SAND2017-4935C

GeFonce

AMD Fusion

FAMLY OF ApUg

[

Kokkos: The C++ Performance Portability Programming
Model

Christian Trott (crtrott@sandia.gov), Carter Edwards

D. Sunderland, N. Ellingwood, D. Ibanez, S. Hammond, S. Rajamanickam, K. Kim, M. Deveci, M. Hoemmen, G.

Center for Computing Research, Sandia National Laboratories, NM
SAND2017-4889 C
@.._.\mmw -l.'D‘ Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia,

ENERGY TN A LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
i under contract DE-NA-0003525.




New Programming Models ) .

= HPCis at a Crossroads
= Diversifying Hardware Architectures
= More parallelism necessitates paradigm shift from MPI-only

= Need for New Programming Models

= Performance Portability: OpenMP 4.5, OpenACC, Kokkos, RAJA, SyCL,
C++207, ...

= Resilience and Load Balancing: Legion, HPX, UPC++, ...

= Vendor decoupling drives external development

What is Kokkos?
What is new?
Why should you trust us?




Kokkos: Performance, Portability and Productivity =~ @ E=




Performance Portability through Abstraction

Separating of Concerns for Future Systems...

A 4

Data Structures

- Multiple-Levels
- Logical Space (think UVM vs explicit)

Viemory Layouts (“How

- Architecture dependent index-maps
- Also needed for subviews

a Memory Trafts

- Access Intent: Stream, Random, ...
- Access Behavior: Atomic

- Enables special load paths: i.e. texture

Parallel Execution

Execution Spaces (“Where”)

- N-Level
- Support Heterogeneous Execution

Execution Patterns (“What”)

- parallel_for/reduce/scan, task spawn
- Enable nesting

Execution Policies (“How”)

- Range, Team, Task-Dag
- Dynamic / Static Scheduling
- Support non-persistent scratch-pads



Capability Matrix

Implementation
Technique

Kokkos C++ Abstraction
OpenMP Directives
OpenACC Directives
CUDA Extension
OpenCL Extension
C++AMP Extension
Raja C++ Abstraction
TBB C++ Abstraction
C++17 Language

Fortran2008 Language

X X X

(X)
(X)

X X X X X

=
&
=
&
ot
o
]
=
=
=)
=
17/]

uonINPIRY

X X X

X X

| Gd | LRLA

X X X

(X)
(X)

X X X

P3SN ApYSILL

sdoo parsaN
Apysn-uoN

wisIpeIed yselL

X X X X X X

X X X

SUONBIO[[V vIe(
sIdJsued], eje(q

X X X X X X

(X)
(X)

Sandia
National
' Laboratories

SUONIBIISqY
BJR(J PIIUBAPY



Example: Conjugent Gradient Solver

= Simple Iterative Linear Solver
= For example used in MiniFE

= Uses only three math operations:
= Vector addition (AXPBY)
= Dot product (DOT)
= Sparse Matrix Vector multiply (SPMV)

= Data management with Kokkos Views:

View<double*,HostSpace,MemoryTraits<Unmanaged> >
h_x(x_in, nrows);

View<double*> x("x",nrows);

deep_copy(x,h_x);




CG Solve: The AXPBY )=,

= Simple data parallel loop: Kokkos::parallel for
= Easy to express in most programming models
= Bandwidth bound

= Serial Implementation:

void axpby(int n, double* z, double alpha, const double* x,
double beta, const double* y) {
for(int i=0; i<n; i++)
z[i] = alpha*x][i] + beta™yl[i];

, Loop Body ]
= Kokkos Implementation:
void axpby(int n, View<doub le alpha, View<const dou¥> X,
w<const double*>y) {
parallel_for("AXpB y4n, LAMBDA ( const irfi& i) { ]
Z(i) = alpha*x(i) + beta*y(i);
D;

}




CG Solve: The Dot Product ) =

= Simple data parallel loop with reduction: Kokkos::parallel reduce

= Non trivial in CUDA due to lack of built-in reduction support
= Bandwidth bound
= Serial Implementation:

double dot(int n, const double* x, const double* y) {
double sum = 0.0;
for(int i=0; i<n; i++)
sum += x[iT*y{i];
return sum;

} [ lteration Index + Thread-Local Red. Varible J

= Kokkos Implementation:
double dot(int n, View<const e*> x, View<const double*>y) {

double x_dot y =0.0;

parallel reduce("Dot",
sum += x[i]*y[i];

}, x_dot_y);

return x_dot_y;

, KOKKOS LAMBDA (const intéi i,double& sum) { ]




CG Solve: The SPMV ) =

= Loop over rows

= Dot product of matrix row with a vector

= Example of Non-Tightly nested loops

= Random access on the vector (Texture fetch on GPUs)

Inner dot product row x vector J

ets, const int* A_cols,
const double* x) {

fbr(int row=0; row<nrows; ++row)
double sum = 0.0;
int row_start=A_row_offsets




CG Solve: The SPMV ) =

void SPMV(int nrows, View<const int*> A_row_offsets,
View<const int*> A_cols, View<const double*>A_vals,
View<double*>y,
View<const double*, MemoryTraits< RandomAccess>> x) {
#ifdef KOKKOS_ENABLE_CUDA
int rows_per_team = 64;int team_size = 64;
#else
int rows_per_team = 512;int team_size = 1;
#endif

((nrows+rows_per_team-1)/rows_per_team,team_size,8),

arallel_for("SPMV:Hierarchy", TeamPolicy< Schedule< Static > > J
KOKKOS_LAMBDA (const TeamPolicy<>::

ber_type& team) {

const int first_row = team.league_rank()*rows_|
const int last_row = first_row+rows_per_team<nr

~_team;
s? first_row+rows_per_team : nrows;

p{ralIeI_for(TeamThreadRange(team,first_row,last_r [&] (const int row) {]
CONST INT row_start=A_Tow_offSetS[roysk

const int row_length=A_row_offsets[r

doubley row;

parallel_reduce(ThreadVectorRange(team,row_leng inti,double& sum) {
sum +=A_vals(i+row_start)*x(A_cols(i+row_start));
}, y_row);
y(row) = y_row;
1); — . . .
}})’ Row x Vector dot product }




CG Solve: Performance

= Comparison with other

NVIDIA P100 / IBM Power8

Programming Models =
= Straight forward i
implementation of
kernels SRR BB REE RRL R EMRm

AXPBY-100 AXPBY-200

= OpenMP45is
immature at this point

[e2}
o

= Two problem sizes:
100x100x100 and
200x200x200 elements

N w B (%
o o o o

Performance [Gflop/s]

[y
o

o

DOT-100 DOT-200 SPMV-100 SPMV-200

B OpenACC B CUDA M Kokkos M OpenMP

Intel KNL 7250

AXPBY-100 AXPBY-200

DOT-100 DOT-200 SPMV-100 SPMV-200

B OpenACC B Kokkos M QOpenMP TBB (Flat) M TBB (Hierarchical)



Custom Reductions With Lambdas  @&s.

= Added Capability to do Custom Reductions with Lambdas

= Provide built-in reducers for common operations
= Add,Min,Max,Prod,MinLoc,MaxLoc,MinMaxLoc,And,Or,Xor,

= Users can implement their own reducers

= Example Max reduction: Reduction Performance
600
double result
parallel_reduce(N, 500
KOKKOS_LAMBDA(const int& i, Y
double& Imax) { é'% 400
if(lmax < a(i)) Imax = a(i); £
},Max<double>(result)); % 300
=
2 200
©
o0
||| |I|
0
P100 KNL
mSum mMax mMaxLoc 12




New Features: MDRangePolicy .

= Many people perform structured grid calculations

= Sandia’s codes are predominantly unstructured though
= MDRangePolicy introduced for tightly nested loops
= Usecase corresponding to OpenMP collapse clause

void launch (int NO, int N1, [ARGS]) {

parallel_for(MDRangePolicy<Rank<3>>({0,0,0},{NO,N1,N2}), Albany Kernel
KOKKOS_LAMBDA (inti0, inti1) 600
{I..*1});
} 500
= QOptionally set iteration order and tiling: 400
%’300
MDRangePolicy<Rank<3,lterate::Right,lterate::Left>> &
({0,0,0},{NO,N1,N2},{T0,T1,T2}) 200

100

0

KNL P100

m Naive mBest Raw m MDRange

13




New Features: Task Graphs

= Task dags are an important class of algorithmic structures
= Used for algorithms with complex data dependencies

= For example triangular solve
= Kokkos tasking is on-node
= Future based, not explicit data centric (as for example Legion)

= Tasks return futures
= Tasks can depend on futures

= Respawn of tasks possible
= Tasks can spawn other tasks

= Tasks can have data parallel loops

= |.e. atask can utilize multiple threads like the hyper threads on a core or a
CUDA block

Carter Edwards S7253 “Task Data Parallelism” , Right after this talk.
14




New Features: Pascal Support

= Pascal GPUs Provide a set of new Capabilities
= Much better memory subsystem
= NVLink (next slide)
= Hardware support for double precision atomic add

= Generally significant speedup 3-5x over K80 for Sandia Apps

Lammps Tersoff Potential Atomic Bandwidth
160
=
g 140 ---K40
& 120 - 4--K80 0
o m
o 100 -©--P100 O
4 i=
S 80 —8—K40 Atomic ¢
g 60 —a— K80 Atomic 'g 512
ke .2 01
[

< 40 —8—P100 Atomic &
c m
L2 5 0.01
= =N

0 0.001

4000 32000 256000 2048000 Update Array Size

Number of Atoms
15




New Features: HBM Support UL

= New architectures with HBM: Intel KNL, NVIDIA P100

= Generally three types of allocations:
= Page pinned in DDR

= Page pinned in HBM
= Page migratable by OS or hardware caching

Kokkos supports all three on both architectures
= For Cuda backend: CudaHostPinnedSpace,CudaSpace and CudaUVMSpace
= E.g.: Kokkos::View<double*, CudaUVMSpace> a(”A”,N);

P100 Bandwidth with and without data Reuse

1000

% =0 —90—0——0——0-

O 100

= —a— HostPinned 1
= Ak—k & 7 ==

2 - ==--HostPinned 32
3 10

c ——UVM 1
o -e--UVM 32

0.125 025 0.5 1 2 4 8 16 32 64
Problem Size [GB] 16




Upcoming Features ) S,

= Support for OpenMP 4.5+ Target Backend
= Experimentally available on github
= CUDA will stay preferred backend
= Maybe support for FPGAs in the future?
= Help maturing OpenMP 4.5+ compilers

= Support for AMD ROCm Backend
= Experimentally available on github
= Mainly developed by AMD
= Support for APUs and discrete GPUs
= Expect maturation fall 2017




Beyond Capabilities )

= Using Kokkos is invasive, you can’t just swap it out
= Significant part of data structures need to be taken over

= Function markings everywhere
= |t is not enough to have initial Capabilities

= Robustness comes from utilizations and experience
= Different types of application and coding styles will expose different
corner cases
= Applications need libraries
= |nteraction with TPLs such as BLAS must work
= Many library capabilities must be reimplemented in the programming
model
= Applications need tools

= Profiling and Debugging capabilities are required for serious work
18




Timeline ) B

2008 Initial Kokkos: Linear Algebra for Trilinos
2011 Restart of Kokkos: Scope now Programming Model
2012 Mantevo MiniApps: Compare Kokkos to other Models
2013 LAMMPS: Demonstrate Legacy App Transition
Trilinos: Move Tpetra over to use Kokkos Views
s Multiple Apps start exploring (Albany, Uintah, ...)
2015 Github Release of Kokkos 2.0
2016 Sandia Multiday Tutorial (~80 attendees)
Sandia Decision to prefer Kokkos over other models
2017 DOE Exascale Computing Project starts

Kokkos-Kernels and Kokkos-Tools Release

19




th

Initial Demonstrations (2012-2015)

= Demonstrate Feasibility of Performance Portability

= Development of a number of MiniApps from different science domains

= Demonstrate Low Performance Loss versus Native Models

= MiniApps are implemented in various programming models

= DOE TriLab Collaboration

LULESH-FiguresofMeritResults{Problem+60)+
= Show Kokkos works for

Sandia
National
Laboratories

nigher' B HSW'"x16" B HSW'"ix32" B P8"1x40'XL" M KNC"x224" [JARM64"x8" B NV'K40"

other labs app setet 4 00"

= Note this is historical data: , oo,
Improvements were ‘Z’ 8000"

. o 6000"

found, RAJA implemented 2 .
similar optimization etc. 2000"

OH

&

QQS\ N

@) OQ&




Training the User-Base T
= Typical Legacy Application Developer

= Science Background

= Mostly Serial Coding (MPI apps usually have communication layer few
people touch)

= Little hardware background, little parallel programming experience

= Not sufficient to teach Programming Model Syntax
= Need training in parallel programming techniques

= Teach fundamental hardware knowledge (how does CPU, MIC and GPU
differ, and what does it mean for my code)

= Need training in performance profiling

= Regular Kokkos Tutorials

= ~200 slides, 9 hands-on exercises to teach parallel programming
techniques, performance considerations and Kokkos

= Now dedicated ECP Kokkos support project: develop online support
community

= ~200 HPC developers (mostly from DOE labs) had Kokkos training so fary4



Keeping Applications Happy )

= Never underestimate developers ability to find new corner
cases!!

= Having a Programming Model deployed in MiniApps or a single big app is
very different from having half a dozen multi-million line code customers.

= 538 Issues in 24 months Issues since 2015

= 28% are small enhancements

= 18% bigger feature requests 600 = Enhancements

= 24% are bugs: often corner cases 500 m Feature Request
= Example: Subviews 400 e

= |nitially data type needed to match 300 :er:;:l:r:slssue

including compile time dimensions

= Allow compile/runtime conversion 200 momer

= Allow Layout conversion if possible 100

= Automatically find best layout 0

= Add subview patterns Issues

22



Testing and Software Quality UL

Development/Tests

SEMICH aa—
S
Q

Revi
Tests

Nightly, UnitTests
Develop 24

Warnings as Errors

New Features are developed on forks, and branches.
Limited number of developers can push to develop
branch. Pull requests are reviewed/tested.

Compilers | GCC (4.8-6.3), Clang (3.6-4.0),
Intel (15.0-18.0), IBM (13.1.5, 14.0),
PGI (17.3), NVIDIA (7.0-8.0)

Hardware | Intel Haswell, Intel KNL, ARM V8,

Trilinos, LAMMPS, ...

Multi config integration test

IBM Power8, NVIDIA K80,
NVIDIA P100

Integration
——

Release Version
VESG S aa—

Backends | OpenMP, Pthreads, Serial, CUDA

Each merge into master is minor release.
Extensive integration test suite ensures
backward compatibility, and catching of
unit-test coverage gaps.




Building an EcoSystem UL

J
J

MiniApps Applications

Trilinos
(Linear Solvers, Load Balancing,
Discretization, Distributed Linear
Algebra)

Kokkos — Kernels
(Sparse/Dense BLAS, Graph Kernels, Tensor
Kernels)

Kokkos — Tools
(Kokkos aware Profiling and Debugging Tools)

Algorithms Containers
(Random, Sort) (Map, CrsGraph, Mem Pool)

Kokkos — Support Community
(Application Support, Developer Training)

Kokkos
(Parallel Execution, Data Allocation, Data Transfer)

std::thread OpenMP CUDA
24




Kokkos Tools ) =

https://qgithub.com/kokkos/kokkos-tools

= Utilities
= KernelFilter: Enable/Disable Profiling for a selection of Kernels

= Kernel Inspection

= KernellLogger: Runtime information about entering/leaving Kernels and
Regions

= KernelTimer: Postprocessing information about Kernel and Region Times

= Memory Analysis
= MemoryHighWater: Maximum Memory Footprint over whole run
= MemoryUsage: Per Memory Space Utilization Timeline
= MemoryEvents: Per Memory Space Allocation and Deallocations

= Third Party Connector
= VTune Connector: Mark Kernels as Frames inside of Vtune

= VTune Focused Connector: Mark Kernels as Frames + start/stop profiling
25




Kokkos-Tools: Example MemUsage @&

= Tools are loaded at runtime

= Profile actual release builds of applications
= Set via: export KOKKOS_PROFILE_LIBRARY=[PATH_TO PROFILING_LIB]

= Qutput depends on tool

= Often per process file

= MemoryUsage provides per MemorySpace utilization timelines
= Time starts with Kokkos::initialize

= HOSTNAME-PROCESSID-CudaUVM.memspace_usage

# Space CudaUVM

# Time(s) Size(MB) HighWater(MB) HighWater-Process(MB)
0.317260 38.1 38.1 81.8

0.377285 0.0 38.1 158.1

0.384785 38.1 38.1 158.1

0.441988 0.0 38.1 158.1

26



Kokkos-Kernels =N

= Provide BLAS (1,2,3); Sparse; Graph and Tensor Kernels
= No required dependencies other than Kokkos
= Local kernels (no MPI)
= Hooks in TPLs such as MKL or cuBLAS/cuSparse where applicable
= Provide kernels for all levels of hierarchical parallelism:
=  Global Kernels: use all execution resources available
= Team Level Kernels: use a subset of threads for execution

= Thread Level Kernels: utilize vectorization inside the kernel
= Serial Kernels: provide elemental functions (OpenMP declare SIMD)

=  Work started based on customer priorities; expect multi-year effort for
broad coverage

= People: Many developers from Trilinos contribute

= Consolidate node level reusable kernels previously distributed over multiple
packages

27




7| Netora

Kokkos-Kernels: Dense Blas Example

= Batched small matrices using an interleaved memory layout
= Matrix sizes based on common physics problems: 3,5,10,15
= 32k small matrices

= Vendor libraries get better for more and larger matrices

Batched DGEMM 32k blocks Batched TRSM 32k blocks
2.5E+11 2E+11
0 0
o o
o 2E+11 o
(ED (ED 1.5E+11
8 1.5E+11 8
% % 1E+11
g 1E+11 g
e} O B5E+10
E 5E+10 E
o o
0 0
3 5 10 15 3 5 10 15
Matrix Block Size Matrix Block Size
-&= MKL @ KNL —— KK @ KNL -8= MKL @ KNL —— KK @ KNL
-4= CUBLAS @ P100 =—#— KK @ P100 -4= CUBLAS @ P100 =—#— KK @ P100 28




Kokkos Users Spread

= Users from a dozen major institutions
= More than two dozen applications/libraries

" |Including many multi-million-line projects
Sandia - )
National l intel
@ Laboratories AR L/

° Los Alamos
NATIONAL LABORATORY
EST.1943

U.S.NAVAL

ESEARC
USERS LABORATORY

V)
C
O
o+
)
2
&
e
o
@)
@)
C
Q
=z
o
(q0)
aa)

0K RIDCE <ANVIDIA.
BERKELEY LAB
THE
U UNIVERSITY
OF UTAH AMD 1



Further Material .
= https://github.com/kokkos Kokkos Github Organization

Kokkos: Core library, Containers, Algorithms

Kokkos-Kernels: Sparse and Dense BLAS, Graph, Tensor (under development)
Kokkos-Tools: Profiling and Debugging

Kokkos-MiniApps: MiniApp repository and links

Kokkos-Tutorials: Extensive Tutorials with Hands-On Exercises

= https://cs.sandia.gov Publications (search for "Kokkos’)

Many Presentations on Kokkos and its use in libraries and apps

= Talks at this GTC:

Carter Edwards S7253 “Task Data Parallelism” , Today 10:00, 211B
Ramanan Sankaran, S7561 “High Pres. Reacting Flows”, Today 1:30, 212B
Pierre Kestener, S7166 “High Res. Fluid Dynamics”, Today 14:30, 212B
Michael Carilli, S7148 “Liquid Rocket Simulations”, Today 16:00, 212B
Panel, S7564 “Accelerator Programming Ecosystems”, Tuesday 16:00, Ball3
Training Lab, L7107 “Kokkos, Manycore PP”, Wednesday 16:00, LL21E 30



.
.
http://www.github.com/kokkos



