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INTRODUCTION TO SPIKING



Leaky Integrate-and-Fire Neuron 
Model

��

��

��
= −� � + ��(�)

 � � = input to neuron

 � � = potential at time �

 �� = time constant

 � = resistance

We use 

� � + 1 = 1 − � � � 1 − � � � + �(�)

where � � � = �
1 if � � > threshold
0 otherwise



Benefits of Neural Computing

 Low power

 High speed (inherently parallel)

 Addresses gap between neuromorphic architectures 
(Neurogrid, SpiNNaker, TrueNorth) and algorithms which 
make effective use of the hardware
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SPIKINGSORT AND SPIKEMIN



SpikingSort



SpikingSort Neural Module



SpikeMin

Finding the min where � ≥ � Finding the min where � < �



OPTIMIZATION USING SPIKES:
SPIKEOPT(MEDIAN)



Optimization Formula for the Median

 Given a set of floating point numbers X = {��, ��, … , ��}

 Compute the Signed Rank function

�� �
�∈ ��

= � sign � − ��

�

���

 The median, ��, is such that �� �� is closest to 0



SpikeOpt(Median) Algorithm

Input: Set of integers, {��, ��, … , ��} where � is odd

Output: median integer, � = median ��

typedef enum {INITIAL, SPIKING, DONE} is State

State ����� ← �������  initialize state to SPIKING

for � ← 1 to N, in parallel do

�� = ∑ sign(�� − ��)�
���

while ����� ≠ DONE do

if �� == 0 then

� = ��

����� = DONE

else

�� = �� − sign(��)



SpikeOpt(Median) Architecture

 Let ��� = sign(�� − ��)/��



Complexity Analysis

 Signed rank value will be in the range 0 to 
���

�

 Worst Case

 SpikeOpt(Median) will operate for at most 
���

�
clock cycles

 Total work �� = � ��

 Work per processor �� = � �

 Speedup 
��

��
= � �

 This is optimal when � = �

 Best Case 
 SpikeOpt(Median) will operate for at a minimum 1 clock cycle

 Work per processor �� = � 1 ,



Complexity Analysis

Theorem 1 – The SpikeOpt(median) algorithm achieves optimal 
runtime with the PRAM framework for a symmetric probability 
distribution.  

Theorem 2 - The SpikeOpt(median) algorithm achieves optimal 
runtime with the PRAM framework if each integer �� is unique. 



APPLICATION: 
MEDIAN FILTERING



Median-Filtering

 Median-filtering is an algorithm to perform noise 
reduction on an image or signal

 Run through image, pixel by pixel, and replace the 
current value us the value of the median of the neighbors

 Maximum size for each median operation is 9 which 
means we can we can compute the median filtered 
image in constant time using SpikeOpt(Median)



 Original image

Median-Filtering 
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Median-filtering

 Noisy image
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total difference = 780735

number different pixels = 6651

percent pixels different = 9.85

average difference = 117.386



Median-filtering

 Median-filtered image (1st iteration)
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total difference = 578625

number different pixels = 45704

percent pixels different = 67.7

average difference = 12.6603



FURTHER WORK



Further Work

 Apply SpikingOpt to other types of optimization problems

 Enhance SpikeOpt/SpikeMin to handle real-valued numbers

 Incorporate memory and learning



Adaptation

 Can we have the SpikingOpt architecture adapt to learn the 
weights instead of hard coding them for a specific 
application?

 Can we adapt to learn median filtering?

 Can we use SpikingOpt to adapt other networks?
 Given a network, we want to optimize it to do something

 Use SpikingOpt to allow the network to adapt to optimal conditions

 Similar to GANs
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BACKUP SLIDES
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���,� = median
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Median-filtering

 Median-filtered image (2nd iteration)
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total difference = 578948

number different pixels = 46682
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Median-filtering

 Median-filtered image (3rd iteration)
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total difference = 619310

number different pixels = 48489

percent pixels different = 71.8

average difference = 12.7721



Demonstration of temporal-coding representational capacity

 Spikes as they happen in time
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Demonstration of temporal-coding representational capacity

 Aggregation of spikes (from all 0’s to all 1’s)
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Demonstration of temporal-coding representational capacity

 Aggregation of spikes weighted by their temporal code value
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Finding the max

1st layer
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