
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, 
LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration 
under contract DE-NA-0003525.

Kokkos: The C++ Performance Portability Programming 
Model

Christian Trott (crtrott@sandia.gov), Carter Edwards
D. Sunderland, N. Ellingwood, D. Ibanez, S. Hammond, S. Rajamanickam, K. Kim, M. Deveci, M. Hoemmen, G.  

Center for Computing Research, Sandia National Laboratories, NM
SAND2017-4889 C

SAND2017-4935C



New Programming Models

 HPC is at a Crossroads
 Diversifying Hardware Architectures

 More parallelism necessitates paradigm shift from MPI-only

 Need for New Programming Models 
 Performance Portability: OpenMP 4.5, OpenACC, Kokkos, RAJA, SyCL, 

C++20?, …

 Resilience and Load Balancing: Legion, HPX, UPC++, ...

 Vendor decoupling drives external development

2

What is Kokkos?
What is new?

Why should you trust us?



Kokkos: Performance, Portability and Productivity

DDR

HBM

DDR

HBM

DDRDDR

DDR

HBMHBM

Kokkos

LAMMPS Sierra AlbanyTrilinos

https://github.com/kokkos



Performance Portability through Abstraction

Kokkos

Execution Spaces (“Where”)

Execution Patterns (“What”)

Execution Policies (“How”)

- N-Level
- Support Heterogeneous Execution
- N-Level
- Support Heterogeneous Execution

- parallel_for/reduce/scan, task spawn
- Enable nesting
- parallel_for/reduce/scan, task spawn
- Enable nesting

- Range, Team, Task-Dag
- Dynamic / Static Scheduling
- Support non-persistent scratch-pads

- Range, Team, Task-Dag
- Dynamic / Static Scheduling
- Support non-persistent scratch-pads

Memory Spaces (“Where”)

Memory Layouts (“How”)

Memory Traits

- Multiple-Levels
- Logical Space (think UVM vs explicit)
- Multiple-Levels
- Logical Space (think UVM vs explicit)

- Architecture dependent index-maps
- Also needed for subviews
- Architecture dependent index-maps
- Also needed for subviews

- Access Intent: Stream, Random, …
- Access Behavior: Atomic
- Enables special load paths: i.e. texture

- Access Intent: Stream, Random, …
- Access Behavior: Atomic
- Enables special load paths: i.e. texture

Parallel ExecutionData Structures

Separating of Concerns for Future Systems…



Capability Matrix

5

Implementation 
Technique

P
arallel L

oop
s

P
arallel 

R
ed

u
ction

T
ig

h
tly

 N
ested

 
L

oop
s 

N
on

-tig
h

tly
 

N
ested

 L
oop

s

T
ask

 P
arallelism

D
ata A

llocation
s

D
ata T

ran
sfers

A
d

van
ced

 D
ata 

A
b

straction
s

Kokkos C++ Abstraction X X X X X X X X

OpenMP Directives X X X X X X X -

OpenACC Directives X X X X - X X -

CUDA Extension (X) - (X) X - X X -

OpenCL Extension (X) - (X) X - X X -

C++AMP Extension X - X - - X X -

Raja C++ Abstraction X X X (X) - - - -

TBB C++ Abstraction X X X X X X - -

C++17 Language X - - - (X) X (X) (X)

Fortran2008 Language X - - - - X (X) -



Example: Conjugent Gradient Solver

 Simple Iterative Linear Solver

 For example used in MiniFE

 Uses only three math operations:
 Vector addition (AXPBY)

 Dot product (DOT)

 Sparse Matrix Vector multiply (SPMV)

 Data management with Kokkos Views:

6

View<double*,HostSpace,MemoryTraits<Unmanaged> >
h_x(x_in, nrows);

View<double*> x("x",nrows);
deep_copy(x,h_x);



CG Solve: The AXPBY

7

void axpby(int n, View<double*> z, double alpha, View<const double*> x,
double beta, View<const double*> y) {

parallel_for("AXpBY", n, KOKKOS_LAMBDA ( const int& i) {
z(i) = alpha*x(i) + beta*y(i);

});
}

 Simple data parallel loop: Kokkos::parallel_for

 Easy to express in most programming models

 Bandwidth bound

 Serial Implementation: 

 Kokkos Implementation:

void axpby(int n, double* z, double alpha, const double* x, 
double beta,  const double* y) {

for(int i=0; i<n; i++)
z[i] = alpha*x[i] + beta*y[i];

}

Parallel Pattern: for loopString Label: Profiling/DebuggingExecution Policy: do n iterationsIteration handle: integer indexLoop Body



CG Solve: The Dot Product

8

double dot(int n, View<const double*> x, View<const double*> y) {
double x_dot_y = 0.0;
parallel_reduce("Dot",n, KOKKOS_LAMBDA (const int& i,double& sum) { 

sum += x[i]*y[i];
}, x_dot_y);
return x_dot_y;

}

 Simple data parallel loop with reduction: Kokkos::parallel_reduce

 Non trivial in CUDA due to lack of built-in reduction support

 Bandwidth bound

 Serial Implementation: 

 Kokkos Implementation:

double dot(int n, const double* x, const double* y) {
double sum = 0.0;
for(int i=0; i<n; i++)

sum += x[i]*y[i];
return sum;

} Parallel Pattern: loop with reductionIteration Index + Thread-Local Red. Varible



CG Solve: The SPMV

 Loop over rows

 Dot product of matrix row with a vector

 Example of Non-Tightly nested loops

 Random access on the vector (Texture fetch on GPUs)

9

void SPMV(int nrows, const int* A_row_offsets, const int* A_cols, 
const double* A_vals, double* y, const double* x) {

for(int row=0; row<nrows; ++row) {
double sum = 0.0;
int row_start=A_row_offsets[row];
int row_end=A_row_offsets[row+1];
for(int i=row_start; i<row_end; ++i) {
sum += A_vals[i]*x[A_cols[i]];

}
y[row] = sum;

}
}

Outer loop over matrix rowsInner dot product row x vector



CG Solve: The SPMV

10

void SPMV(int nrows, View<const int*> A_row_offsets, 
View<const int*> A_cols, View<const double*> A_vals, 
View<double*> y,
View<const double*, MemoryTraits< RandomAccess>> x) {

#ifdef KOKKOS_ENABLE_CUDA
int rows_per_team = 64;int team_size = 64;

#else
int rows_per_team = 512;int team_size = 1;

#endif

parallel_for("SPMV:Hierarchy", TeamPolicy< Schedule< Static > >
((nrows+rows_per_team-1)/rows_per_team,team_size,8),

KOKKOS_LAMBDA (const TeamPolicy<>::member_type& team) { 

const int first_row = team.league_rank()*rows_per_team;
const int last_row = first_row+rows_per_team<nrows? first_row+rows_per_team : nrows;

parallel_for(TeamThreadRange(team,first_row,last_row),[&] (const int row) {
const int row_start=A_row_offsets[row];
const int row_length=A_row_offsets[row+1]-row_start;

double y_row;
parallel_reduce(ThreadVectorRange(team,row_length),[=] (const int i,double& sum) {

sum += A_vals(i+row_start)*x(A_cols(i+row_start));
} , y_row);
y(row) = y_row;

});
});

}
Team Parallelism over Row WorksetsDistribute rows in workset over team-threads

Row x Vector dot product 



CG Solve: Performance

11

0

10

20

30

40

50

60

70

80

90

AXPBY-100 AXPBY-200 DOT-100 DOT-200 SPMV-100 SPMV-200

P
er

fo
rm

an
ce

[G
fl

o
p

/s
]

NVIDIA P100 / IBM Power8

OpenACC CUDA Kokkos OpenMP

0

10

20

30

40

50

60

AXPBY-100 AXPBY-200 DOT-100 DOT-200 SPMV-100 SPMV-200

P
er

fo
rm

an
ce

[G
fl

o
p

/s
]

Intel KNL 7250

OpenACC Kokkos OpenMP TBB (Flat) TBB (Hierarchical)

 Comparison with other 
Programming Models 

 Straight forward 
implementation of 
kernels

 OpenMP 4.5 is 
immature at this point

 Two problem sizes: 
100x100x100 and 
200x200x200 elements 



Custom Reductions With Lambdas

 Added Capability to do Custom Reductions with Lambdas

 Provide built-in reducers for common operations
 Add,Min,Max,Prod,MinLoc,MaxLoc,MinMaxLoc,And,Or,Xor,

 Users can implement their own reducers

 Example Max reduction:

12

double result
parallel_reduce(N, 
KOKKOS_LAMBDA(const int& i, 

double& lmax) {
if(lmax < a(i)) lmax = a(i);

},Max<double>(result));

0

100

200

300

400

500

600

K80 P100 KNL

B
a

n
d

w
id

th
 i
n

 G
B

/s

Reduction Performance

Sum Max MaxLoc



New Features: MDRangePolicy
 Many people perform structured grid calculations 

 Sandia’s codes are predominantly unstructured though

 MDRangePolicy introduced for tightly nested loops

 Usecase corresponding to OpenMP collapse clause

 Optionally set iteration order and tiling:

13

void launch (int N0, int N1, [ARGS]) {
parallel_for(MDRangePolicy<Rank<3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA (int i0, int i1) 
{/*...*/});

}

MDRangePolicy<Rank<3,Iterate::Right,Iterate::Left>> 
({0,0,0},{N0,N1,N2},{T0,T1,T2})

0

100

200

300

400

500

600

KNL P100

G
flo

p
/s

Albany Kernel

Naïve Best Raw MDRange



New Features: Task Graphs
 Task dags are an important class of algorithmic structures

 Used for algorithms with complex data dependencies
 For example triangular solve

 Kokkos tasking is on-node

 Future based, not explicit data centric (as for example Legion)
 Tasks return futures

 Tasks can depend on futures

 Respawn of tasks possible

 Tasks can spawn other tasks

 Tasks can have data parallel loops 
 I.e. a task can utilize multiple threads like the hyper threads on a core or a 

CUDA block

14

Carter Edwards S7253 “Task Data Parallelism” , Right after this talk.



New Features: Pascal Support
 Pascal GPUs Provide a set of new Capabilities

 Much better memory subsystem

 NVLink (next slide)

 Hardware support for double precision atomic add

 Generally significant speedup 3-5x over K80 for Sandia Apps

15

0

20

40

60

80

100

120

140

160

4000 32000 256000 2048000

M
ill

io
n

 A
to

m
s
te

p
s

p
e

r 
S

e
c
o

n
d

 

Number of Atoms

Lammps Tersoff Potential

K40

K80

P100

K40 Atomic

K80 Atomic

P100 Atomic

0.001

0.01

0.1

1

10

100

1000

1 8 64 512 4096

B
a

n
d

w
id

th
 i
n

 G
B

/s

Update Array Size

Atomic Bandwidth



New Features: HBM Support
 New architectures with HBM: Intel KNL, NVIDIA P100 

 Generally three types of allocations:
 Page pinned in DDR

 Page pinned in HBM

 Page migratable by OS or hardware caching

 Kokkos supports all three on both architectures
 For Cuda backend: CudaHostPinnedSpace,CudaSpace and CudaUVMSpace

 E.g.: Kokkos::View<double*, CudaUVMSpace> a(”A”,N);

 P100 Bandwidth with and without data Reuse

16

1

10

100

1000

0.125 0.25 0.5 1 2 4 8 16 32 64

B
a

n
d

w
id

th
 G

B
/s

Problem Size [GB]

HostPinned 1

HostPinned 32

UVM 1

UVM 32



Upcoming Features

 Support for OpenMP 4.5+ Target Backend
 Experimentally available on github

 CUDA will stay preferred backend

 Maybe support for FPGAs in the future?

 Help maturing OpenMP 4.5+ compilers

 Support for AMD ROCm Backend
 Experimentally available on github

 Mainly developed by AMD

 Support for APUs and discrete GPUs

 Expect maturation fall 2017

17



Beyond Capabilities

 Using Kokkos is invasive, you can’t just swap it out
 Significant part of data structures need to be taken over

 Function markings everywhere

 It is not enough to have initial Capabilities

 Robustness comes from utilizations and experience
 Different types of application and coding styles will expose different 

corner cases

 Applications need libraries
 Interaction with TPLs such as BLAS must work

 Many library capabilities must be reimplemented in the programming 
model

 Applications need tools
 Profiling and Debugging capabilities are required for serious work

18



Timeline

19

Initial Kokkos:  Linear Algebra for Trilinos

Restart of Kokkos:  Scope now Programming Model

Mantevo MiniApps:  Compare Kokkos to other Models

LAMMPS:  Demonstrate Legacy App Transition

Trilinos: Move Tpetra over to use Kokkos Views

Multiple Apps start exploring (Albany, Uintah, …)

Sandia Multiday Tutorial (~80 attendees)

Sandia Decision to prefer Kokkos over other models

Github Release of Kokkos 2.0

Kokkos-Kernels and Kokkos-Tools Release

DOE Exascale Computing Project starts 

2008

2011

2013

2012

2014

2016

2015

2017



0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

FO
M

+(
Z

/s
)+

LULESH+Figure+of+Merit+Results+(Problem+60)+

HSW"1x16" HSW"1x32" P8"1x40"XL" KNC"1x224" ARM64"1x8" NV"K40"Higher"
is"

Better"

Initial Demonstrations (2012-2015)

20

 Demonstrate Feasibility of Performance Portability
 Development of a number of MiniApps from different science domains

 Demonstrate Low Performance Loss versus Native Models
 MiniApps are implemented in various programming models

 DOE TriLab Collaboration
 Show Kokkos works for 

other labs app

 Note this is historical data: 
Improvements were 
found, RAJA implemented 
similar optimization etc. 



Training the User-Base
 Typical Legacy Application Developer

 Science Background

 Mostly Serial Coding (MPI apps usually have communication layer few 
people touch)

 Little hardware background, little parallel programming experience

 Not sufficient to teach Programming Model Syntax
 Need training in parallel programming techniques

 Teach fundamental hardware knowledge (how does CPU, MIC and GPU 
differ, and what does it mean for my code)

 Need training in performance profiling

 Regular Kokkos Tutorials
 ~200 slides, 9 hands-on exercises to teach parallel programming 

techniques, performance considerations and Kokkos

 Now dedicated ECP Kokkos support project: develop online support 
community

 ~200 HPC developers (mostly from DOE labs) had Kokkos training so far21



Keeping Applications Happy
 Never underestimate developers ability to find new corner 

cases!!
 Having a Programming Model deployed in MiniApps or a single big app is 

very different from having half a dozen multi-million line code customers.

 538 Issues in 24 months

 28% are small enhancements

 18% bigger feature requests

 24% are bugs: often corner cases

22

0

100

200

300

400

500

600

Issues

Issues since 2015

Enhancements

Feature Request

Bug

Compiler Issue

Questions

Other

 Example: Subviews
 Initially data type needed to match 

including compile time dimensions

 Allow compile/runtime conversion

 Allow Layout conversion if possible

 Automatically find best layout

 Add subview patterns



Testing and Software Quality

DevelopDevelop

Release Version

Compilers GCC (4.8-6.3), Clang (3.6-4.0), 
Intel (15.0-18.0), IBM (13.1.5, 14.0), 
PGI (17.3), NVIDIA (7.0-8.0)

Hardware Intel Haswell, Intel KNL, ARM v8,
IBM Power8, NVIDIA K80, 
NVIDIA P100

Backends OpenMP, Pthreads, Serial, CUDA

Warnings as Errors

FeatureFeature
Development/Tests

R
ev

ie
w

Te
st

s

MasterMaster

In
te

gr
at

io
n

Trilinos, LAMMPS, …
Multi config integration test

Nightly, UnitTests

New Features are developed on forks, and branches. 
Limited number of developers can push to develop 
branch. Pull requests are reviewed/tested.

Each merge into master is minor release. 
Extensive integration test suite ensures 
backward compatibility, and catching of 
unit-test coverage gaps.



Building an EcoSystem

24

Algorithms
(Random, Sort)

Containers
(Map, CrsGraph, Mem Pool)

Kokkos
(Parallel Execution, Data Allocation, Data Transfer)

Kokkos – Kernels
(Sparse/Dense BLAS, Graph Kernels, Tensor 

Kernels)

K
o

k
k
o

s
–

To
o

ls
(K

o
k
k
o
s

a
w

a
re

 P
ro

fi
lin

g
 a

n
d
 D

e
b
u
g
g
in

g
 T

o
o
ls

)

Trilinos
(Linear Solvers, Load Balancing, 
Discretization, Distributed Linear 

Algebra)

K
o

k
k
o

s
–

S
u

p
p

o
rt

 C
o

m
m

u
n

it
y

(A
p
p
lic

a
ti
o
n
 S

u
p
p
o
rt

, 
D

e
ve

lo
p
e
r 

T
ra

in
in

g
)ApplicationsMiniApps

std::thread OpenMP CUDA ROCm



Kokkos Tools

25

 Utilities
 KernelFilter: Enable/Disable Profiling for a selection of Kernels

 Kernel Inspection
 KernelLogger: Runtime information about entering/leaving Kernels and 

Regions

 KernelTimer: Postprocessing information about Kernel and Region Times

 Memory Analysis
 MemoryHighWater: Maximum Memory Footprint over whole run

 MemoryUsage: Per Memory Space Utilization Timeline

 MemoryEvents: Per Memory Space Allocation and Deallocations

 Third Party Connector
 VTune Connector: Mark Kernels as Frames inside of Vtune

 VTune Focused Connector: Mark Kernels as Frames + start/stop profiling

https://github.com/kokkos/kokkos-tools



Kokkos-Tools: Example MemUsage

 Tools are loaded at runtime
 Profile actual release builds of applications

 Set via: export KOKKOS_PROFILE_LIBRARY=[PATH_TO_PROFILING_LIB]

 Output depends on tool
 Often per process file

 MemoryUsage provides per MemorySpace utilization timelines
 Time starts with Kokkos::initialize

 HOSTNAME-PROCESSID-CudaUVM.memspace_usage

26

# Space CudaUVM
# Time(s)  Size(MB)   HighWater(MB)   HighWater-Process(MB)
0.317260 38.1 38.1 81.8
0.377285 0.0 38.1 158.1
0.384785 38.1 38.1 158.1
0.441988 0.0 38.1 158.1



Kokkos-Kernels

27

 Provide BLAS (1,2,3); Sparse; Graph and Tensor Kernels

 No required dependencies other than Kokkos

 Local kernels (no MPI) 

 Hooks in TPLs such as MKL or cuBLAS/cuSparse where applicable

 Provide kernels for all levels of hierarchical parallelism:

 Global Kernels: use all execution resources available

 Team Level Kernels: use a subset of threads for execution

 Thread Level Kernels: utilize vectorization inside the kernel

 Serial Kernels: provide elemental functions (OpenMP declare SIMD)

 Work started based on customer priorities; expect multi-year effort for 
broad coverage

 People: Many developers from Trilinos contribute

 Consolidate node level reusable kernels previously distributed over multiple 
packages



Kokkos-Kernels: Dense Blas Example

28

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3 5 10 15

P
e

rf
o

rm
a

n
c
e

 G
F

lo
p

/s

Matrix Block Size

Batched DGEMM 32k blocks

MKL @ KNL KK @ KNL

CUBLAS @ P100 KK @ P100

0

5E+10

1E+11

1.5E+11

2E+11

3 5 10 15

P
e

rf
o

rm
a

n
c
e

 G
F

lo
p

/s

Matrix Block Size

Batched TRSM 32k blocks

MKL @ KNL KK @ KNL

CUBLAS @ P100 KK @ P100

 Batched small matrices using an interleaved memory layout

 Matrix sizes based on common physics problems: 3,5,10,15

 32k small matrices 

 Vendor libraries get better for more and larger matrices



Kokkos Users Spread

29

 Users from a dozen major institutions

 More than two dozen applications/libraries
 Including many multi-million-line projects

UsersUSERS

B
ac

ke
n

d
 O

p
ti

m
iz

at
io

n
s



Further Material
 https://github.com/kokkos Kokkos Github Organization

 Kokkos: Core library, Containers, Algorithms

 Kokkos-Kernels: Sparse and Dense BLAS, Graph, Tensor (under development)

 Kokkos-Tools: Profiling and Debugging 

 Kokkos-MiniApps: MiniApp repository and links

 Kokkos-Tutorials: Extensive Tutorials with Hands-On Exercises

 https://cs.sandia.gov Publications (search for ’Kokkos’)
 Many Presentations on Kokkos and its use in libraries and apps

 Talks at this GTC:
 Carter Edwards S7253 “Task Data Parallelism” , Today 10:00, 211B

 Ramanan Sankaran, S7561 “High Pres. Reacting Flows”, Today 1:30, 212B

 Pierre Kestener, S7166 “High Res. Fluid Dynamics”, Today 14:30, 212B

 Michael Carilli, S7148 “Liquid Rocket Simulations”, Today 16:00, 212B

 Panel, S7564 “Accelerator Programming Ecosystems”, Tuesday 16:00, Ball3

 Training Lab, L7107 “Kokkos, Manycore PP”, Wednesday 16:00, LL21E 30



http://www.github.com/kokkos


