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Stress measurement with photoluminscent
spectroscopy

� Position of R1 and R2 stimulated emission
peaks depend on stress, temperature, and
doping concentration

ν(i) = ν
(i)
0 + ∆ν(i)σ + ∆ν

(i)
T + ∆ν

(i)
Cr

= ν
(i)
0 + Π

(i)
jk σjk + α

(i)(T − 298.8) + β(i)CCr

� In crystal basis, only diagonal elements of Π
are nonzero

Π(i) =

Π
(i)
aa 0 0

0 Π
(i)
aa 0

0 0 Π
(i)
cc


� Early work used a diffuse laser spot, sampling

many grains, and an isotropy assumption
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)
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Single crystal measurement

� If single crystal, isotropy assumption no longer applies

� Michaels and Cook1 showed that because of (approximately) hexagonal
symmetry, peak shift can be expressed as

∆ν(i) = Π
(i)
11 (σ11 + σ22) + Π

(i)
33 σ33

=
(

2Π
(i)
11 + Π

(i)
33

)
(σ11 + σ22 + σ33) +

(
Π

(i)
33 − Π

(I)
11

)
(2σ33 − σ11 − σ22)

= Π
(i)
M σM + Π

(i)
S σS

where σM = (σ11 + σ22 + σ33) /3 and σS = (2σ33 − σ11 − σ22) /3 = σ33 − σM

� σM is mean stress and invariant

� σS is like a deviatoric stress with respect to the c axis and not invariant

� So we can use both R1 and R2 peak shifts to solve for σM and σS[
∆ν(1)

∆ν(2)

]
=

[
Π

(1)
M Π

(1)
S

Π
(2)
M Π

(2)
S

][
σM
σS

]
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Polycrystal stress measurement

� Using a focused laser spot
and an idealized specimen,
we can resolve stresses to
2 µm length scale

� In order to interpret σM, we
must know grain orientation
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Proposed full stress tensor solution

� PLS is a surface measurement → traction free conditions apply

� With 2 peak shifts, σ · n = 0, we have 5 constraints on 6 stress components.
Strain compatibility could provide the final constraint.

� Instead, push problem to u space and solve for u1 and u2 given ν(1) and ν(2),

[
∆ν(1)

∆ν(2)

]
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Π
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∂
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[u1

u2

]
ν = ΠC̃Du ,

� Because x1, x2, x3 does not in general align with crystal a, b, c, Π
(i)
12 6= 0

� C̃ is the traction-free, in-plane stiffness matrix

� This a surface analysis of a 3-D problem → stress equilibrium cannot be used

� The above equation is exact (until the derivatives are discretized)

� ∆ν effectively gives a linear combination of derivatives of u so we integrate to
get ε and σ
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Π and C̃ calculation
� ν = Π : σ and ν is frame invariant → Π is a tensor

� Determine C̃ by partitioning C into in-plane and out-of-plane parts[
σi

σo

]
=

[
Cii Cio(

Cio
)T

Coo

] [
εi

εo

]
[
εi

εo

]
=

[
Sii Sio(

Sio
)T

Soo

] [
σi
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]
� For example,

Cii =

C1111 C1122 C1112

C1122 C2222 C1222

C1112 C1222 C1212


� Under traction-free conditions, σo = 0, so C̃ is given by either

C̃ =
(
Sii
)−1

C̃ = Cii − Cio (Coo)−1 (Cio
)T

� Using block matrix inversion, these forms are equivalent[
a b

bT c

]−1

=

[ (
a − bc−1bT

)−1
−
(
a − bc−1bT

)−1
bc−1

−c−1bT
(
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)−1
c−1bT

(
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)−1
bc−1 + c−1

]
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Numerical strategy: total regularization
� Using central difference differentiation the resulting linear problem is extremely

ill-conditioned

� Strain at a point is a function of displacement at only neighboring points →
“letter” points and “number” points are only coupled at edges

a b 21 c 3

g h 87 i 9

4 5 ed 6 f

� This results in large, oscillatory spurious displacements in solution

� Use total regularization to penalize these spurious solutions and minimize the
functional F to find η = f ′

F(η) = αR(η) −

∣∣∣∣∫η
0

η(ξ) dξ− f

∣∣∣∣
2

� To keep displacements small, we set R(ε) = |Du|2 = |ε|2 and minimize

F(u) = α |Du|2 +
∣∣ΠC̃Du − ∆ν

∣∣
2

.
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Numerical strategy: Least squares
differentiation

� Peak shifts measurements are noisy from point to point

� Standard finite difference interpolates a quadratic polynomial between 3 points

� We fit a p-term 2-d polynomial to a n×m grid of nearest points

P(x1, x2) = a0+a1x+a2y+a3xy+a4x
2+a5y

2+a6x
2y+a7xy

2+a8x
2y2+ . . .

� First x1 and x2 partial derivatives are given by a1 and a2 respectively

� The grid is centered for interior points and skewed toward the center for edge
points.

� A 5× 5 grid with a 9-term polynomial and a 7× 7 grid with a 25 term
polynomial have similar performance
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Least squares differentiation example
� Consider the point just to the right of the upper left grid point. The

interpolated, 3 point central difference coefficients for the first x1 derivative
would be:

· × · · ·
· · · · · · · ·
· · · · ·
· · · · ·
· · · · ·

...
. . .

-1/2 0 1/2 0 0
0 0 0 0 0 · · ·
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

...
. . .

� The least squares finite difference coefficients with a 9 term polynomial and a
5× 5 grid would be:
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Error analysis
� Π and C̃ depend on grain orientation, so an error in orientation will cause an

error in the solution

� A single orientation error causes a rank-3 update to K = ΠCD(
K + UC̄V

)−1
= K−1 − K−1U

(
C̄−1 + VK−1U

)−1
VK−1

where and U and V are

U =
[
02×3 02×3 · · · Π̄ · · · 02×3 02×3

]T
V =

[
03×3 03×3 · · · I3 · · · 03×3 03×3

]
D

� Π̄ and C̄ are errors in Π and C̃ due to an error in material orientation of the
i-th spectroscopy measurement point.

� Π̄ and I3 occur in the i-th block matrix position of U and the first factor of V
respectively. V is the i-th set of 3 rows of D.

� K−1U then selects the i-th set of 3 rows of K−1 and VK−1 selects n2 sets of 3
columns of K−1 corresponding to the n× n set of points included in the
Savitzky-Golay differentiator of point i.

� Computing a solution ū =
(
K + UC̄V

)−1
(∆ν) then results in errors at only the

i-th point and the points coupled to it by the Savitzky-Golay differentiator.
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Bicrystal example
� For a simple proof-of-concept

example, a bicrystal made from two
single sapphire crystals bonded at
1600 °C with a glass frit layer

� Peak shifts measured in depicted
area and results are averaged parallel
to interface
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Bicrystal example
� Stresses can be calculated from

solution using σ = C̃Du

� As an accuracy check, stresses are
rotated to crystal basis where σM
and σS are calculated and compared
to the direct method using ΠM and
ΠS

� Solution noise is from peak shift
measurements, not numerical
accuracy
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Other solution methods
Basic linear solve
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Regularization only
Using only regularization
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Polycrystal example

� Al2O3 ·Cr polycrystals with 20 µm to
60 µm grains and 0.025 % Cr by
weight

� Specimen fabricated to have low
void and glassy phase density

� Use PLS intensity map to align
EBSD orientation map

R1 peak shift map

R2 peak shift map
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Polycrystal example

� When calculating stress,
more residual noise in shear
map

� Errors are visible near grain
boundaries (as expected)

σ22 map

σ11 map

σ12 map
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Other things I tried

� Solving in ε space with strain compatibility → What BCs to use with
ε11,22 + ε22,11 = 2ε12,12? What happens to these BCs when solving in u space?

� Use a pseudoinverse in ε to find solution space and pick that which minimizes ε

� Principal component analysis

� Preconditioning

� Regularization is a linear optimization, can we solve that directly?

min
u

[
αuTDTDu + (ΠCDu − ∆ν)

T (ΠCDu − ∆ν)
]

u =
[
DT
(
αI + CΠTΠC

)
D
]−1

DTCΠT (∆ν)

� Is the problem physically ill-conditioned?

∆ν = λu = ΠC
[
∇u + (∇u)T

]
u = b · exp (a⊗ x)

→ For an area with uniform properties, only two eigenmodes
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Final thoughts

� We have demonstrated a method to use traction-free conditions to obtain full
stress tensor from two peak shift measurements

� First order central difference method is numerically unstable and input data is
noisy

� We use regularization to avoid these issues, but now uniqueness is an issue. Is
the regularized solution the correct solution?

� Regularization turns a linear solve into an optimization, currently implemented
in serial in Matlab → very slow

� Is there a better approach to dealing with the finite difference numerical
instability?

� Is this problem well-posed?
→ From the point of view of integrating ∆ν to get u, two peak shifts are not
enough for u1 (x1, x2) and u2 (x1, x2)
→ ΠCD is very ill-conditioned, but not singular
→ For a small problem where interior points are more coupled to edges,
problem is well-behaved
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Questions?

Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia,
LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.
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