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ABSTRACT
DRAM scalability is becoming more challenging, pushing the focus
of the research community towards alternative memory technolo-
gies. Many emerging non-volatile memory (NVM) devices are
proving themselves to be good candidates to replace DRAM in the
coming years. For example, the recently announced 3D-XPoint
memory by Intel/Micron promises latencies that are comparable
to DRAM, while being non-volatile and much more dense. While
emerging NVMs can be fabricated in di�erent form factors, the
most promising (from a performance perspective) are NVM-based
DIMMs. Unfortunately, there is a shortage of studies that explore
the design options for NVM-based DIMMs.

�e non-deterministic latencies of NVMs, due to read/write
latencies and power consumption asymmetry, in addition to the
limited write endurance, which requires wear-leveling techniques,
require a specialized controller. �e fact that future on-die memory
controllers are expected to handle di�erent memory technologies
pushes future hardware towards on-DIMM controllers. In this
paper, we propose an academic design for NVM-based DIMMs with
internal controllers, explore their design space, evaluate di�erent
optimizations and reach out to several architectural suggestions.
Finally, we make our model publicly available and integrate it with
a widely used architectural simulator.

1 INTRODUCTION
Scaling the cell size of DRAM is becoming more challenging [17]
and emerging NVMs are being widely studied as potential replace-
ments for DRAM. Emerging NVMs, such as Phase-Change Memory
(PCM), have latencies that are comparable to DRAM (less than order
of magnitude slower) and promise high densities [20, 14, 23, 7, 16].
Additionally, emerging NVMs are non-volatile, which eliminates
the need for refresh power. On the other hand, emerging NVMs
have limited write endurance and high write latencies.

While NVM technologies are expected to appear soon in the mar-
ket [3], the parameters, such as read/write latencies and power lim-
itations are expected to change as the technology matures. While
NVMs are very a�ractive for adoption in large scale HPC systems,
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it is unclear how they will a�ect the performance. For instance,
how would the write latency a�ect the performance, i.e., how sen-
sitive are HPC applications to write latency? How e�ective are
write latency mitigation techniques, such as write-cancellation, for
HPC applications? Another example, given the high read latency
of NVMs compared to DRAM, how e�ective are row bu�ers? Can
row bu�ers e�ectively mask the high latency of emerging NVMs?

Most previous research work selected speci�c NVM parameters
and used them without considering the potential impact on perfor-
mance. �is is critical, especially for HPC systems where multiple
vendors are able to provide the memory technology, o�en times
with di�erent memory characteristics. As such, it is important
to know what parameters are critical for performance and power
while considering the price.

Many of the design parameters of NVM can impact the perfor-
mance of systems, particularly at scale. Examples are the read
latency from NVM cells, write latency and its associated opti-
mizations such as write-cancellation, the maximum number of
concurrent writes (typically limited by power budget), the maxi-
mum number of outstanding requests, number of banks, number
of channels, internal caching and scheduling. In this paper, we
propose and describe in detail an architectural simulation model
for NVM-based DIMMs. We use our model to evaluate the impact
of di�erent optimizations and parameters on the performance of
memory systems built from NVM-based DIMMs. We integrate our
model with the Structural Simulation Toolkit (SST) simulator [21],
and make it publicly available.

Our focus in this paper is on memory-intensive HPC applica-
tions. Our analysis shows that some applications are very sensitive
to NVM read latency. We also observe that using large row bu�ers
does not help for most of the studied applications. Moreover, our
study shows that some applications are very sensitive to the NVM
write latency. �e maximum number of allowed concurrent write
operations, which is limited by the power budget, can signi�cantly
a�ect the performance of several applications. Additionally, we
examine state-of-the-art write latency mitigation techniques, such
as Write-Cancellation [18], and examine their sensitivity to write
latency and impact on performance. Finally, we study the potential
performance impact of on-DIMM caching and compare it with
DRAM-only system.

�e rest of the paper is organized as follows. First, in Section 2,
we discuss the key characteristics of emerging NVM technologies.
In Section 3, we describe an open-source architectural simulation
model for NVM-based DIMMs, its key parameters and the rationale
behinds each of them. In Section 4, we describe our evaluation
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methodology, including the default parameters. Section 5 includes
a detailed analysis of the performance sensitivity for di�erent NVM
parameters. Section 6 discusses the conclusions from Section 5 and
propose several architectural optimizations. Finally, in Section 7,
we conclude our work with suggestions for future work.

2 BACKGROUND
In this section, we discuss emerging non-volatile memory tech-
nologies, their key characteristics and design options.

2.1 Emerging Non-Volatile Memory (NVM)
Technologies

EmergingNon-VolatileMemory (NVM) technologies, such as Phase-
ChangeMemory (PCM), Memristor and Spin-Transfer Torque RAM
(STT-RAM), have di�erent characteristics. Some of these technolo-
gies have high densities, e.g., PCM and Memristor, making them
very promising candidates for building main memory and storage.
Others, such as STT-RAM, have low density, making them more
appealing for building Last-Level Caches (LLCs). One common
feature across these technologies, is non-volatility, which can be
de�ned as the ability to retain memory cells values even when there
is no power supplied. However, issues such as resistance dri� may
require refreshing cells, but with considerably lower frequency
than current DRAM technology.

Across emerging NVM technologies, PCM is thought to be very
promising for replacing DRAM. PCM has much higher density,
which promises large capacity main memories, it also has read
latencies that are comparable to DRAM. Unlike DRAM, PCM’s
non-volatility feature eliminates the need for expensive refresh
power, resulting in near-zero idle power. On the other hand, PCM
has long write latencies, which can go up to thousands of cycles,
and limited write endurance. In this paper, we focus on the usage
of PCM technology as main memory.

2.2 Designs and Optimizations
Since emerging NVMs are still in their infancy, there is still no
clear answer of how exactly they should be designed for high-
performance compute nodes. For instance, some vendors might
prefer to o�oad scheduling, optimizations, such as wear-leveling
and reduction, to occur at an on-die (near processor) memory
controller. While this approach can bring down the cost of NVM-
based DIMMs, it comes at the cost of compatibility with di�erent
memory technologies and extra on-chip area that might be never
used, e.g., for systems which do not use NVMs. Furthermore, the
non-deterministic timing of NVMs renders processor-side access
protocols di�cult to implement. An alternative design option is
an on-DIMM controller (near memory). �is approach requires
a packet-based protocol, where the processor-side memory con-
troller sends a packet with a request ID, and command information,
then the on-DIMM controller decodes the command and executes it.
Optimizations, such as wear-leveling, write-cancellation, internal

scheduling and power-limiting considerations, are implemented on
the DIMM, i.e., by the memory vendor. �is approach is promising
for several reasons. First, it does not expose the internal charac-
teristics and design details to processor vendors, while still imple-
menting appropriate optimizations through the internal controller.
Second, it requires negligible modi�cations on the processor side,
to enable the integration of new technologies. Finally, due to signal
integrity challenges, bu�ering commands and data internally is
easier to implement, which is becoming more common for DRAM,
e.g., LRDIMM and RDIMM[15, 1, 2].

In this paper, we adopt the la�er design approach, which we
expect to be the most dominant for future memory systems. Our
expectation is based on designs appearing in industrial patents and
current prototypes [4, 5]. Figure 1 shows an example design of
near-memory controllers.
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Figure 1: Example of near-memory (on-DIMM) controller,
similar to [4, 5].

�e internal controller typcially includes optimizations forwrites,
wear-leveling, internal caching and bu�ering, power managment
and scheduling. One promising technique that has been shown to
improve performance is write-cancellation[18]. Write-cancelation
cancels pending write operations in order to service read opera-
tions, which are usually on the critical path, avoiding a long time
delay for read operations. For wear-leveling, Start-Gap wear level-
ing technique is expected to be used [19]. PCM write operations
incur high power, which necessitates a power management scheme
to limit the number of concurrent NVM device writes to avoid ex-
ceeding the power budget of the DIMM.
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3 THE MESSIER NVMMODEL
In this section, we describe our NVM so�ware model, which we
use to conduct our experiments and base our analysis upon.

Our NVM model assumes a DIMM that consists of one or more
ranks, where each rank consists of several banks. Each bank has
a fast row bu�er that caches the most recently read row. Note
that since PCM writes must persist, PCM bypasses the row bu�er
and writes directly to the NVM cells in this case. �e DIMM has
an internal memory controller that tracks outstanding requests,
schedules requests and implements several optimizations, such as
write cancellation and caching. If the request is a write operation,
once scheduled, it will be wri�en to the write bu�er, which is
guaranteed to be persistent, either through a small capacitor to
power performing a back-up or being fast NVM memory such as
STT-RAM. Figure 2 shows a high-level description of our so�ware
model.

transactions

Memory Controller Backend

Write Buffer

Rank Rank

1 If ( size > threshold and writes are less than max)
 flush one write entry 

2 find a  transaction ready to execute

Outstanding

3 Add the dispatched transaction to outstanding
and execute it

ready_trans

write request

read request

Figure 2: �e so�ware model for our NVM-based DIMM
model.

To be�er describe the parameters, we will go through a read
request scenario. Once a read request is received, it is placed
in the transaction queue, where it waits until being scheduled.
Once the scheduler decides to dispatch the request, which only
happens if the corresponding bank is free and the rank internal
circutary/bus/channel is free, it checks if it is a row bu�er hit or
miss, and accordingly issue a command to the corresponding NVM
bank. Sending the command occupies the rank bus for tCMD cycles.
Once the command is received by the bank, if row activation (in
case of row bu�er miss), it will take tRCD cycles to load the data
into the row bu�er. Later on, a�er the row activation or in case of
row bu�er hit, the scheduler will again send another command to
read the data from the bank, which will only happen when the rank
bus is free. Once the command is received by the bank, it occupies
tCL cycles to read a column and tBURST cycles to transfer the data
over the bus. �e request will be bu�ered in the ready trans

bu�er before the data is sent back to the processor and notifying
the on-die memory controller of the request completion.

In case of a write operation, once the request is scheduled, the
data will be wri�en to the persistent write bu�er, and immediately
notify the on-die memory controller of the request completion.
Note that a write is scheduled only when the write bu�er is not full.
To avoid thro�ling the system as the write bu�er is nearing ge�ing
full, a �ushing mechanism is deployed. Typically, a threshold
value is deployed to determine when to start �ushing the write
bu�er, through prioritizing evicting write entries over servicing
new requests. �emaximumnumber of concurrent writes is limited
by max writes parameter, which can be set based on the power
budget and thermal limitations. When a write is evicted, it occupies
the bank for tCL W cycles, while the rank bus is occupied for the
time of sending the data and write command, tBURST and tCMD,
respectively.

4 METHODOLOGY
We use the Structural Simulation Toolkit (SST) [21] to conduct our
experiments and analysis. SST was con�gured to model 8 cores
with private L1 caches and L2 caches. �e L3 cache is shared across
all cores and paritioned into eight banks. Our simulation default
parameters are shown in Table 1. �e simulation source code for
these experiments is available on the SST repository1. �e simula-
tion infrastructure allows us to model the entire cache hierarchy,
coherency, and the main memory latencies. SST’s memHierarchy,
Merlin, and Ariel components were used for the caches, on-chip
network, and processors respectively.

Table 1: Simulation Parameters

Component Parameters

Core 2GHz, 3 issue / cycle, 16 max. outstanding mem-
ory requests

Coherency MESI protocol
L1 32KB, 8-way, 64B cache line, 4 cycles
L2 256KB, 8-way, 64B cache line, 6 cycles
L3 16MB, 16-way, 64B cache line, 12 cycles
Memory four channels, one DIMM per channel
NVM DIMM 2GHz clock, 32 banks, 32 outstanding, 32 write

bu�er size, max of 4 concurrent writes
NVM DIMM Timing tRCD=150ns, tCL W=500ns, tCL=15ns

Since our focus is HPC appications, we use �ve Miniapps from
the U.S. Department of Energy (U.S. DoE): miniFE [11], an unstruc-
tured implicit �nite element code; Lulesh [13, 12], a hydrodynamics
code; Pennant [8], an unstructured mesh physics mini-app; Simple-
MoC [9], a mini-app to study Method of Characterstics (MoC) for
3D neutron transport calculations; and XSBench [22], A mini-app
that represents a key computational kernel for the Monte Carlo
Neutronics application OpenMC. Each application was executed
1h�ps://github.com/sstsimulator/sst-elements/tree/ ADVANCED MESSIER
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with 8 threads, starting from the region of interest until at least
one core executes 100M instructions (8̃00M instructions total). Ad-
ditional parameters are listed in Table 2.

�ese applications were selected because they are memory-
intensive and exhibit a diverse set of main memory access pa�erns.

Table 2: Application Parameters

Application Options

miniFE -nx 140 -ny 140 -nz 140

Lulesh -s 120

Pennant leblancbigx2.pnt

SimpleMoC -t 8 -s

XSBench -s large -t 8

5 DESIGN SPACE EXPLORATION
In this section, we investigate the impact of several state-of-the-art
optimizations and how varying several NVM parameters can a�ect
the performance.

5.1 �e Impact of Write Latency and Write
Cancellation

Write latency is considered to be one of the key challenges for
using emerging NVMs as main memory. So, we begin our de-
sign exploration by studying the sensitivity of the write latency
of NVM devices. Figure 3 shows the impact of write latency on
performance. We vary the write latency, tCL W, from 100 to 1000
cycles in 100-cycle increments. As expected, for most of the appli-
cations, the performance decreases as the write latency increases.
�e exception here is XSBench, which doesn’t have very many
writes.

One way to combat the the impact that write latency can have on
application performance is to use write-cancellation, as described
in Section 2.2. From Figure 3, we can observe that at low write
latencies write-cancellation can actually hurt the application per-
formance. �is is because it can increase the average number of
cycles that a bank is allocated for a write operation without actually
decreasing the read latency as intended. �e implementation of
write-cancellation for this study uses adaptive thresholds[18]. �is
adaptive technique uses the elapsed time since the beginning of the
write as well as the current number of entries in the write bu�er
to determine whether or not to cancel the write. �e rationale be-
hind this implementation is to achieve a good balance between not
aggregating too many writes while still using write cancellation
e�ectively.

5.2 Power Constraints for Concurrent Writes
NVM write operations involve applying high current to change a
cell state. However, due to cooling constraints and thermal limits,
a maximum power budget is given for each DIMM. Accordingly, to

abide by that power budget, each DIMM should limit the maximum
number of concurrent writes to the NVM banks. Limiting this
number to only few concurrent writes will increase the chances
of �lling the write bu�er, placing back pressure into the memory
system. In contrast, allowing a large number of concurrent writes
may cause the system to exceed its given power budget. Figure 4
shows how the number of concurrent writes a�ects the overall
execution time of selected applications.
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Figure 4: �e impact of maximum number of concurrent
writes on performance.

From the �gure, we can observe that some applications, such as
Pennant and Lulesh, are very sensitive to this parameter. �is is
consistent with our �ndings from Section 5.1, where we observed
similar sensitivity for the write latency. On the other hand, we can
observe that some applications, such as XSBench, have negligible
sensitivity to the number of concurrent writes due to the read/write
pa�erns inherent in the application.

5.3 NVM Read Latency
While NVM read latency ismuch be�er than that for writes, it is still
slower than that of DRAM. To study e�ect this has on application
performance, we vary the NVM read latency, i.e., tRCD, and observe
the change in the execution time, as shown in Figure 5.

We can observe that some applications are highly sensitive to
read latency, while others are not. Speci�cally, we can observe that
Lulesh and Pennant are minimally a�ected by increasing the read
latency, which can be explained by our observations on Section 5.1;
Lulesh and Pennant performance is heavily dominated by the write
latency.
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(b) XSBench
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Figure 3: �e impact of write latency along with and without write cancellation on performance
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Figure 5: �e impact of NVM read latency on performance.

5.4 Row Bu�ers Locality
As the read latency can have signi�cant impact on the performance
of some applications, we now explore a way to mitigate it. A
common way to mitigate high read latency is through row bu�ers,
which cache the row of the most recently accessed cache line in
a bank. To study the e�ectiveness of this technique, we vary the
row bu�er size from 64B to 8KiB, as shown in Figure 6.

We can observe that applications like XSBench and MiniFE
bene�t well from increasing the row bu�er size, however, some
applications are less sensitive to row bu�er size, e.g., SimpleMoC
and Pennant.
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Figure 6: �e impact of row bu�er size on performance.

5.5 �e Impact of Internal Caching on
Performance

One way to improve NVM performance is through caching blocks
internally. �is internal cache is checked in parallel when adding
the request to the transactions queue. If the block is found, i.e.,
a cache hit, the block will be returned from the cache and the
pending request will be squashed. As the NVM does not incur
signi�cant idle power, the additional power overhead of SRAM
or DRAM caches can still be comparable to DRAM-only systems.
To study the performance gains of caching, we model an internal
cache inside each DIMM with an access latency of 15 cycles.
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Figure 7: �e impact of internal caching on performance.

Figure 7 shows the results for using caches and compare it with
no-cache-NVM and DRAM-only systems. We can observe that
most applications bene�t from using a cache as small as 4MB.
However, even with large caches, the NVM performance is by far
worse than a DRAM-only system.

5.6 Paged Multi-Level Memory
Another mechanism to improve NVM performance is a multi-level
memory (MLM). In this organization (See Figure 8), main mem-
ory is comprised of both NVM and DRAM memories. Memory is
accessed through a controller that can implement a number of poli-
cies to determine which data is placed in the fast, stacked DRAM
or in the slower NVM-based DIMMs. An SRAM table within the
controller contains the mapping of which pages are in which mem-
ory and additional meta-information (e.g. page access frequency)
to implement its paging policy.

Processor

DRAM 
Die

DRAM 
Die

DRAM 
Die

DRAM 
Die

Stacked DRAM

MLM Controller

SRAM 
Mapping 

Table
Policy 

Dispatcher

DMA UnitDMA Unit

NVM-Based DIMM

NVM 
Chip

NVM 
Chip

NVM 
Chip

NVM 
Chip

(Cache)

Figure 8: Multi-Level Memory Organization

�ere are several possible policies for MLM management[10]
which govern which pages are removed from fast memory and
which are added. For this work, we tested2 the addMFRPU (More
Frequent, More Recent Previous Use with threshold) and addT (sim-
ple threshold) addition policies and a simple LRU (Least Recently
Used) replacement policy. We found the addMFRPU yielded be�er
performance on XSBench and Lulesh, however its performance
was no more than 1-3% be�er than the simple addT policy. More
signi�cant was the threshold level. �e threshold level de�nes a
minimum number of accesses to a page before the page is consid-
ered for addition to the fast memory. We tested two thresholds (2
and 16) and found that di�erent applications bene�t form di�erent
thresholds.

Figure 9 summarizes the results of di�erent policies for an MLM
system with roughly 1

4 of the memory as fast DRAM and the
remainder NVM and using the addMFRPU policy. We varied both
the threshold and the presence of a 16MB cache in the NVM. �e
results are very application dependent. XSBench did be�er with
a high threshold, while Lulesh, MiniFE, and Pennant do worse
with a high threshold and no cache, but prefer a high threshold
if there is a cache. Generally, an NVRAM cache did not help the
performance of an MLM system, as would be expected since the
page-level caching of the MLM system would interfere with the
block-level cache of the NVM cache. However, the best XSBench
performance was achieved with both paged-level MLM caching
and the NVM cache. In general, performance was less than that of
DRAM, though SimpleMOC performance was as good or be�er.

Figure 9: MLM Paging policy impact (lower=faster)

We also examined the impact of amount of fast stacked DRAM
on the application performance (Figure 10). In all cases, total main
memory was 1GB. Lulesh, MiniFE, and SimpleMOC were largely
insensitive to the size of the “fast” memory. XSBench and Pennant
2h�ps://github.com/sstsimulator/sst-elements/tree/afrodri/pagedMessier commit
3026e21
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were very sensitive with XSBench more than doubling perfor-
mance.
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Figure 10: MLM “Fast” memory size vs. Performance
(lower=faster)

Overall, a MLM organization shows promise in improving the
performance of a NVM system, however in most cases the raw
performance is still inferior to conventional DDR DRAM.

6 DISCUSSION
6.1 Performance
From Section 5, we can observe that the write latency of emerging
NVMs can have a large impact on application performance. Al-
though the write-cancellation technique may reduce much of the
write overhead, some applications, such as Lulesh and Pennant,
still su�er from long write latencies. Given the power limits of
concurrent writes, we could also observe how this signi�cantly
a�ects the performance. Based on our observations, we can con-
clude that NVMs with long write latencies, if used as main memory,
can incur signi�cant overhead. While our results raise a warning
for using emerging NVMs as the sole building block of the main
memory, it helps to provide a case for architectures with multi-level
memory – where NVMs can be used as an extension to memory
capacity[6]. Additionally, we found that internal caching within
NVM-based DIMMs is of limited use, which raises the case for
so�ware-managed caching for hot pages. For energy e�ciency, we
found that some applications do not bene�t as much from large
row bu�er sizes, which motivates dynamic enabling/disabling or
adjustable size row bu�ers solutions.

6.2 Cost & Performance
Even with caching, NVM main memories generally have lower
performance than conventional DRAM memories. However, the
value proposition of NVM is not raw performance but its potential
cost and power savings. Current and emerging NVM technologies
have storage densities much higher than conventional DRAM cells,
which will lead to signi�cant cost savings. An NVM main memory

may not be higher performance, but with its much lower cost it
may still be a valuable architectural alternative.

To test this, we propose a simple cost model (Table 3) based on
rough cost per bit for di�erent memory technologies. �ese cost
estimates are based on the relative silicon area, or (in the case of
Stacked DRAM) an adjustment for higher packaging costs. �ough
these numbers are open to debate, they provide a useful starting
point for cost-performance analysis.

Table 3: Cost Model

Memory Cost/Bit Use

DDR4 1.0 Baseline Con�guration
Stacked DRAM 1.25 “Fast” MLM
SRAM Tags 22.0 Storage for MLM meta-data
SRAM Cache 20.0 NV-DIMM Cache
NVRAM 0.133 NV-DIMM

Using this simple cost model, Figure 11 shows cost and perfor-
mance points for a variety of memory con�gurations – conven-
tional DDR4 (DDR4); NVM possibly with an internal SRAM Cache
(NV+(Cache)); and paged NVM with a stacked DRAM page cache
(NV+DRAM). With the exception of XSBench, NVM systems have
lower performance. However, many of the NVM systems are much
lower cost. Depending on the goals of the system designer, there
are many cases where an NVM-based main memory system make
sense.

Examined another way, Figure 12(a) shows the raw performance
of the best con�guration (cache size, paging policy, etc…) for
the paged NVM system and for NVM systems with and without
internal caching. With a few exceptions (SimpleMOC with 256MB
of stacked DRAM, low threshold addT policy, NVM internal cache
and XSBench NVM with 128MB caches), performance is worse
than a conventional DDR4 system. However, Figure 12(b) shows
that the performance/cost ratio for NVM systems can outperform
DDR-based systems for all applications.

7 CONCLUSIONS
In this paper, we propose an new architectural simulation model
for NVM-based DIMMs and explore implementation options. �is
model is highly parameterized and provides fast execution perfor-
mance to permit scaling for long-duration simulations or complex
application modeling. Later, we use the model to explore perfor-
mance sensitivity to di�erent NVM parameters. We used our model
to investigate key parameters such as read latency, write latency,
number of concurrent writes, row bu�er size, internal caching, the
e�ectiveness of the write-cancellation technique, and integration
with paged multi-level memory systems.

Our study showed that the studied HPC applications vary in
their performance sensitivity to read latency. For instance, we
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Figure 11: Cost and Performance Tradeo�s

Figure 12: perf-cost

found that MiniFE and SimpleMoC are very sensitive to read la-
tency, while less sensitive to write latency. In contrast, we found
that MiniFE and SimpleMoC has less sensitivity to write latency,

when compared to Pennant and Lulesh. We also studied how limit-
ing the number of concurrent writes can a�ect the performance.
Our analysis also shows the potential gains for increasing the row
bu�er sizes and augmenting DIMMs with internal caching.

We publish our infrastructure integrated in a widely used simu-
lator (SST), to enable community researchers to investigate designs
such as hybrid memory systems, performance optimizations and
write latency mitigation optimizations.

�ese experiments show that NVM-DIMM based systems gen-
erally have lower performance than conventional DDR4 systems.
However, when analyzed with memory system cost in mind, main
memory with NVM becomes more a�ractive. �ere are a num-
ber of con�gurations which provide a be�er performance / cost
tradeo� than conventional DDR-based main memory.

�ese results can be used to guide future NVM-DIMM imple-
mentations and can be used by system architects to select a more
e�cient memory system.

For future work, we plan to incorporate models for Multi-Level
Cell (MLC) technologies and model the impact of read latency
asymmetry for di�erent levels in cells. We also plan to investigate
the impact of wear-leveling techniques, such as start-gap, in the
lifetime of the system. Additional MLM policies can be cra�ed for
NV memory, particularly policies that account for the di�erence
between read and write latency. �e impact of power and energy
on total system cost will also be explored.
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