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Outline ) 2=,

= |nverse problems in computational mechanics
= Dijscussion of inverse methods in Sierra-SD

= Design of acoustic metamaterials




Inverse Problems: B
Observing the Unobservable

Suppose we have a “black box” system in the as-manufactured state that has
only partially known parameters

Question: can we non-destructively interrogate the system to “see what is inside”?

Typical quantities of interest:
» Material properties
 Loads

« Boundary conditions

* Residual stresses

« Size/shape/location of inclusions (e.g. composite materials)

Example applications:

* Seismic imaging

* Medical imaging

* Non-destructive evaluation




Categories of Inverse Problems .

= |Imaging
= Medical ultrasound

= Seismic exploration

= (Calibration of material models

= Structural material properties, circuits, thermal properties, etc.

" Force reconstruction

= Sub-structuring for mechanical testing of components

= Optimal Experimental Design

= Best placement of sensors, test fixture setups

= Shape reconstruction

= E.g.inverse scattering




Inverse Problems - Motivation

Sierra Mechanics provides a massively parallel framework for physics
simulations, but requires knowing all model parameters

The model could be lacking information:

= material properties?

= boundary conditions?

= |oading conditions?

= |nternal flaws from aging?

= Preloading effects?

The missing link:
Experimental measurements +
solution of inverse problem




PDE-Constrained Optimization
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Operator-Based Inverse Problems
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Examples

= Material characterization

= Delamination detection

= Residual stress characterization
= Force (source) reconstruction

= Acoustic metamaterial design
= Transient shock isolation
= Notch filter design
= Steady-state vibration mitigation

= Acoustic cloaking




Frequency-Domain Material Inversiof =

= Dashpot/foam calibration on mass-mock digﬂpelchg:sgnt
=  Full Newton with adjoint-based Hessians locations

= Measured displacements on foam block
= Stiffness parameters from previous slide

. . Unknown
= |[nitial guess: zero damping viscoelastic foa—r;
R — parameters

Unknown dashpot
parameters

| Table 3. Dashpot parameters for mass-mock model.

I,QL

Error Measure

10710 cX cy | cz
exact 1000.0 | N/A | N/A Steady-state
o computed | 1000.0 ' N/A | N/A loading (440 Hz)
Lo-1s] ——Objective Function initial guess 0 N/A | N/A
——qgradient
1016 ] . : : : : s L ——  Table 4. Viscoelastic foam parameters for mass-mock model.
Iteration Number Imaginary part of G | Imaginary part of K
exact 362.4 785.2
computed 362.3 785.0




Delamination Detection )=,

Partially-bonded plates — can we invert for
the bonded/debonded regions?

Steady-state pressure load at 2000Hz
-

Bonded area De-bonded

Simply supported
on bottom area




Delamination Example

Partially-bonded plates — can we invert for
the bonded/debonded regions?

Exact bonded/de-bonded areas

Initial guess for optimization: Bonded area  De-bonded
Completely de-bonded (penalty=1) Area (penalty=0)




Source Inversion in Sierra-SD ) S,

= Goal: reconstruct acoustic field using inverse problem to

obtain acoustic patch inputs that produce the given
microphone measurements

= Additional research on-going

" How to regularize the inverse problem — gradient
regularization (penalize jumps across neighboring patches)
= How to place microphones




A Revolution in Acoustic Metamateria =

Breakthrough technology could allow us to mitigate harsh vibration
environments

Multiphase
composite

Lattice with
embedded
masses

Pentamode
lattice

Transformative
technology

cloaking Vibration isolation




What is an acoustic metamaterial @®&xz.

= Acoustic metamaterials: designed to produce dynamic material
properties not found in individual materials themselves

= Negative moduli, negative density, negative refractive index, imaginary
speed of sound!!! (not possible in traditional materials)

= First demonstrated in 2000 by Liu et al, Science
Pentamode lattice

Multiphase composite How do metamaterials work?

B g butk AP _ dP

= modulus — T

= [— where AV IV dv
p p = density

Lattice with
: embedded
" masses
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Exotic Material Properties .

Speed of sound in a material:

B B bulk AP dP

= modulus — =V T h

— |2 e ~AV/V dV
P p = density

= Typically metamaterials exhibit “effective” properties such as:
= Negative moduli, B, imaginary sound speed (no wave propagation)
= Negative density, p, imaginary sound speed (no wave propagation)
= Negative moduli and density, real sound speed (waves propagate again!)
= We can design a mechanical filter by alternating the sign of B and p!
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Metamaterials - Mechanical Filter
Design

Uniqueness of metamaterials — allow for
frequency-selective designs!

= Broadband — goal is to eliminate vibration in wide (or entire)
frequency band

= Band-stop —stop energy in a specified frequency band -
negative stiffness or negative density

= Band-pass — allow only a band of frequencies to propagate

= Notch — only filter at one particular frequency




Transient Shock Isolation Luf— =
Goal: Design the bottom material such that the top block does
not move

Initial guess optimized

Top block: steel
Bottom block: single phase fixed, two-phase,
multi-phase




Notch Filter Design )
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Sphere-in-Shell Oscillators ) B,
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‘Dumbbell’ Resonators
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Wave Propagation in Waveguide — ®i=.

= u(x) = e

| k:ﬂ
C
—wX

= [f cis purely imaginary, u(x) =e ¢

= Thus a propagating wave becomes an evanescent wave
when stiffness is negative




Wave Propagation in Waveguide — @&

Steady-state wave propagation in steel bar — positive vs
negative stiffness

1. Negative properties: wave propagation -> evanescent (decaying) waves
2. Makes linear Helmholtz solve easier

3. 3 order of magnitude reduction in wave amplitude in later case

4. Implications for homogenization of the metamaterial
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Inverse Problems: Mechanical Vibration
Reduction

- Shell encases centrally-located payload,
surrounded by VE foams

- Periodic loading applied to base

- Minimize displacement at payload center by
adjusting VE material parameters and
spring/dashpot constants

Measurement Locations

Spring/Dashpot Joints

V4 X
\LY

Base

Layers

Viscoelastic Foam
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Case Study 1: Mechanical Vibration Reduction

7| Netora

- Displacement at measurement locations minimized (dependent on frequency)

Initial Guess Optimized

EES

_DispX

3.387e-05
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5.240e-06
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Left: X-displacement in base and payload with initial material guesses, 440 Hz loading;
Right: X-displacement in design
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Inverse Problems: Acoustic Cloaking

2-D fluid region with circular VE solid inclusion

Inclusion consists of concentric rings w/ distinct material properties

Periodic acoustic load applied to end

Match forward problem pressure distribution by adjusting VE material parameters
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Right: Forward problem pressure alstrlsutlon 2500 Hz |oaa|ng; in moae| W|tH 50 |ayers




Acoustic Cloaking ) e,

- Optimized VE foams allow recovery of desired pressure distribution

Forward Initial Guess Optimized

Left: Target acoustic pressure distribution, from forward problem
Center: Acoustic pressure distribution with initial material guess (2000 Hz Loading)
Right: Pressure distribution after convergence to optimized design



Acoustic Cloaking Results: Bulk Modulus

Bulk modulus sensitive to frequency, and varies nontrivially along disk radius
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Case Study 1: Mechanical Vibration Reduction BJE=.

Complex Bulk Modulus for LFU Model, 449_!12

Complex Shear Modulus for LFU Model, 449_\Hz
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OBSERVATIONS:
+ Elastic Properties: Soft materials selected towards top, stiffer materials near base 29

Viscous Properties: Damping is added towards base of viscoelastic region



