branch 5 releases 4 contributors

Branch: master New pull request Create new file Upload files Find file Clone or download

Latest commit 50864d83 4 days ago

File	Description	Time Ago
ci	added xrdl to list of packages for CI	10 months ago
documentation	Updated Sandia funding statement	4 days ago
examples	Added capability to include multiple links in the dashboard.	5 months ago
pecos	Added probability of detection and false alarm rate metrics. Updated	18 days ago
.gitignore	add _build to gitignore	a year ago
.travis.yml	added xvfb to travis.yml to run tests that create graphics	a year ago
LICENSE.txt	Copyright granted. Updated license.	a year ago
MANIFEST.in	added templates to the MANIFEST	9 months ago
README.md	Updated Sandia funding statement	4 days ago
readthedocs.yml	more requirements for RTD	a year ago
setup.py	Update version number, bug fix in check_timestamp tests.	21 days ago

Docs > Performance Monitoring using Pecos Edit on GitHub

Performance Monitoring using Pecos

Advances in sensor technology have rapidly increased our ability to monitor natural and human-made physical systems. In many cases, it is critical to process the resulting large volumes of data on a regular schedule and alert system operators when the system has changed. Automated quality control and performance monitoring can allow system operators to quickly detect performance issues.

Pecos is an open source Python package designed to address this need. Pecos includes built-in functionality to monitor performance of time series data. The software can be used to automatically run a series of quality control tests and generate customized reports which include performance metrics, test results, and graphics. The software was developed specifically for solar photovoltaic system monitoring, but it can be customized for other applications.

Citing Pecos

To cite Pecos, use one of the following references:

- K.A. Klise and J.S. Stein (2016). Performance Monitoring using Pecos, Technical Report SAND2016-3583, Sandia National Laboratories. [pdf](#)