SAND2017- 4686PE

"o
L
. o,

Profiling Kokkos Applications

Christian Trott

crtrott@sandia.gov
Center for Computing Research

SAND2017-XXXX C Sandia National Laboratories, NM

U.8. DEPARTMENT OF " YA} D
@ ENERGY NN A < Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
Natlona! Nuciear ; r Administration

Sacedy owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

C++ The Bane of Profiling Tools UL

= |tis hard to understand C++ code for a compiler
= Template Metaprogramming
= Function Pointers
= |nheritance

= Arbitrary aliasing
= |tis even harder for a Performance Analysis Tool
= Most come from a Fortran history

= Abstraction Models make it all worse

= E.g.only one place where the actual OpenMP loop is

= Really complex type names which may exceed internal typename length
limits

= And we want this across all Platforms ...

Abstractions to the Win ?!) B,

= Abstractions can also help us: Instrumentation
= KokkosTools provide built-in instrumentation for Kokkos
applications
= By default enabled on most platforms

= This Instrumentation knows about Kokkos abstractions

= Get information organized by Kokkos constructs (Parallel Regions,
Allocations in Memory Spaces, etc.)

= Enables Meta Instrumentation for Third Party Tools
= Provide information to Vtune, Nsight, ...

= Easy to use Tools Provide Basic Information accross all Platforms

= Kernel and Region Times, Memory Utilization, Allocation and Deallocation
Frequency, ...

3

Building an EcoSystem UL

J
J

MiniApps Applications

Trilinos
(Linear Solvers, Load Balancing,
Discretization, Distributed Linear
Algebra)

Kokkos — Kernels
(Sparse/Dense BLAS, Graph Kernels, Tensor
Kernels)

Kokkos — Tools
(Kokkos aware Profiling and Debugging Tools)

Algorithms Containers
(Random, Sort) (Map, CrsGraph, Mem Pool)

Kokkos — Support Community
(Application Support, Developer Training)

Kokkos
(Parallel Execution, Data Allocation, Data Transfer)

std::thread OpenMP CUDA

KokkosTools: github.com/kokkos/kokkos-tools)=,

= Utilities
= KernelFilter: Enable/Disable Profiling for a selection of Kernels

= Kernel Inspection

= KernellLogger: Runtime information about entering/leaving Kernels and
Regions

= KernelTimer: Postprocessing information about Kernel and Region Times

= Memory Analysis
= MemoryHighWater: Maximum Memory Footprint over whole run
= MemoryUsage: Per Memory Space Utilization Timeline
= MemoryEvents: Per Memory Space Allocation and Deallocations

= Third Party Connector
= VTune Connector: Mark Kernels as Frames inside of Vtune
= VTune Focused Connector: Mark Kernels as Frames + start/stop profiling

S

How to Use the Tools) e

= Checkout from github.com/kokkos/kokkos-tools

= Documentationin a Wiki
= Go to src/tools/TOOLNAME and build the tool

= On most platforms typing "make” is enough

= Before running your code set environment variable
= export KOKKOS_PROFILE_LIBRARY=/PATH/TO/TOOLS/LIBRARY

= Analyze output
= Some tools print to screen, some write per-process files
= Some tools have readers for binary output files

= How does it work internally?
= |nstrumentation is always active, but internal function pointers are NULL

= At Kokkos::initialize tool library is dynamically loaded, and function
pointers are set 6
I ——————

Typical Approach UL

= Run KernelTimer
= Check if majority of time is in Kernels
= Check for HotSpot Kernels
= Run MemoryUsage
= Check where your memory utilization is coming from

= Check total number of entries to see if frequent alloc/dealloc could be an
issue

= |f frequent allocations are an issue: run MemoryEvents
= Figure out which allocations are causing the issue
= Less than 1000 per second per socket is usually no issue

= To find unaccounted time: put region markers into code

= Compare region times with kernel times

= Use Connector tools to help investigate individual kernels

14

Sandia

The Tools e

= See Wiki

Exercise

= Use new miniApp: ExaMiniMD
= Note this is NOT a full OpenSource release
= This can be shared within ECP or under vendor NDA, but ask first
= Do not share with anyone else; OpenSource license expected this fall
" git clone git@github.com:crtrott/ExaMiniMD

= git checkout profiling-exercise

= Basic Molecular Dynamics Importance of Kernels:
= Force Calculation
= NeighborlList Construction
= Communication
= Other stuff: (Integration, Particle Sorting etc.)

= This variant has a problem hidden
= Use Kokkos Tools to find the issue

= Follow the typical approach lined out before

(NVIDIA) GPU Profiling)

= Dominant Performance Bottlenecks:

= (QOccupancy

= Memory Bandwidth

= Memory Efficiency

= Memory Load/Store Slots

= Availability of Instruction Parallelism

= Visual Profiler (nvvp or as part of nsight)
= Guided Analysis

= Use nvprof to collect data on commandline

= Generally same information as in the Visual Profiler

= nvprof [OPTIONS] ./Executable [OPTIONS]
" --print-gpu-summary : Summary of Kernels, and data transfers
= --print-gpu-trace: timeline of kernels and data transfers
= --query-metrics: list of collectable events
= -m [EVENTS]: set events to be collected
= --kernels [KERNELS]: restrict profiling to specified kernels 10

Important Metrics — Occupancy/Menit .

= achieved_occupancy:
= Actually reached occupancy
= Causel: high register pressure (check with --print-gpu-trace)
= Cause2: high shared memory usage (check with --print-gpu-trace)
= Cause3: low total available parallelism (too few blocks)
= ** throughput: Bandwidth for different parts of the memory subsystem
= dram_[read/write]: device memory traffic including ECC
= [gld/gst]: global memory access, could be cached (this is larger than requested due to efficiency)
= [gld/gst]_requested: the memory throughput of things the code actually wants
= [2_I1_read, 12_tex_[read/write],12_atomic: L2 Cache Throughput by Source
= local_[load/store]: data traffic due to register spilling
= shared_[load/store]: shared memory (team scratch level 0)

= ** efficiency: different efficiency metrics

= [gld/gst]: global memory access (coalesced access = 100%)
= shared: shared memory loads

= ** hjt_rate: Cache hit rates
» |1_cache_[global/local]: Hit rate in L1 Cache due to global/local load store
= tex_cache: Hit rate for texture fetches
= 12_I1_[read]: Hit rate for all L1 misses in L2
= [|2_tex_read: Hit rate for texture misses in L2

Important Metrics — Compute) i

= ¥* efficiency:
= sm: multiprocessors are active (small means not enough work launched in a kernel)
= warp_execution: active threads vs non-active threads due to branching (small means divergence)
= branch: non-divergent vs total branches (small means divergence in kernel)
= flop_[sp/dp]: achieved single/double precision peak flop/s fraction
= stall_**: Reasons why a warp does not execute an instruction
= inst_fetch: instructions are not yet loaded,
= very unlikely to be an issue, if it is think about breaking up kernel into smaller ones
= memory_dependency: waiting for a load
= typical sign for memory bandwidth limitation
= Use less memory, spread out loads more if possible to overlap with compute
= exec_dependency: can’t execute because prior instruction not done
= find and expose instruction parallelism
= memory_throttle: no load/store slots available
= If this happen without memory_dependency data access patterns are usually bad
= sync: warps waiting for other warps at a barrier
= Check if barriers are necessary
= pipe_busy: compute operation pipe is busy
= Rarely an issue, except when making haevy use of special function units
= not_selected: The “good” stall, more ready threads are availabe than slots are to be filled
= If you see this as the primary stall reason you have a code which is either artificial or a Gordon Bell candidate 12
I EEEEEEEEEE—————————

A Case Study |) g,

= A Parametrized Benchmark Code

= Very fancy vector addition with additional math
View<double**> a("A",N,M,S), b("B",N,M,S),

= Parameters: o('C"N.M,S);
/I Loop over blocks
. for(inti=0; i<N; i++) {
- N * Contr()l tOtaI WOrk (RT) /I Repeat work on block to control cache reusage

. . for(int r=0; r<R; r++) {
= M: control data reusage origin (RT) I/ Loop over block
for(intj=0; j<M; j++) {

= S: control data stride (RT) 2120,
/I Repeat for instruct llel

= R:control data reusage (RT) o Koaijon | on paratelsm
b_K=a(,),0);

= K: control instruction parallelism (CT) //Loop toadd more flops
for(int f=0; f<F; f++) {
. : a1+=b 1,
F' ContrOI FIOpS/ByteS ratio (RT) /I Repeat for instruction parallelism
a_K+=b_K;
}
c(i,j,0)=a_1+/*.*aK;
}
}
}

A Case Study I UL

= Exercise |
= Find settings to measure hardware global and cache bandwidth
= Exercise ll

= Find setting to maximize flop rate

= Exercise |l

= Find settings to make each of the stall reasons the primary stall reasons

.
.
http://www.github.com/kokkos

