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What is Machine Learning?

What?
Machine Learning is the science
of programming a computer so
that they can learn from data

Two main types:
1. Supervised learning:

Inputs w/ desired outputs
2. Unsupervised learning:

Inputs w/out desired
outputs

Supervised Learning Example
Classification using Support Vector Machine

XOR data Classify new data

Not linearly seperable Non-linear classification
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Why use Machine Learning?

Why?

1. Regression

2. Classification

3. Density estimation

4. Others

Approaches:
1. Artificial Neural Networks

2. Deep Learning

3. Support Vector Machines

4. Clustering

5. Many others

Regression (Gaussian Process)

Classification (Support Vector Machine)
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How can Machine Learning Provide Value?

Design

1. Specify system
2. Estimate

production
3. Confirm

budget/financing

Build
1. System matches

design
2. Correct

Equipment/Con-
nections

3. Reliable data
monitoring

Operate

1. Monitor
2. Validate

performance
3. Identify

faults

Model Types:
1. SAPM
2. Single Diode
3. Others

Model Types:
1. N/A

Model Types:
1. Model-based
2. Model and ML
3. ML
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Machine Learning Applications?

Data Monitoring Quality: Rule-based

if True then
Report

else
No Report

end if

Outlier Detection

Validate Performance: Extensive Data
Inputs = {E,Tmodule}

Outputs = {Power}

Limited Data
InputsA = {Pnearby }

InputsB = {Eforecast }

Outputs = {Power}

Fault Analysis: Fault Detection
Anomaly/Novelty

Detection

Fault Diagnostics
Multi-Class Classification
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Data Monitoring: Rule-Based versus Outlier Detection

Problem Statement
Machine learning can use polluted data
that contains incorrect or corrupt data
records to identify outliers by assuming a
distribution.

Process

Actual Rule-Based

Outlier

Detection

0 - Good

1 - Bad

0 - Good

1 - Bad

Results
Rule-Based
Rules were not violated

if Power > Pmpp x Numbermod. x 1.2 = 7776
then

Alarm
else if Power < 0 then

Alarm
end if

Kernel Density Function
Outliers were detected
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Validate Performance: Extensive Data
Problem Statement
Machine learning can model existing PV
systems using collected weather and
performance data.

Process

Inputs:
Irrad.
Tmod

SunAngle

SAPM

Train

Test

Machine Learning

Power

Power

Train: 01/16 to 12/16 -> Test: 01/17 to 04/17

Results
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Validate Performance: Limited Data

Problem Statement
Machine learning can model existing
PV systems where power is the only
monitored value. The algorithm can
associate PV power with nearby
system outputs and forecasted
irradiance.

Process

Inputs

A.
Nearby Power

SunAngle

B.
Forecast Irrad

SunAngle

Train

Test

Machine Learning

Power

Results
Inputs A:

1. Nearby

Power

(17km)

2. Sun
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Model vs Actual PV Power

y = 0.895x + 0.069 (r2=0.902)

Inputs B:

1. Forecast

Irrad.

(NOAA)

2. Sun

Angle 0.0 0.5 1.0 1.5 2.0

Actual Power (kW)
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Model vs Actual PV Power

y = 0.825x + 0.143 (r2=0.796)
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FDD: Novelty Detection (I-V Data)

Problem Statement
Machine learning can be used to perform
binary classification of I-V curve data.

Process
Classification

I-V Data

Irrad.
Tm

Classification

Condition

Estimation

I-V Data

Irrad.
Tm

Estimation

Production ∆

Classification

TN=242
FN=0

TP=82
FP=0 Positive

Negative

Estimate Loss
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FDD: Novelty Detection (Max Power Point Data)

Problem Statement
Machine learning can be used to
identify anomalies automatically by
training on “clean” data and testing
on new, possibly polluted,
observations.

Process

SAPM

Actual

Train

Test

Novelty Detection

0 - Good

1 - Bad

Train & Test Results
Train
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SAPM

Test
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FDD: Classification (Max Power Point Data)

Problem Statement
Machine learning can be
used to classify fault
conditions and estimate lost
revenue.

Process

Model

Actual

Train

Test

Classification

Condition

Lost Revenue

Results
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Summary

Machine Learning
1. What?

1.1 machines can learn
1.2 two main types of

learning
2. Why?

2.1 Regression
2.2 Classification

3. How?
3.1 Monitor
3.2 Validation
3.3 Faults

Examples
1. Data Quality

1.1 Outlier Detection
provides detailed review
of collected data sets

2. Performance Validation
2.1 ML can model PV

power, current, and
voltage given various
inputs

3. Fault Detection
3.1 Classify I-V curve and

MPP data
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Questions

C. Birk Jones
email: cbjones@sandia.gov

phone: 505-844-9261
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