
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Optimization-based computation with spiking neurons

Stephen J. Verzi, Craig M. Vineyard, Eric D. Vugrin,
Meghan Galiardi, Conrad D. James and James B. Aimone

SAND2017-4783C

Outline

1. Introduction to Spiking

2. SpikingSort and SpikeMin

3. Optimization Using Spikes: SpikeOpt(Median)

4. Complexity results

5. Application: Median Filtering

6. Further work

INTRODUCTION TO SPIKING

Leaky Integrate-and-Fire Neuron
Model

��

��

��
= −� � + ��(�)

 � � = input to neuron

 � � = potential at time �

 �� = time constant

 � = resistance

We use

� � + 1 = 1 − � � � 1 − � � � + �(�)

where � � � = �
1 if � � > threshold
0 otherwise

Benefits of Neural Computing

 Low power

 High speed (inherently parallel)

 Addresses gap between neuromorphic architectures
(Neurogrid, SpiNNaker, TrueNorth) and algorithms which
make effective use of the hardware

B. V. Benjamin, P. Gao, E. McQuinn, S.
Choudhary, A. R. Chandrasekaran, J.-M.
Bussat, R. Alvarez-Icaza, J. V. Arthur, P.
A. Merolla, and K. Boahen, Neurogrid,
2014

S. B. Furber, F. Galluppi, S. Temple,
and L. A. Plana, SpiNNaker, 2014

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A.
S. Cassidy, J. Sawada, F. Akopyan, B. L.
Jackson, N. Imam, C. Guo, Y. Nakamura, B.
Brezzo,I. Vo, S. K. Esser, R. Appuswamy, B.
Taba, A. Amir, M. D. Flickner, W. P. Risk, R.
Manohar, and D. S. Modha, TrueNorth, 2014

SPIKINGSORT AND SPIKEMIN

SpikingSort

SpikingSort Neural Module

SpikeMin

Finding the min where � ≥ � Finding the min where � < �

OPTIMIZATION USING SPIKES:
SPIKEOPT(MEDIAN)

Optimization Formula for the Median

 Given a set of floating point numbers X = {��, ��, … , ��}

 Compute the Signed Rank function

�� �
�∈ ��

= � sign � − ��

�

���

 The median, ��, is such that �� �� is closest to 0

SpikeOpt(Median) Algorithm

Input: Set of integers, {��, ��, … , ��} where � is odd

Output: median integer, � = median ��

typedef enum {INITIAL, SPIKING, DONE} is State

State ����� ← �������  initialize state to SPIKING

for � ← 1 to N, in parallel do

�� = ∑ sign(�� − ��)�
���

while ����� ≠ DONE do

if �� == 0 then

� = ��

����� = DONE

else

�� = �� − sign(��)

SpikeOpt(Median) Architecture

 Let ��� = sign(�� − ��)/��

Complexity Analysis

 Signed rank value will be in the range 0 to
���

�

 Worst Case

 SpikeOpt(Median) will operate for at most
���

�
clock cycles

 Total work �� = � ��

 Work per processor �� = � �

 Speedup
��

��
= � �

 This is optimal when � = �

 Best Case
 SpikeOpt(Median) will operate for at a minimum 1 clock cycle

 Work per processor �� = � 1 ,

Complexity Analysis

Theorem 1 – The SpikeOpt(median) algorithm achieves optimal
runtime with the PRAM framework for a symmetric probability
distribution.

Theorem 2 - The SpikeOpt(median) algorithm achieves optimal
runtime with the PRAM framework if each integer �� is unique.

APPLICATION:
MEDIAN FILTERING

Median-Filtering

 Median-filtering is an algorithm to perform noise
reduction on an image or signal

 Run through image, pixel by pixel, and replace the
current value us the value of the median of the neighbors

 Maximum size for each median operation is 9 which
means we can we can compute the median filtered
image in constant time using SpikeOpt(Median)

 Original image

Median-Filtering

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

220 SpikeOpt network using decay

L. Fei-Fei, R. Fergus, and P. Perona, Caltech 101, 2004

Median-filtering

 Noisy image

19

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

220

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

220

total difference = 780735

number different pixels = 6651

percent pixels different = 9.85

average difference = 117.386

Median-filtering

 Median-filtered image (1st iteration)

20

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

220

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

220

total difference = 578625

number different pixels = 45704

percent pixels different = 67.7

average difference = 12.6603

FURTHER WORK

Further Work

 Apply SpikingOpt to other types of optimization problems

 Enhance SpikeOpt/SpikeMin to handle real-valued numbers

 Incorporate memory and learning

Adaptation

 Can we have the SpikingOpt architecture adapt to learn the
weights instead of hard coding them for a specific
application?

 Can we adapt to learn median filtering?

 Can we use SpikingOpt to adapt other networks?
 Given a network, we want to optimize it to do something

 Use SpikingOpt to allow the network to adapt to optimal conditions

 Similar to GANs

References

 L. F. Abbott, “Lapicque’s introduction of the integrate-and-fire
model neuron (1907),” Brain Research Bulletin, vol. 50, no. 5,
pp. 303–304, 1999. [Online]. Available:
http://dx.doi.org/10.1016/S0361-9230(99)00161-6

 H. Oja, Multivariate Nonparametric Methods with R, An
Approach Based on Spatial Signs and Ranks, ser. Lecture
Notes in Statistics. New York City, NY: Springer, 2010, vol. 199.
[Online]. Available: http://dx.doi.org/10.1007/978-1-4419-
0468-3

 S. J. Verzi, F. Rothganger, O. D. Parekh, T.-T. Quach, N. E.
Miner, C. D. James, and J. B. Aimone, “Computing with spikes:
The advantage of fine-grained timing,” , submitted.

BACKUP SLIDES

25

���,� = median
���������,���������

��,�

input layer median-filter layer

��,�

Median-filtering

 Median-filtered image (2nd iteration)

28

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

220

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

220

total difference = 578948

number different pixels = 46682

percent pixels different = 69.2

average difference = 12.4020

L. Fei-Fei, R. Fergus, and P. Perona,
Caltech 101, 2004

Median-filtering

 Median-filtered image (3rd iteration)

29

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

220

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

220

total difference = 619310

number different pixels = 48489

percent pixels different = 71.8

average difference = 12.7721

Demonstration of temporal-coding representational capacity

 Spikes as they happen in time

30

Demonstration of temporal-coding representational capacity

 Aggregation of spikes (from all 0’s to all 1’s)

31

Demonstration of temporal-coding representational capacity

 Aggregation of spikes weighted by their temporal code value

32

Finding the max

1st layer

�������

winner-take-all

��

��
�

��
��

�

��
��

�

��

��

��

…
…

��� = 1
��

��� = 1
��

��� = 1
��

�
��

��

�
��

��

�
��

��

��� = 0

��� = 0

��� = 0

��

��

��

��� = −�

��� = −�

��� = −�

� �� − �
��

��

� �� − �
��

��

� �� − �
��

��

2nd layer

�������

winner-take-all

��� = ��

��� = ��

��� = ��

��
�

��
�

��
�

� max
�

�� = ���
� + ��

�

����

