
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Profiling Kokkos Applications

Christian Trott

crtrott@sandia.gov
Center for Computing Research

Sandia National Laboratories, NMSAND2017-XXXX C

SAND2017-4686PE

C++ The Bane of Profiling Tools

 It is hard to understand C++ code for a compiler
 Template Metaprogramming

 Function Pointers

 Inheritance

 Arbitrary aliasing

 It is even harder for a Performance Analysis Tool
 Most come from a Fortran history

 Abstraction Models make it all worse
 E.g. only one place where the actual OpenMP loop is

 Really complex type names which may exceed internal typename length
limits

 And we want this across all Platforms …

2

Abstractions to the Win ?!

 Abstractions can also help us: Instrumentation

 KokkosTools provide built-in instrumentation for Kokkos
applications
 By default enabled on most platforms

 This Instrumentation knows about Kokkos abstractions
 Get information organized by Kokkos constructs (Parallel Regions,

Allocations in Memory Spaces, etc.)

 Enables Meta Instrumentation for Third Party Tools
 Provide information to Vtune, Nsight, …

 Easy to use Tools Provide Basic Information accross all Platforms
 Kernel and Region Times, Memory Utilization, Allocation and Deallocation

Frequency, ...

3

Building an EcoSystem

4

Algorithms
(Random, Sort)

Containers
(Map, CrsGraph, Mem Pool)

Kokkos
(Parallel Execution, Data Allocation, Data Transfer)

Kokkos – Kernels
(Sparse/Dense BLAS, Graph Kernels, Tensor

Kernels)

K
o

k
k
o

s
–

To
o

ls
(K

o
k
k
o
s

a
w

a
re

 P
ro

fi
lin

g
 a

n
d
 D

e
b
u
g
g
in

g
 T

o
o
ls

)

Trilinos
(Linear Solvers, Load Balancing,
Discretization, Distributed Linear

Algebra)

K
o

k
k
o

s
–

S
u

p
p

o
rt

 C
o

m
m

u
n

it
y

(A
p
p
lic

a
ti
o
n
 S

u
p
p
o
rt

,
D

e
ve

lo
p
e
r

T
ra

in
in

g
)ApplicationsMiniApps

std::thread OpenMP CUDA ROCm

KokkosTools: github.com/kokkos/kokkos-tools

 Utilities
 KernelFilter: Enable/Disable Profiling for a selection of Kernels

 Kernel Inspection
 KernelLogger: Runtime information about entering/leaving Kernels and

Regions

 KernelTimer: Postprocessing information about Kernel and Region Times

 Memory Analysis
 MemoryHighWater: Maximum Memory Footprint over whole run

 MemoryUsage: Per Memory Space Utilization Timeline

 MemoryEvents: Per Memory Space Allocation and Deallocations

 Third Party Connector
 VTune Connector: Mark Kernels as Frames inside of Vtune

 VTune Focused Connector: Mark Kernels as Frames + start/stop profiling

5

How to Use the Tools

 Checkout from github.com/kokkos/kokkos-tools

 Documentation in a Wiki

 Go to src/tools/TOOLNAME and build the tool
 On most platforms typing ”make” is enough

 Before running your code set environment variable
 export KOKKOS_PROFILE_LIBRARY=/PATH/TO/TOOLS/LIBRARY

 Analyze output
 Some tools print to screen, some write per-process files

 Some tools have readers for binary output files

 How does it work internally?
 Instrumentation is always active, but internal function pointers are NULL

 At Kokkos::initialize tool library is dynamically loaded, and function
pointers are set

6

Typical Approach

 Run KernelTimer
 Check if majority of time is in Kernels

 Check for HotSpot Kernels

 Run MemoryUsage
 Check where your memory utilization is coming from

 Check total number of entries to see if frequent alloc/dealloc could be an
issue

 If frequent allocations are an issue: run MemoryEvents
 Figure out which allocations are causing the issue

 Less than 1000 per second per socket is usually no issue

 To find unaccounted time: put region markers into code
 Compare region times with kernel times

 Use Connector tools to help investigate individual kernels

7

The Tools

 See Wiki

8

Exercise

 Use new miniApp: ExaMiniMD
 Note this is NOT a full OpenSource release

 This can be shared within ECP or under vendor NDA, but ask first

 Do not share with anyone else; OpenSource license expected this fall

 git clone git@github.com:crtrott/ExaMiniMD

 git checkout profiling-exercise

 Basic Molecular Dynamics Importance of Kernels:
 Force Calculation

 NeighborList Construction

 Communication

 Other stuff: (Integration, Particle Sorting etc.)

 This variant has a problem hidden
 Use Kokkos Tools to find the issue

 Follow the typical approach lined out before
9

(NVIDIA) GPU Profiling
 Dominant Performance Bottlenecks:

 Occupancy

 Memory Bandwidth

 Memory Efficiency

 Memory Load/Store Slots

 Availability of Instruction Parallelism

 Visual Profiler (nvvp or as part of nsight)
 Guided Analysis

 Use nvprof to collect data on commandline
 Generally same information as in the Visual Profiler

 nvprof [OPTIONS] ./Executable [OPTIONS]

 --print-gpu-summary : Summary of Kernels, and data transfers

 --print-gpu-trace: timeline of kernels and data transfers

 --query-metrics: list of collectable events

 -m [EVENTS]: set events to be collected

 --kernels [KERNELS]: restrict profiling to specified kernels 10

Important Metrics – Occupancy/Mem
 achieved_occupancy:

 Actually reached occupancy

 Cause1: high register pressure (check with --print-gpu-trace)

 Cause2: high shared memory usage (check with --print-gpu-trace)

 Cause3: low total available parallelism (too few blocks)

 **_throughput: Bandwidth for different parts of the memory subsystem

 dram_[read/write]: device memory traffic including ECC

 [gld/gst]: global memory access, could be cached (this is larger than requested due to efficiency)

 [gld/gst]_requested: the memory throughput of things the code actually wants

 l2_l1_read, l2_tex_[read/write],l2_atomic: L2 Cache Throughput by Source

 local_[load/store]: data traffic due to register spilling

 shared_[load/store]: shared memory (team scratch level 0)

 **_efficiency: different efficiency metrics
 [gld/gst]: global memory access (coalesced access = 100%)

 shared: shared memory loads

 **_hit_rate: Cache hit rates
 l1_cache_[global/local]: Hit rate in L1 Cache due to global/local load store

 tex_cache: Hit rate for texture fetches

 l2_l1_[read]: Hit rate for all L1 misses in L2

 l2_tex_read: Hit rate for texture misses in L2

11

Important Metrics – Compute

 **_efficiency:

 sm: multiprocessors are active (small means not enough work launched in a kernel)

 warp_execution: active threads vs non-active threads due to branching (small means divergence)

 branch: non-divergent vs total branches (small means divergence in kernel)

 flop_[sp/dp]: achieved single/double precision peak flop/s fraction

 stall_**: Reasons why a warp does not execute an instruction

 inst_fetch: instructions are not yet loaded,

 very unlikely to be an issue, if it is think about breaking up kernel into smaller ones

 memory_dependency: waiting for a load

 typical sign for memory bandwidth limitation

 Use less memory, spread out loads more if possible to overlap with compute

 exec_dependency: can’t execute because prior instruction not done

 find and expose instruction parallelism

 memory_throttle: no load/store slots available

 If this happen without memory_dependency data access patterns are usually bad

 sync: warps waiting for other warps at a barrier

 Check if barriers are necessary

 pipe_busy: compute operation pipe is busy

 Rarely an issue, except when making haevy use of special function units

 not_selected: The “good” stall, more ready threads are availabe than slots are to be filled

 If you see this as the primary stall reason you have a code which is either artificial or a Gordon Bell candidate
12

A Case Study I

 A Parametrized Benchmark Code
 Very fancy vector addition with additional math

 Parameters:
 N: control total work (RT)

 M: control data reusage origin (RT)

 S: control data stride (RT)

 R: control data reusage (RT)

 K: control instruction parallelism (CT)

 F: control Flops/Bytes ratio (RT)

13

View<double***> a("A",N,M,S), b("B",N,M,S),
c("C",N,M,S);

// Loop over blocks
for(int i=0; i<N; i++) {
// Repeat work on block to control cache reusage
for(int r=0; r<R; r++) {
// Loop over block
for(int j=0; j<M; j++) {
a_1 = a(i,j,0);
b_1 = b(i,j,0);
// Repeat for instruction parallelism
a_K = a(i,j,0);
b_K = a(i,j,0);
// Loop to add more flops
for(int f=0; f<F; f++) {
a_1 += b_1;
// Repeat for instruction parallelism
a_K += b_K;

}
c(i,j,0) = a_1 + /*...*/ a_K;

}
}

}

A Case Study II

 Exercise I
 Find settings to measure hardware global and cache bandwidth

 Exercise II
 Find setting to maximize flop rate

 Exercise III
 Find settings to make each of the stall reasons the primary stall reasons

14

http://www.github.com/kokkos

