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INTRODUCTION TO SPIKING




Leaky Integrate-and-Fire Neuron e
Model

du
Tm E = —U(t) + Rl(t)

= J(t) = inputto neuron NS
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= u(t) = potential at time t L // /
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We use

u(t+1) = (1 - D(u®) (1-z(u®)) +1(t)

1 ifu(t) > threshold
where z(u(t)) - {O (o)therwise




Benefits of Neural Computing UL

= Low power
= High speed (inherently parallel)

= Addresses gap between neuromorphic architectures
(Neurogrid, SpiNNaker, TrueNorth) and algorithms which
make effective use of the hardware

4036 cores
1 million neurons

256 million synapses
5.4 billion transistors
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SPIKINGSORT AND SPIKEMIN
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SpikingSort Neural Module
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SpikeMin .

Finding the min where P > N  Finding the min where P < N
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OPTIMIZATION USING SPIKES:

SPIKEOPT(MEDIAN)



Optimization Formula for the Mediafi)&-

= Given a set of floating point numbers X = {x4, x5, ..., Xy}
= Compute the Signed Rank function

N

R(x) = Z sign(x — x;)

x€{x;i} =

= The median, %, is such that R(¥) is closest to 0




SpikeOpt(Median) Algorithm UL

Input: Set of integers, {x1, X, ..., Xy} where N is odd
Output: median integer, m = median(x;)
typedef enum {INITIAL, SPIKING, DONE} is State
State state « SPIKING [> initialize state to SPIKING
fori < 1to N, in parallel do
u; = Y-y sign(x; — x;)
while state #+ DONE do
if u; == 0 then
m = Xx;
state = DONE
else
u; = u; — sign(u;)



SpikeOpt(Median) Architecture

= Letw;; = sign(x; — x;)/x;
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Complexity Analysis UL

= Signed rank value will be in the range O to %

= Worst Case

= SpikeOpt(Median) will operate for at most % clock cycles
= Total work T; = O(N?)
= Work per processor Tp = O(N)
= Speedup b O(N)
Tp
= Thisis optimal when P = N
= Best Case

= SpikeOpt(Median) will operate for at a minimum 1 clock cycle
= Work per processor Tp = 0(1),




Complexity Analysis )&=,

Theorem 1 — The SpikeOpt(median) algorithm achieves optimal
runtime with the PRAM framework for a symmetric probability
distribution.

Theorem 2 - The SpikeOpt(median) algorithm achieves optimal
runtime with the PRAM framework if each integer x; is unique.




APPLICATION:

MEDIAN FILTERING



Median-Filtering

= Median-filtering is an algorithm to perform noise
reduction on an image or signal

= Run through image, pixel by pixel, and replace the
current value us the value of the median of the neighbors

= Maximum size for each median operation is 9 which
means we can we can compute the median filtered
image in constant time using SpikeOpt(Median)

input layer median-filter layer




Median-Filtering
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SpikeOpt network using decay




Median-filtering h &=,

= Noisy image
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percent pixels different = 9.85
number different pixels = 6651
total difference = 780735

average difference = 117.386 44



Median-filtering h &=,

= Median-filtered image (15t iteration)

50 100 150 200 250 300 50 100 150 200 250 300

percent pixels different = 67.7

number different pixels = 45704
total difference = 578625

average difference = 12.6603  ,,



FURTHER WORK




Further Work ) =

= Apply SpikingOpt to other types of optimization problems

= Enhance SpikeOpt/SpikeMin to handle real-valued numbers

= |ncorporate memory and learning




Adaptation .

= Can we have the SpikingOpt architecture adapt to learn the
weights instead of hard coding them for a specific
application?

= Can we adapt to learn median filtering?
= Can we use SpikingOpt to adapt other networks?

= Given a network, we want to optimize it to do something

= Use SpikingOpt to allow the network to adapt to optimal conditions
= Similar to GANs
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PARALLEL COMPUTATIONAL COMPLEXITY COMPARISON OF ALGORITHMS
FOR FINDING THE MEDIAN.
Tp P cost
Akl, for0 < z < 1 O(N'—7%) O(N~) O(N)
Cole & Yap O((loglog N)¥) | O(N) | O(N(loglog N)*)
Tishkin O(loglog N) O(N) O(N loglog N)
Beliakov O(1) O(N) O(N)
SpikingMedian O(k) O(N) O(kN)
SpikeOpt, worst-case O(N/2) O(N) O(N*/2)
SpikeOpt, symmetric O(1) O(N) O(N)
SpikeOpt, | X | = d O(1) O(N) O(N)




input layer median-filter layer
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Sandia

Median-filtering h &=,

= Median-filtered image (2"9 iteration)

50 100 150 200 250 300 50 100 150 200 250 300

percent pixels different = 69.2

L. Fei-Fei, R. Fergus, and P. Perona number different pixels = 46682
Caltech 101, 2004 total difference = 578948

average difference = 12.4020  ,4



Median-filtering h &=,

= Median-filtered image (39 iteration)

50 100 150 200 250 300 50 100 150 200 250 300

percent pixels different = 71.8

number different pixels = 48489
total difference = 619310

average difference = 12.7721 .4



Demonstration of temporal-coding representational c%

= Spikes as they happen in time




Demonstration of temporal-coding representational c%

= Aggregation of spikes (from all 0’s to all 1’s)




Demonstration of temporal-coding representational c%

= Aggregation of spikes weighted by their temporal code value
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Finding the max
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