

Optimization-based computation with spiking neurons

Stephen J. Verzi, Craig M. Vineyard, Eric D. Vugrin,
Meghan Galiardi, Conrad D. James and James B. Aimone

Outline

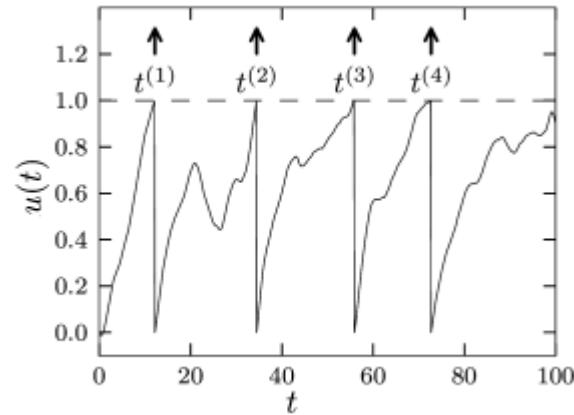
1. Introduction to Spiking
2. SpikingSort and SpikeMin
3. Optimization Using Spikes: SpikeOpt(Median)
4. Complexity results
5. Application: Median Filtering
6. Further work

INTRODUCTION TO SPIKING

Leaky Integrate-and-Fire Neuron Model

$$\tau_m \frac{du}{dt} = -u(t) + RI(t)$$

- $I(t)$ = input to neuron
- $u(t)$ = potential at time t
- τ_m = time constant
- R = resistance



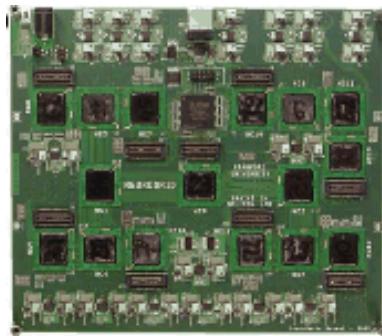
We use

$$u(t+1) = (1 - \lambda)(u(t)) \left(1 - z(u(t))\right) + I(t)$$

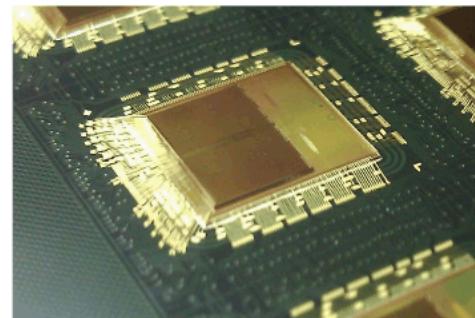
where $z(u(t)) = \begin{cases} 1 & \text{if } u(t) > \text{threshold} \\ 0 & \text{otherwise} \end{cases}$

Benefits of Neural Computing

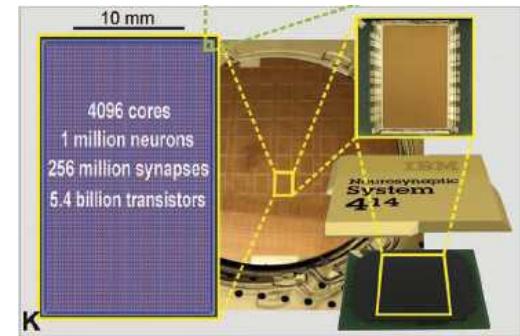
- Low power
- High speed (inherently parallel)
- Addresses gap between neuromorphic architectures (Neurogrid, SpiNNaker, TrueNorth) and algorithms which make effective use of the hardware



B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J.-M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, Neurogrid, 2014



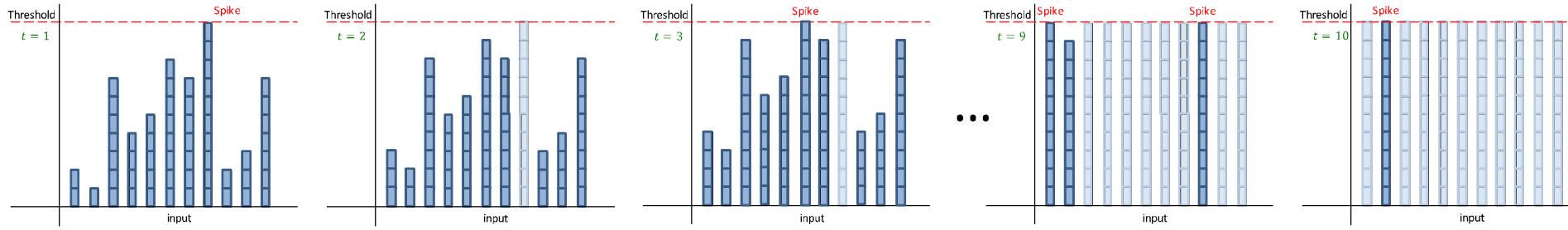
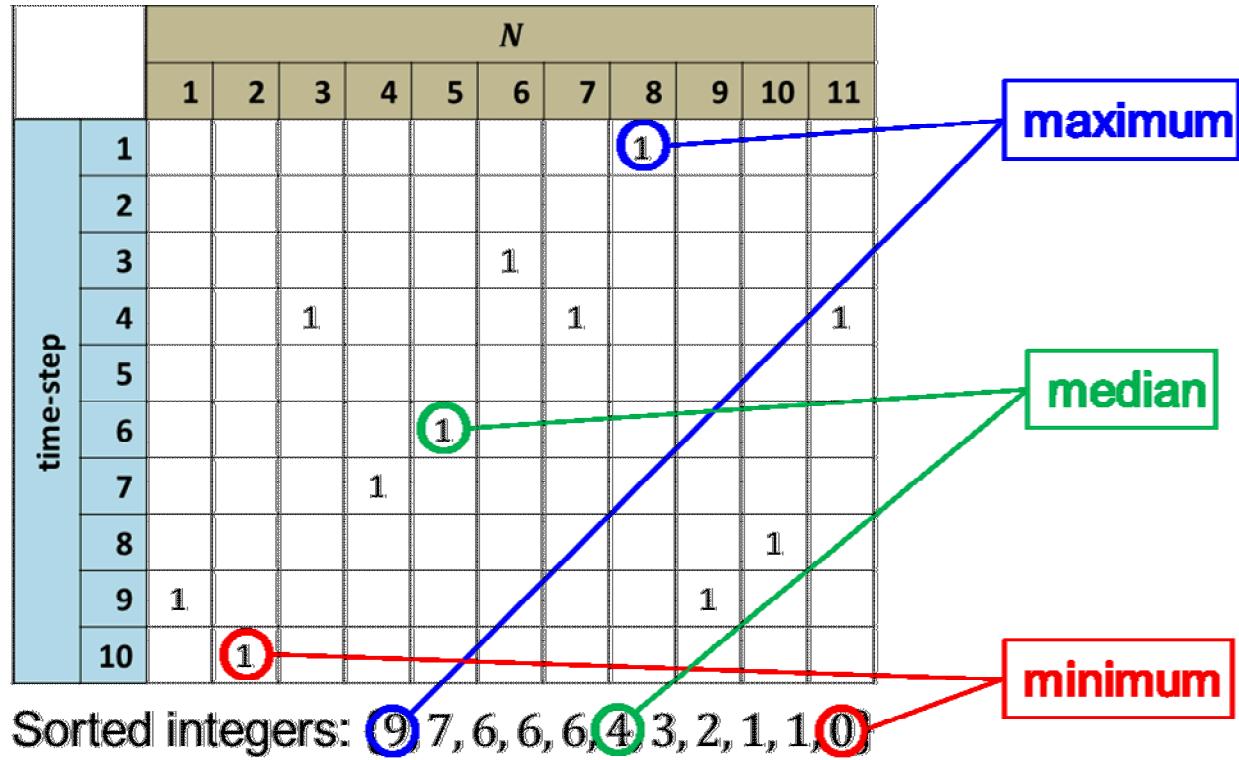
S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, SpiNNaker, 2014



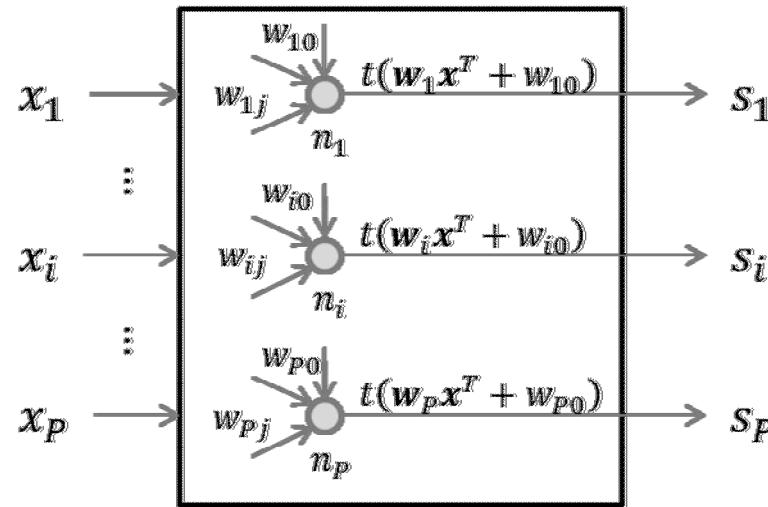
P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, TrueNorth, 2014

SPIKINGSORT AND SPIKEMIN

SpikingSort



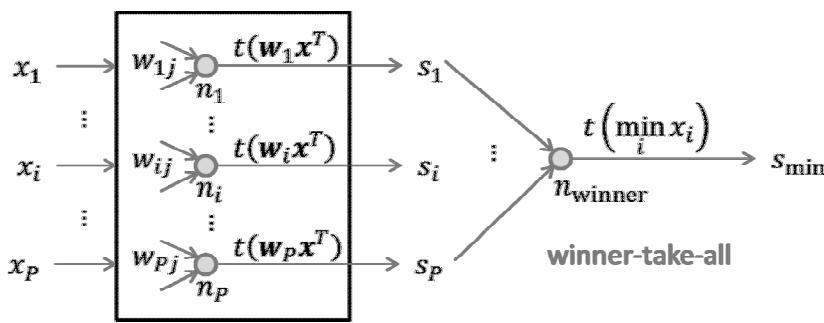
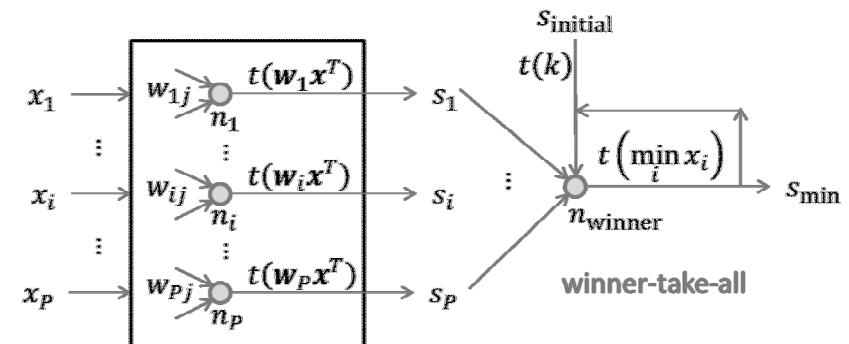
SpikingSort Neural Module



SpikeMin

Finding the min where $P \geq N$

Finding the min where $P < N$



OPTIMIZATION USING SPIKES: SPIKEOPT(MEDIAN)

Optimization Formula for the Median

- Given a set of floating point numbers $X = \{x_1, x_2, \dots, x_N\}$
- Compute the Signed Rank function

$$\tilde{R}(x) = \sum_{\substack{x \in \{x_i\} \\ i=1}}^N \text{sign}(x - x_i)$$

- The median, \tilde{x} , is such that $\tilde{R}(\tilde{x})$ is closest to 0

SpikeOpt(Median) Algorithm

Input: Set of integers, $\{x_1, x_2, \dots, x_N\}$ where N is odd

Output: median integer, $m = \text{median}(x_i)$

typedef enum {INITIAL, SPIKING, DONE} is State

State $state \leftarrow SPIKING$ \triangleright initialize state to SPIKING

for $i \leftarrow 1$ to N, in parallel **do**

$$u_i = \sum_{j=1}^N \text{sign}(x_i - x_j)$$

while $state \neq \text{DONE}$ **do**

if $u_i == 0$ **then**

$$m = x_i$$

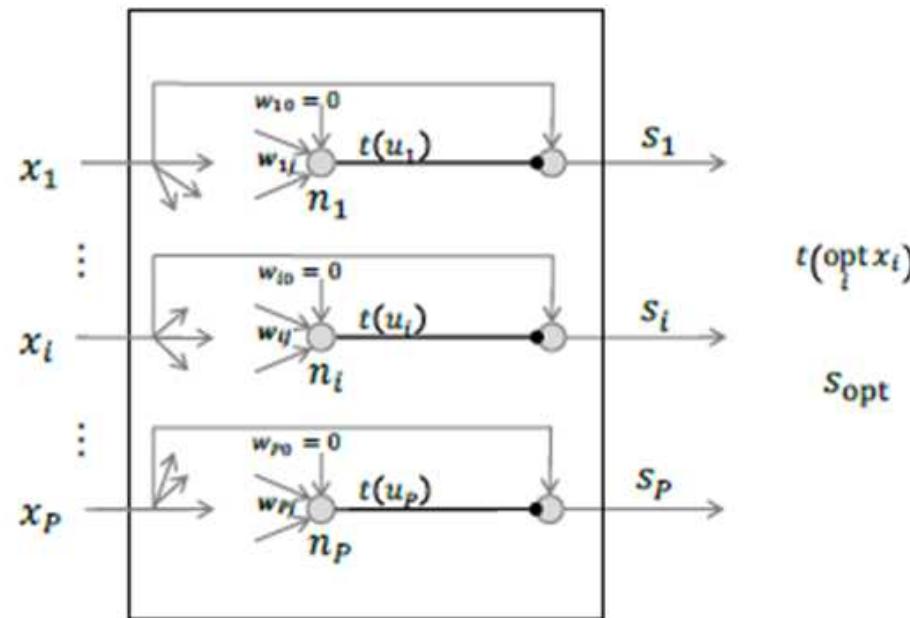
$state = \text{DONE}$

else

$$u_i = u_i - \text{sign}(u_i)$$

SpikeOpt(Median) Architecture

- Let $w_{ij} = \text{sign}(x_i - x_j)/x_j$



Complexity Analysis

- Signed rank value will be in the range 0 to $\frac{N-1}{2}$
- Worst Case
 - SpikeOpt(Median) will operate for at most $\frac{N+1}{2}$ clock cycles
 - Total work $T_1 = O(N^2)$
 - Work per processor $T_P = O(N)$
 - Speedup $\frac{T_1}{T_P} = O(N)$
 - This is optimal when $P = N$
- Best Case
 - SpikeOpt(Median) will operate for at a minimum 1 clock cycle
 - Work per processor $T_P = O(1)$,

Complexity Analysis

Theorem 1 – The SpikeOpt(median) algorithm achieves optimal runtime with the PRAM framework for a symmetric probability distribution.

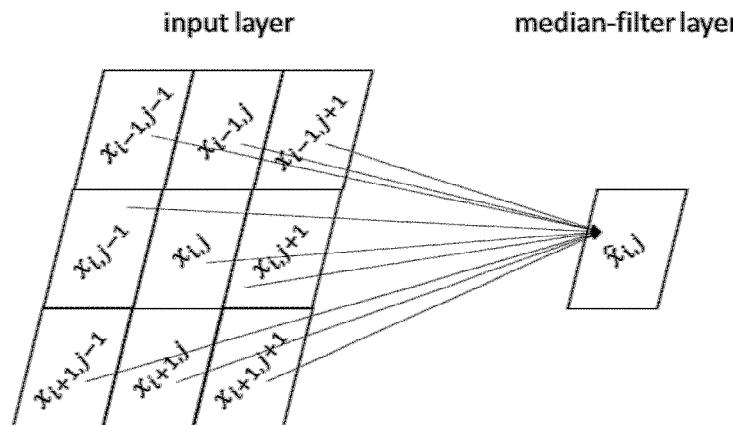
Theorem 2 - The SpikeOpt(median) algorithm achieves optimal runtime with the PRAM framework if each integer x_i is unique.

APPLICATION:

MEDIAN FILTERING

Median-Filtering

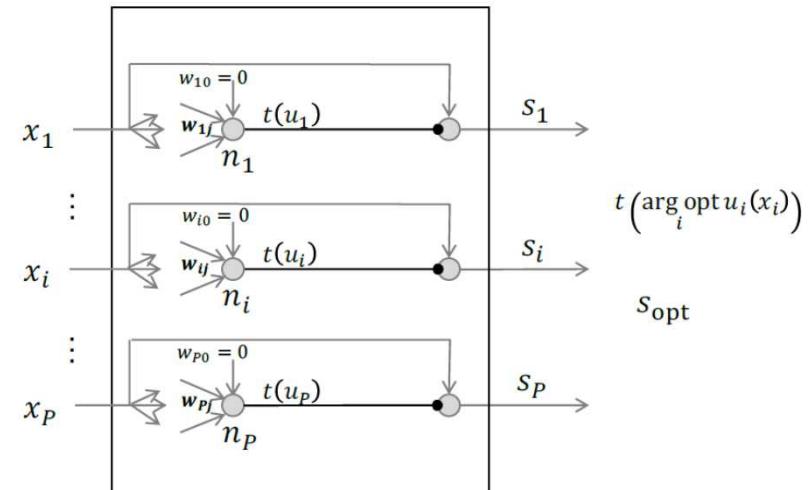
- Median-filtering is an algorithm to perform noise reduction on an image or signal
- Run through image, pixel by pixel, and replace the current value us the value of the median of the neighbors
- Maximum size for each median operation is 9 which means we can we can compute the median filtered image in constant time using SpikeOpt(Median)



Median-Filtering

- Original image

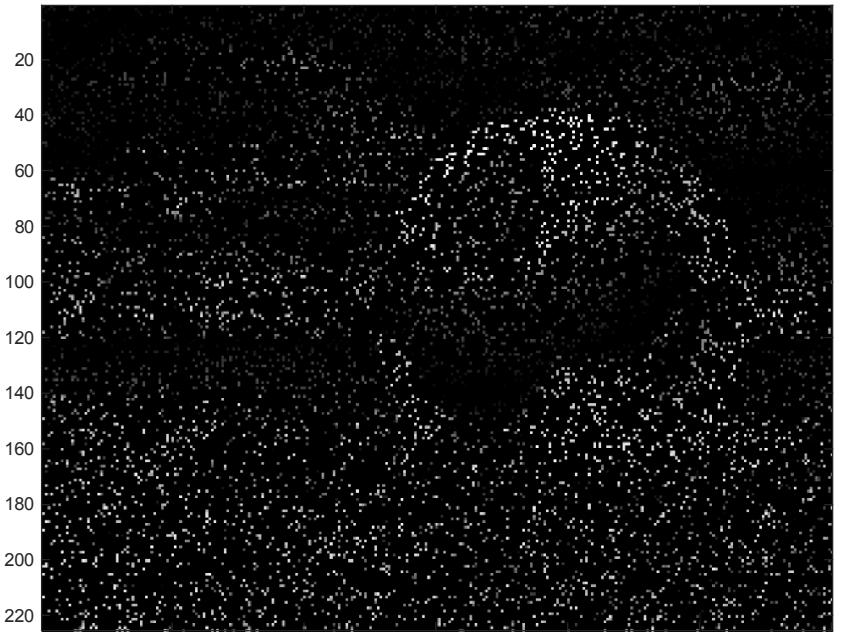
L. Fei-Fei, R. Fergus, and P. Perona, Caltech 101, 2004



SpikeOpt network using decay

Median-filtering

- Noisy image



percent pixels different = 9.85

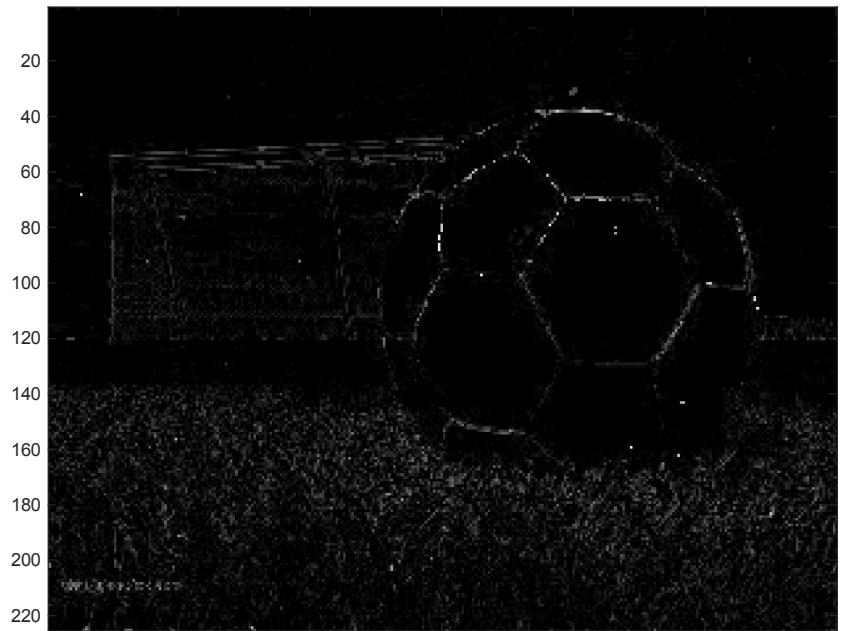
number different pixels = 6651

total difference = 780735

average difference = 117.386

Median-filtering

- Median-filtered image (1st iteration)



percent pixels different = 67.7

number different pixels = 45704

total difference = 578625

average difference = 12.6603

FURTHER WORK

Further Work

- Apply SpikingOpt to other types of optimization problems
- Enhance SpikeOpt/SpikeMin to handle real-valued numbers
- Incorporate memory and learning

Adaptation

- Can we have the SpikingOpt architecture adapt to learn the weights instead of hard coding them for a specific application?
- Can we adapt to learn median filtering?
- Can we use SpikingOpt to adapt other networks?
 - Given a network, we want to optimize it to do something
 - Use SpikingOpt to allow the network to adapt to optimal conditions
 - Similar to GANs

References

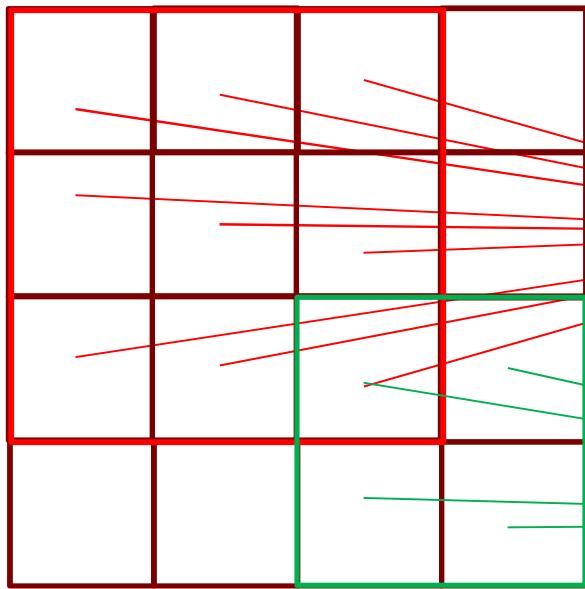
- L. F. Abbott, “Lapicque’s introduction of the integrate-and-fire model neuron (1907),” *Brain Research Bulletin*, vol. 50, no. 5, pp. 303–304, 1999. [Online]. Available: [http://dx.doi.org/10.1016/S0361-9230\(99\)00161-6](http://dx.doi.org/10.1016/S0361-9230(99)00161-6)
- H. Oja, *Multivariate Nonparametric Methods with R, An Approach Based on Spatial Signs and Ranks*, ser. *Lecture Notes in Statistics*. New York City, NY: Springer, 2010, vol. 199. [Online]. Available: <http://dx.doi.org/10.1007/978-1-4419-0468-3>
- S. J. Verzi, F. Rothganger, O. D. Parekh, T.-T. Quach, N. E. Miner, C. D. James, and J. B. Aimone, “Computing with spikes: The advantage of fine-grained timing,” , submitted.

BACKUP SLIDES

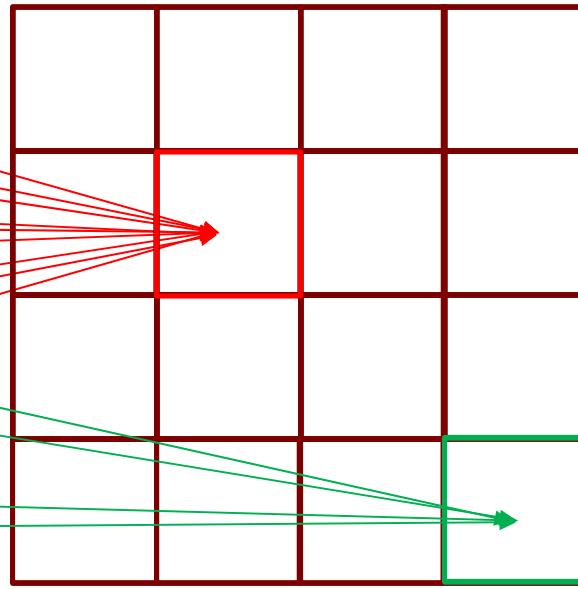
PARALLEL COMPUTATIONAL COMPLEXITY COMPARISON OF ALGORITHMS FOR FINDING THE MEDIAN.

	T_P	P	cost
Akl, for $0 < x < 1$	$O(N^{1-x})$	$O(N^2)$	$O(N)$
Cole & Yap	$O((\log \log N)^2)$	$O(N)$	$O(N(\log \log N)^2)$
Tishkin	$O(\log \log N)$	$O(N)$	$O(N \log \log N)$
Beliakov	$O(1)$	$O(N)$	$O(N)$
SpikingMedian	$O(k)$	$O(N)$	$O(kN)$
SpikeOpt, worst-case	$O(N/2)$	$O(N)$	$O(N^2/2)$
SpikeOpt, symmetric	$O(1)$	$O(N)$	$O(N)$
SpikeOpt, $ X = d$	$O(1)$	$O(N)$	$O(N)$

input layer



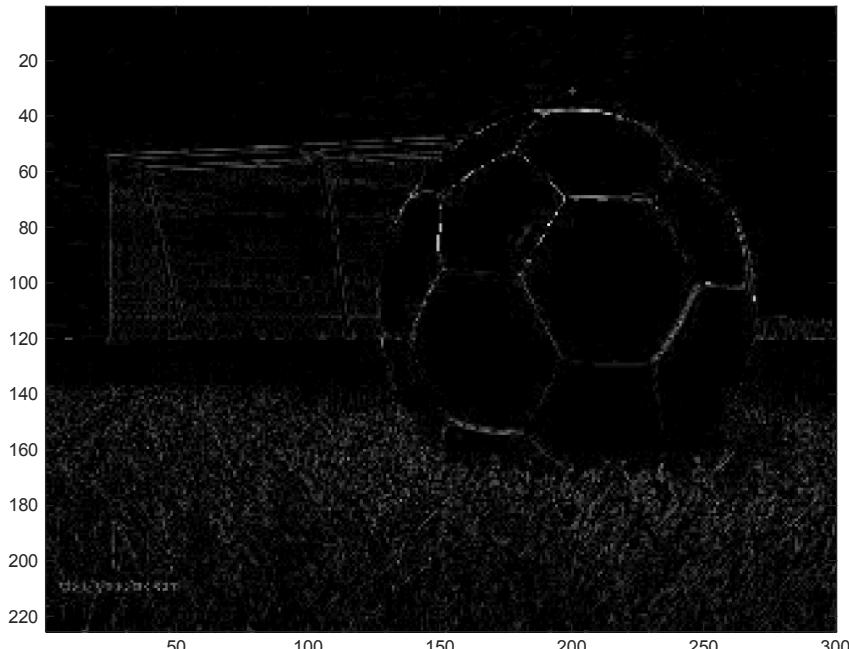
median-filter layer



$$\hat{x}_{i,j} = \operatorname{median}_{i-1 \leq p \leq i+1, j-1 \leq q \leq j+1} x_{p,q}$$

Median-filtering

- Median-filtered image (2nd iteration)



percent pixels different = 69.2

number different pixels = 46682

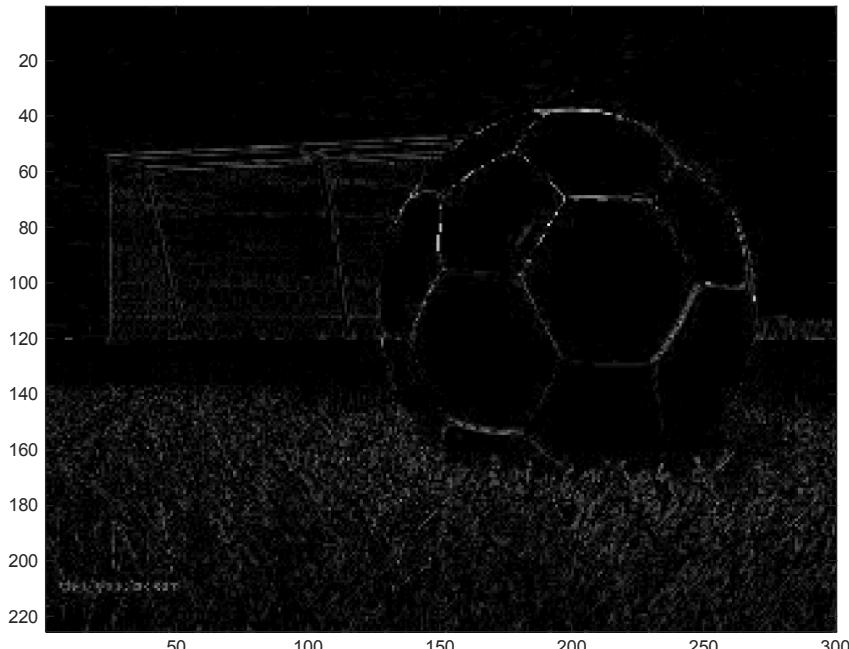
total difference = 578948

average difference = 12.4020

L. Fei-Fei, R. Fergus, and P. Perona,
Caltech 101, 2004

Median-filtering

- Median-filtered image (3rd iteration)



percent pixels different = 71.8

number different pixels = 48489

total difference = 619310

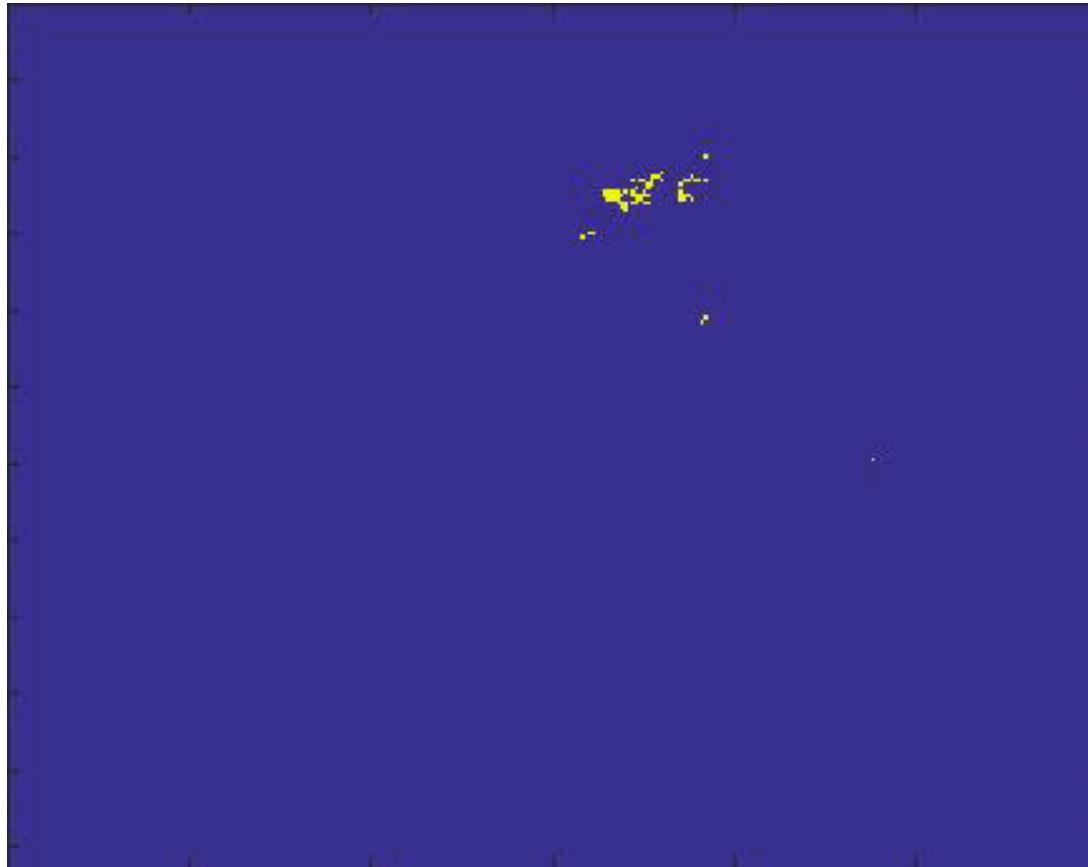
average difference = 12.7721

Demonstration of temporal-coding representational capacity

- Spikes as they happen in time

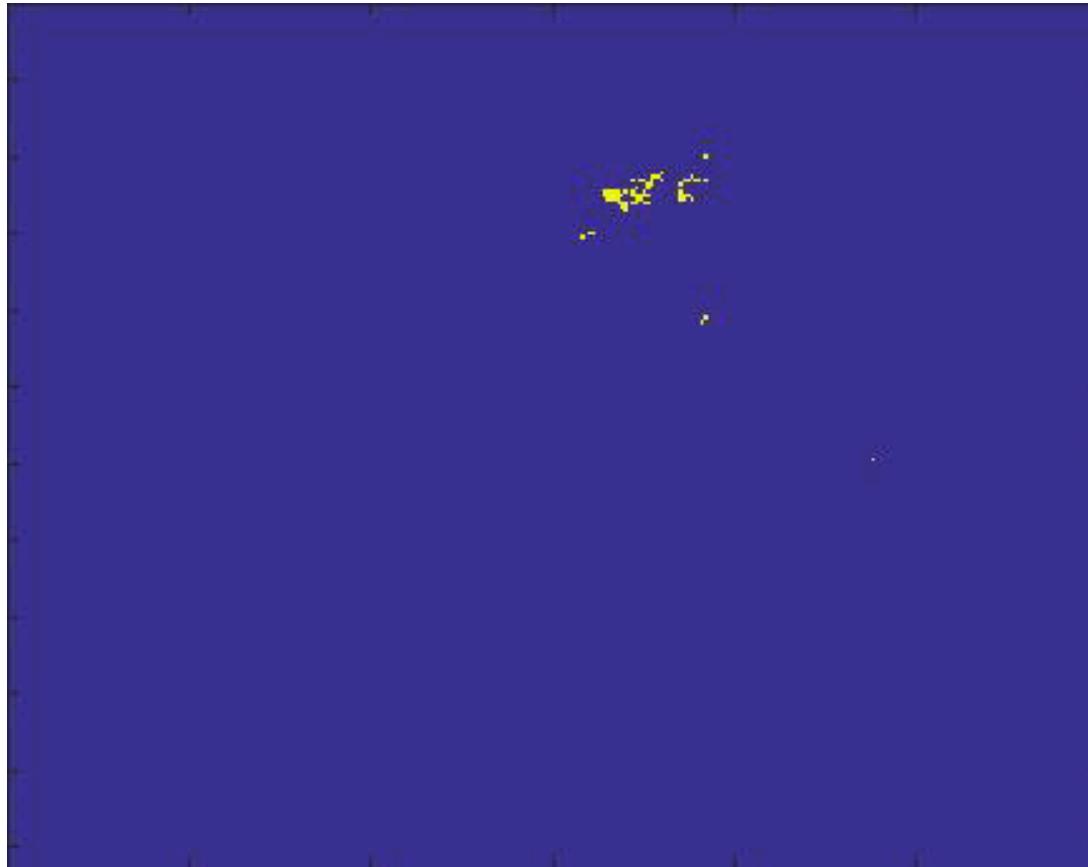
Demonstration of temporal-coding representational capacity

- Aggregation of spikes (from all 0's to all 1's)



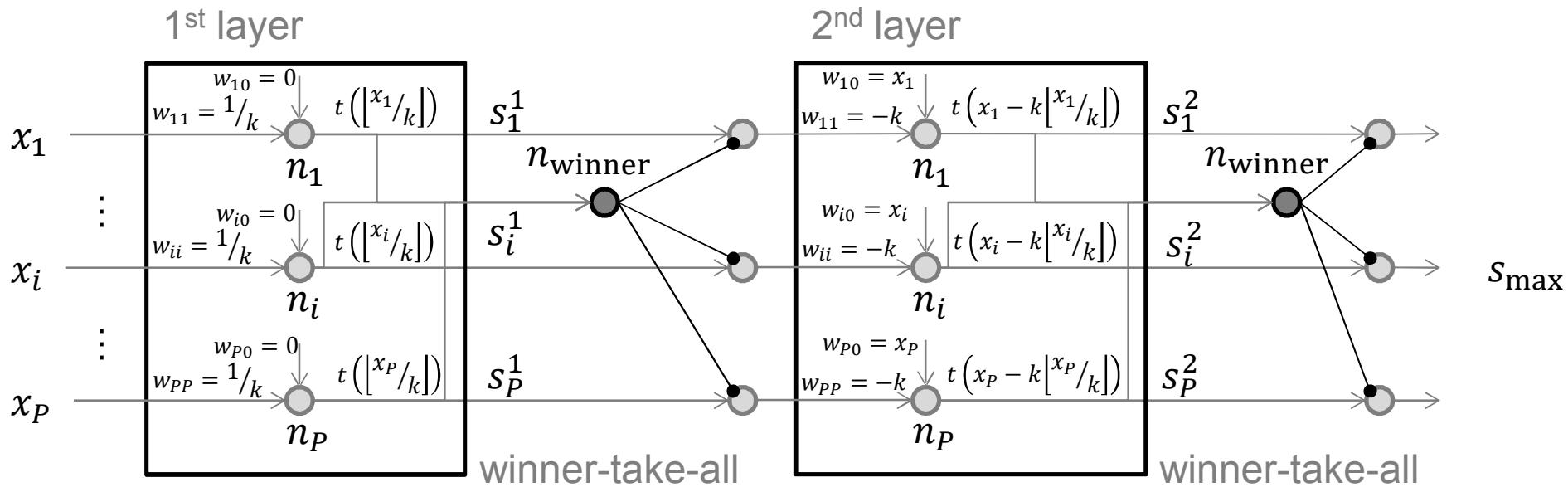
Demonstration of temporal-coding representational capacity

- Aggregation of spikes weighted by their temporal code value



		neuron												Temporal code
		1	2	3	4	5	6	7	8	9	10	11	12	
time	1								1					7
	2					1				1				6
	3						1							5
	4			1					1			1		4
	5													3
	6						1							2
	7	1			1									1
	8		1									1		0

Finding the max



$$t \left(\max_i x_i \right) = k s_i^1 + s_i^2$$