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6 Abstract 

7 Although Florida has very little photovoltaic (PV) generation to date, it is 
8 reasonable to expect significant deployment in the 2020’s under a variety of 
9 future policy and cost scenarios. To understand these potential futures, we 

10 model Florida Reliability Coordinating Council operations in 2026 over a 
11 wide range of PV penetrations with various combinations of battery storage 
12 capacity, demand response, and increased operational flexibility. By calculat-
13 ing the value of PV under a wide range of conditions, we find that at least 5%, 
14 and more likely 10-24%, PV penetration is cost competitive in Florida within 
15 the next decade with baseline flexibility and all but the most pessimistic of 
16 assumptions. For high PV penetrations, we demonstrate Florida’s electri-
17 cal net-load variability (duck curve) challenges, the associated reduction of 
18 PV’s value to the system, and the ability of flexibility options–in particular 
19 energy-shifting resources–to preserve value and increase the economic carry-
20 ing capacity of PV. A high level of demand response boosts the economic 
21 carrying capacity of PV by up to 0.5-2 percentage points, which is compa-
22 rable to the impact of deploying 1 GW of battery storage. Adding 4 GW 
23 of battery storage expands the economic carrying capacity of PV by up to 6 
24 percentage points. 
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27 Acronyms 

AEO Annual Energy Outlook 
ATB Annual Technology Baseline 
CC combined cycle 
CT combustion turbine 
DLC direct load control 
DR demand response 
ECC econmoic carrying capacity 
EIA U.S. Energy Information Administration 
EMS energy management system 
ERGIS Eastern Renewable Generation Integration Study 
FRCC Florida Reliability Coordinating Council 
LBNL Lawrence Berkeley National Laboratory 
LCOE levelized cost of electricity 
NREL National Renewable Energy Laboratory 
PV photovoltaic 
SERC SERC Reliability Corporation 
VO&M variable operating and maintenance 

28 

29 1. Introduction 

30 Much of the detailed analysis of high solar photovoltaic (PV) penetrations 
31 has focused on California because of that state’s PV market leadership (Mar-
32 golis et al., 2017). These previous analyses reveal the grid integration chal-
33 lenges due to PV generation starting quickly in the morning and dropping off 
34 quickly in the late afternoon, which on low load days creates a net-load pat-
35 tern that conventional generators must be dispatched around (Figure 5). At 
36 high PV penetration these net-load lines vaguely resemble a duck and have 
37 thus come to be referred to by the shorthand name “duck curves” (CAISO, 
38 2016). When the duck-curve is severe enough relative to the constraints on 
39 conventional generator operations, the result can be a reduction in the value 
40 PV provides to the system. On high penetration systems, these issues can 
41 occur on enough days of the year to result in significant PV value loss on an 
42 annual basis (Denholm et al., 2015; Obi and Bass, 2016). Previous work also 
43 shows how increased power-system flexibility could mitigate this loss of value 
44 in California (Brinkman et al., 2016; Denholm et al., 2016). Less research, 
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45 however, has focused on the unique characteristics and lessons associated 
46 with high future PV penetrations in other potentially important U.S. PV 
47 markets. 

48 Florida is one such important but understudied market. It has high solar po-
49 tential located close to load centers, ranking eighth in the country for rooftop 
50 PV potential (Gagnon et al., 2016) and 16th for utility-scale solar potential 
51 (Lopez et al., 2012). Yet its solar deployment lags behind other states with 
52 similar or worse resource potential. In 2015, solar generation accounted for 
53 just 0.1% of Florida’s electricity generation, compared with 2.4% in Ver-
54 mont, 1.4% in Massachusetts, and 1.1% in North Carolina (EIA, 2016b). 
55 Steward and Doris (2014) finds that PV market development is highly corre-
56 lated with state-level policies. The most developed markets in the U.S. are 
57 in states with net-metering and best-practice interconnection policies plus 
58 at least one other supporting policy. That supporting policy may authorize 
59 or allow third-party ownership, or may be a renewable portfolio standard 
60 with a solar set-aside. Florida does have a state-wide net metering policy, 
61 however, there is no renewable portfolio standard, and third-party ownership 
62 is generally disallowed.1 Thus Florida is both a prime target and a blank 
63 slate–the state’s PV deployment could rise rapidly if PV costs continue to 
64 decline (NREL, 2016; Lazard, 2016) and state-level policies become more 
65 supportive. Solar deployment in Florida also depends in large part on the 
66 actions of its vertically integrated utilities. Florida is served by two large 
67 investor-owned utilities, a number of smaller municipal and co-op utilities, 
68 and several coordinating entities. To the extent that these organizations 
69 are all very focused on operational reliability, a better understanding of grid 
70 integration issues could facilitate this growth or ease potential challenges 
71 associated with increasing PV penetration. In addition, Florida is an inter-
72 esting analytical case because its main power system–the Florida Reliability 
73 Coordinating Council (FRCC)–serves almost the entire state and is largely 
74 isolated from other systems. This isolation enables direct analysis of flexibil-
75 ity technologies unconfounded by inter-system interactions. 

76 After a brief section on methods (Section 2), we analyze the grid integra-
77 tion challenges associated with high PV deployment in Florida (Section 3.1), 
78 and we examine how additional system flexibility from enhanced operational 

1http://www.dsireusa.org/resources/detailed-summary-maps/ 
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79 practices, battery storage capacity, and demand response (DR) might help 
80 Florida achieve a cost-effective, high-penetration PV future (Section 3.2). 
81 Following Denholm et al. (2016), we evaluate the economic carrying capacity 
82 (ECC) of PV in the FRCC power system and how it is impacted by flexibility 
83 options (Section 3.3). We also examine the impact of flexibility on system 
84 emissions (Section 3.4). One novel aspect of our analysis is our method for 
85 simulating flexibility from aggregated DR at new levels of fidelity. In this, 
86 we extend a growing body of work examining the value of DR in the bulk 
87 grid (Hummon et al., 2013; O’Connell et al., 2015), particularly DR’s ability 
88 to provide flexibility in power systems with high variable generation penetra-
89 tions (Denholm et al., 2016; Brinkman et al., 2016; Denholm and Margolis, 
90 2016). We use an updated dataset to model fifteen different demand end-uses 
91 providing DR services in various combinations of energy shifting, contingency 
92 reserves, and regulation reserves for two different levels of demand response 
93 penetration. Our other contributions include examining high-penetration 
94 systems under mid and low natural gas prices, and exploring how future PV 
95 costs and social cost of carbon assumptions impact the potential deployment 
96 of PV in Florida should the economic carrying capacity be realized. In to-
97 tal we analyze 270 high-fidelity production cost simulations. Our high-level 
98 findings are summarized in Section 4. Supplemental Information Section 6 
99 provides additional information on methods; Supplemental Information Sec-

100 tion 7 presents additional results. 

101 2. Methods 

102 This study is primarily an exercise in production cost modeling of the FRCC 
103 power system. The detailed modeling assumptions required to create a re-
104 alistic model of FRCC in 2026 under a wide range of PV penetrations are 
105 documented in Bloom et al. (2016), Denholm et al. (2016), and the Sup-
106 plemental Information Section 6. Figure 1 depicts the elements we borrow 
107 alongside our contributions. In the remainder of this section we describe the 
108 methods and data we use to compute the value of PV in FRCC and model 
109 flexibility options. We conclude with a description of our scenario framework. 
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Figure 1: Schematic of methodology and data flow. The inclusion of all items not labeled 
with a citation into the methodological framework established by Denholm et al. (2016) 
is a main contribution of this paper. The sources of these data are described and cited in 
the text below. 
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110 2.1. PV value and economic carrying capacity 

111 We determine the economic carrying capacity of PV in the FRCC power 
112 system by equating PV’s levelized cost of electricity (LCOE) with the value 
113 it provides to the system. The total value changes as more PV is added; we 
114 calculate and report the value of the next increment of PV to reflect the value 
115 added to the system by new investments. The increments are defined using 
116 a sequence of pre-curtailment PV-penetration scenarios, from 5% to 45% 
117 of annual load, with each scenario differing by about 5 percentage points. 
118 We calculate incremental value by comparing a higher-penetration system 
119 to the one just below it, holding everything else about the system constant. 
120 Three sources of value are measured: operational value, capacity value, and 
121 emissions-reduction value. 

122 We determine operational value using a detailed production cost model of the 
123 FRCC system, represented and run in PLEXOS (Energy Exemplar, 2014). 
124 This model was developed from the larger Eastern Renewable Generation 
125 Integration Study model (Bloom et al., 2016) for Denholm et al. (2016), 
126 and it includes an explicit connection to the Georgia portion of the SERC 
127 Reliability Corporation2 (SERC) modeled as a single time series of load, 
128 served by a supply curve of generators. The model represents the bulk system 
129 expected for FRCC in 2026, including all existing and planned generators, 
130 as well as additional PV generation to form the PV penetration scenarios 
131 needed for this study. The PV penetration scenarios consist of subsets of the 
132 208 PV generators in FRCC from the ERGIS RTx30 scenario, starting with a 
133 sufficient number for the 5% scenario and sequentially adding on to create the 
134 scenarios up to 30%.3 The PV capacity follows a roughly 60:40 split between 
135 utility-scale and distributed (residential and commercial rooftop) projects 
136 (Denholm et al., 2016). Each modeled PV generator is an aggregation of 
137 multiple generation profiles built up from fixed-axis, single-axis tracking, and 
138 rooftop settings in the System Advisor Model applied to irradiance profiles 
139 from the National Solar Radiation Database gridded dataset (NREL, 2014; 
140 Wilcox, 2012). In summary, the model has high geospatial and temporal 

2Formerly the Southeast Electric Reliability Council (SERC), the SERC Reliability 
Corporation name was adopted in 2006. 

3The higher PV penetration scenarios, which were developed primarily to round out 
our analysis of flexibility impacts at very low (outside the mid-2020s expected range) PV 
costs, are created by simply scaling the 30% scenario generation profiles. 
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141 (hourly) resolution for power system components, load, and solar generation; 
142 capacity by type is shown in Figure 2. The modeled FRCC system has 256 
143 TWh of annual load. In the base case with 5% PV penetration, gas combined 
144 cycle (CC) generators provide 62% of generation, coal provides 18%, nuclear 
145 9%, PV 5%, and the remainder of energy is provided by biomass, hydropower, 
146 quick-start gas units, and imports from SERC. 

Figure 2: FRCC model installed capacity by solar photovoltaic (PV) penetration and 
demand response (DR) scenario. The thermal fleet and the PV penetration in SERC are 
held constant to facilitate comparisons across scenarios. The figure does not depict the 
battery capacity included in some of our scenarios, which amounts to either 1 GW or 4 
GW spread throughout FRCC. 

147 We simulate a year of grid operations at hourly time resolution, with two 
148 types of reserves: contingency and regulation. Contingency reserves are ad-
149 ditional capacity committed to cover potential generator or transmission line 
150 failures. Regulation reserves are additional capacity held to meet normal 
151 fluctuations in net-load about its forecasted value. Net-load is the total 
152 system demand minus all variable generation. As more variable generation 
153 (including PV) is added to the system, somewhat larger net-load fluctuations 
154 are expected, and we account for this in the amount of regulation reserves 
155 required in each hour, as in Ibanez et al. (2012). 

156 The operational value of the next increment of PV is the amount by which 
157 system operational costs fall when the next increment of PV is added. In our 
158 annual PLEXOS simulations, these costs include fuel cost, variable operation 
159 and maintenance costs, startup and shutdown costs, and the cost of imports. 
160 Adding PV to a system almost always reduces fuel costs and variable oper-
161 ation and maintenance costs. The impact of PV on startup and shutdown 
162 costs, as well as imports, is more mixed. 
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163 The incremental capacity value of PV is the capacity credit of the next in-
164 crement of PV, that is, the fraction of new PV capacity that contributes to 
165 meeting system peak demand, multiplied by the amount of new PV capacity 
166 and the system capacity price. We assume a capacity price of $75/kW-year, 
167 based on the approximate annualized cost of a combustion turbine accord-
168 ing to recent Annual Energy Outlook reports (EIA, 2016a), and calculate 
169 capacity credit using the system’s top 100 net-load hours per Madaeni et al. 
170 (2012a). Because our PLEXOS model does not account for capacity expan-
171 sion, this calculation is done as a post-processing step. 

172 When not otherwise specified, we estimate the value of reduced emissions us-
173 ing a cost of $50/metric ton CO2, which is the social cost of carbon listed in 
174 Interagency Working Group (2010) for 2030 using a 2.5% discount rate. This 
175 emissions cost is not included in the production cost optimization and thus 
176 does not impact dispatch decisions; as with the capacity value calculation, 
177 it is applied as a post-processing step to determine the emissions-reduction 
178 component of incremental PV value. Given the current lack of a fully estab-
179 lished carbon price in the United States, as well as the difficulties inherent in 
180 assigning costs to low-probability but potentially very severe future impacts, 
181 we also present results that use a range of carbon costs from the literature 
182 (Tol, 2008; Greenstone et al., 2013; Nordhaus, 2017; Interagency Working 
183 Group, 2010; Nordhaus, 2014) both in the main article and in the Supple-
184 mental Information. The lowest carbon cost in these reports for the years 
185 2025-2030 is $8.2/metric ton CO2, based on the year 2025 and a 5% discount 
186 rate (Interagency Working Group, 2010). However, we set a lower bound 
187 of $0/metric ton CO2 to represent a fully externalized social cost of carbon. 
188 The highest reported values are those for the 95th percentile of potential 
189 costs attributable to greenhouse gas emissions, which attempt to capture fat 
190 tail catastrophic events that would lead to large amounts of harm if they 
191 occurred. The highest value used in our analysis is the 95th percentile value 
192 for the year 2025 reported in Nordhaus (2017), which is $284.1/metric ton, 
193 although for simplicity we restrict attention in the main paper to the round 
194 values of $0, $50, and $100 per metric ton. 

195 2.2. System flexibility options 

196 We investigate the impact of system flexibility on the economic carrying ca-
197 pacity of PV by overlaying a baseline scenario with a number of flexibility 
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198 options. The baseline scenario is defined by a specific gas price and the 
199 full range of PV penetrations. In the category of operational flexibility, we 
200 group three options described in Denholm et al. (2016) into one Flex System 
201 scenario. In this scenario, the minimum generation level of CC units is low-
202 ered from 50% to 40%, PV is allowed to provide contingency and regulation 
203 reserves, and cooperation between FRCC balancing authorities is enhanced 
204 (Table 1). For PV to provide reserves, it must have headroom between its 
205 dispatch level and the total energy it is collecting. Thus, this largely occurs 
206 when PV is being curtailed. We also adopt the battery energy storage sce-
207 narios of 1 GW and 4 GW total capacity, with 6 hours of storage, spread 
208 throughout the FRCC territory from Denholm et al. (2016), applying them 
209 to the baseline scenario both alone and in combination with the Flex System 
210 package. 

211 We construct two DR scenarios using data and methods similar to Olsen 
212 et al. (2013) and Hummon et al. (2013). Potential DR resources are modeled 
213 by electrical end use, e.g., agricultural water pumping or commercial cool-
214 ing, and placed throughout the model at the rate of two virtual generators 
215 per end use per region. The potential DR available from each end use is 
216 constructed by applying time-varying fractional estimates of the degree to 
217 which the load can be shed or shifted – based on whether such shedding 
218 or shifting is physically possible, technically possible through automatic or 
219 manual control, and acceptable to end users – to an overall estimate of that 
220 end use’s load time series. These estimates vary based on what grid service 
221 is being provided. For our operational modeling, we allow DR to provide 
222 energy shifting, contingency reserves, and regulation reserves. 

223 We categorize electrical end uses as sheddable, thermal storage, or schedula-
224 ble DR resources. Sheddable end uses cannot be shifted, and should not be 
225 perceptibly shed on a regular basis, but might tolerate short-timescale ad-
226 justments to provide regulation reserves or infrequent load sheds to provide 
227 contingency reserves. Lighting is a good example of this type of end use. 
228 Building heating and cooling are classic thermal storage resources, in which 
229 thermal capacitance makes it possible to shift operational timing, and thus 
230 provide DR services, with minimal effect on occupant comfort. Like ther-
231 mal storage resources, schedulable loads enable shifting of energy use, but 
232 in a more straightforward manner. Typical schedulable loads include wa-
233 ter pumping, and some manufacturing processes. For all end uses, we make 
234 particular assumptions about equipment capacity, energy payback, and ac-
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Table 1: Flexibility Packages Applied Alone or In Combination to Produce Flexibility 
Scenarios 

Flexibility 
Option 

Modeling Description Levels 

Demand LBNL + NREL resource data Low DR 
Response modeled as virtual generators 

with storage. Two instances 
are placed per region and 
end-use combination. 

High DR 

Battery Storage 
20 batteries of equal size are 
deployed throughout FRCC. 
Each battery has 6 hours of 

Battery, 1 GW 
Large Battery, 4 
GW 

storage. 

PV Reserve 
Provider 

PV is allowed to provide regula-
tion and contingency reserves. 

Flex System, pack-
age of all three op-
tions 

40% CC Min 
Gen 

The minimum generation for all 
CCs in FRCC is reduced from 
50% of maximum capacity to 
40% 

Reduced BA 
Friction 

Reserve products (regulation 
and contingency) in FRCC are 
merged into a single product 
rather than individual products 
for each BA. Hurdle rates to im-
port power are also removed. 
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235 ceptable event frequencies to create realistic virtual generator models. See 
236 the Supplemental Information for details. 

237 The two DR packages are constructed by applying different controllability 
238 and acceptability assumptions to the amount of each end use assumed to be 
239 physically sheddable. The nature of the assumptions is different depending 
240 on whether the end use is considered more likely to be actuated by direct load 
241 control (DLC) or an energy management system (EMS). We determine DLC 
242 controllability and acceptability based on U.S. Energy Information Admin-
243 istration (EIA) Form 861 data on current proportions of customers enrolled 
244 in DLC programs (EIA, 2016c), plus an extra reduction applied to estimate 
245 more realistically how much residential cooling might be able to provide reg-
246 ulation reserves. EIA Form 861 data also inform our EMS resource levels 
247 through the reported proportions of customers a) with advanced metering 
248 infrastructure and b) enrolled in DR programs (EIA, 2016c). In addition, 
249 we further restrict the proportion of load in this category that can provide 
250 regulation reserves, and we model the acceptability of providing DR from 
251 building end uses as inversely proportional to an occupancy proxy; see Olsen 
252 et al. (2013) and the Supplemental Information. 

Table 2: Potential Peak Load Shed by Sector (GW) 

Package/Data Source Residential Commercial Other 

Low DR 
EIA Form 861, 2015 
High DR 

1.45 
1.57 
3.65 

1.19 
1.29 
6.90 

0.02 
0.34 
0.55 

253 We tune the assumptions that define the Low DR and High DR packages so 
254 the Low DR resources are similar in magnitude to the amount of DR available 
255 in Florida today. Both Florida Power & Light and Duke Energy, the two 
256 largest investor-owned utilities serving the state, have large DLC programs. 
257 We do not attempt to reflect those programs directly, but we choose our 
258 scenario parameters so that adding up the non-coincident contingency reserve 
259 peaks in our dataset by sector approximately matches the sum of the non-
260 coincident potential peak load reduction numbers reported per sector and 
261 utility in the EIA Form 861 data (EIA, 2016c). The sizes of our DR packages 
262 by that measure are given in Table 2. Although we have tried to create DR 
263 scenarios of realistic overall magnitude, we are aware that our scenarios in no 
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264 way match the the particulars of current or future DR programs in FRCC. 
265 As such, the DR results reported here should be interpreted as illustrative, 
266 not as a fully accurate rendering of current or future DR capabilities. 

267 2.3. Scenario framework 

268 The flexibility packages used to construct system flexibility scenarios are 
269 listed in Table 1. Individual scenarios are defined by PV penetration, DR 
270 option, system flexibility option, and natural gas price (Figure 3). The base-
271 line/mid natural gas prices are from the EIA Annual Energy Outlook (AEO) 
272 2014 Reference scenario for the South Atlantic region (EIA, 2014). Because 
273 natural gas prices are currently low, we also perform a low-gas-price sensitiv-
274 ity analysis using the AEO 2016 High Oil and Gas Resource scenario (EIA, 
275 2016a). For the mid gas prices, we ran annual simulations for all combi-
276 nations of the other options–162 simulations in total. For the low-gas-price 
277 sensitivity analysis, we reduce the number of scenarios to 108 by excluding 
278 the battery-only flexibility options.4 

Figure 3: Scenarios are defined by choosing one option from each category. All combina-
tions are simulated for the AEO 2014 mid gas price. The low-gas-price sensitivity analysis 
excludes the battery-only system flexibility options. 

4This was done primarily for computational expediency. Each simulation required 15-
30 hours of computational time, over 7300 hours for all scenarios included. 
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279 3. Results 

280 Although Florida has very little PV generation to date, it is reasonable to 
281 expect significant deployment in the 2020’s under a variety of technology 
282 cost, fuel price, and policy assumptions (Cole et al., 2016a). For the Eastern 
283 Renewable Generation Integration Study (ERGIS) 30% scenarios, FRCC was 
284 outfitted with 37 GW and 53 GW of PV in the regional RTx30 and inter-
285 regional ITx30 transmission upgrade scenarios, respectively, which translates 
286 to PV penetration levels of 20% and 32%–here and throughout this article, 
287 PV penetration is given on an annual energy basis; the penetration sce-
288 narios are specified using pre-curtailment annual energy (e.g., 30% PV pre-
289 curtailment means PV could provide 30% of FRCC’s annual energy needs if 
290 all collected PV energy was used by the system). We find, as detailed below, 
291 that flexibility becomes significantly more important for the integration of 
292 PV into FRCC starting at penetration levels of 15% to 20%. To fully de-
293 scribe the potential impacts of flexibility under a wide variety of conditions 
294 we explore a wide range of PV penetrations, up to 45%. We begin to de-
295 scribe the operational benefits of additional flexibility for systems with high 
296 PV penetrations by comparing 5%, 15%, and 30% PV model results. 

297 3.1. Value Losses at High PV Penetrations under Baseline Flexibility Con-
298 ditions 

299 In both summer and winter, high PV penetrations in Florida would create 
300 periodic grid integration challenges owing to steep conventional generation 
301 ramping requirements and an inability to absorb all available PV generation. 
302 Figure 4 shows the dispatch for two key periods in FRCC. The first column 
303 shows a high ramping period in the winter heating season, and the second 
304 column shows the peak annual load period.5 The 5% scenario represents 

5In this paper we focus on integration issues associated with high PV availability and 
the subsequent inability of power systems to absorb all available generation. High pen-
etration PV systems also raise reliability questions related to resource uncertainty. On 
short timescales, this manifests as solar forecasting errors, the desire to reduce them, and 
the need to adjust reserve requirements accordingly. On longer timescales (i.e., one to ten 
years) there is the question of what the generation portfolio should look like to ensure 
that peak demand can be met given the stochastic nature of PV generation. Both of 
those concerns are outside the scope of this paper, but see, e.g., Ibanez et al. (2012) and 
Madaeni et al. (2012b). 
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305 baseline operations with minimal PV. For both periods shown, PV generation 
306 in the 30% PV scenario drastically impacts the dispatch of other resources. 
307 Coal plants turn down to their minimum generation levels in the morning 

and ramp back up in the evening. Combined-cycle units do the same, 308 or 
309 they shut down and then start up again over the same timeframe. Some PV 
310 generation is curtailed in the morning when load is still low during the peak 
311 period, and more curtailment is seen in the middle of the day during the high 
312 ramp period when PV output is the highest. Whatever demand cannot be 
313 satisfied by coal and combined-cycle units in the morning and evening is met 
314 by quick-start combustion turbines and imports. 

315 At the intermediate stage of 15% PV many of the same patterns are apparent, 
316 but they are much less severe; in particular a PV penetration of 15% is not 
317 enough to cause significant curtailment. Additionally, the peak load period 
318 is not significantly impacted by PV penetration at this point–PV tends to 
319 correlate well with load such that its main effect is to reduce peak net-load 
320 without creating the high morning ramp rates seen in the 30% PV scenario. 

Figure 4: Dispatch of the FRCC system for 5%, 15% and 30% PV penetration during 
two high-stress periods: high net-load ramping (left) and peak annual load (right). The 
impacts of PV generation on other generator types can be seen as PV penetrations increase. 

321 The diurnal pattern of PV generation creates daily net-load (load minus 
322 generation from variable wind and solar sources) time series with distinct 
323 morning and evening peaks that become more dramatic as PV penetration 
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324 increases. (This is in contrast with wind generation patterns, whose vari-
325 ations are not so synchronized with daily cycles.) At high PV penetration 
326 these net-load lines vaguely resemble a duck and have thus come to be re-
327 ferred to by the shorthand name “duck curves” (CAISO, 2016). Figure 5 
328 shows the FRCC duck curves for 1 day in the high ramp and peak load peri-
329 ods as PV penetration increases from 5% to 45%. Even before PV is added, 
330 the high ramp period has distinct morning and evening load peaks owing to 
331 the significant amount of electric heating within the FRCC system; this pat-
332 tern is accentuated as PV penetration increases, eventually reaching a point 
333 where net-load drops below zero for a substantial portion of the day. Increas-
334 ing PV penetration also creates operational challenges during the peak load 
335 period, although high coincident demand significantly delays the appearance 
336 of negative net-load intervals. 

Figure 5: Duck curve in Florida during a day in the high ramp (top) and peak load 
(bottom) periods 

337 Once high enough penetrations are achieved, such net-load patterns reduce 
338 the value of PV to the system and make further PV deployment less eco-
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339 nomically attractive. Increasing PV energy shifts the net-load peak to later 
340 in the day when PV output is lower, such that the next increment of PV 
341 contributes proportionally less to satisfying peak net-load, and thus provides 
342 significantly less capacity value to the overall system. Conventional gener-
343 ation is forced to start up and shut down more frequently to accommodate 
344 PV generation, increasing cycling costs. Negative net-load periods, ramp-
345 ing requirements, and minimum conventional generation levels necessitate 
346 increasing PV curtailment. For example, based on the peak load graph in 
347 Figure 4 with 30% PV penetration, the system operator reduces output from 
348 non-solar resources from 27 GW at 6:00 am to 13 GW at 9:00 am by turning 
349 generators down or off, and still must curtail over 6 GWh of PV. Then the 
350 operator must be able to ramp back up to the peak net demand of 46 GW 
351 at 7:00 pm. Backing down this much generation, or more, is not always fea-
352 sible and sometimes requires additional PV curtailment, as seen in the high 
353 ramp period. As described in the next section, increasing the power system’s 
354 flexibility can help address these issues and mitigate value losses. 

355 3.2. Preserving Value at High PV Penetration with Flexibility Options 

356 All of the flexibility options described above reduce curtailment in FRCC 
357 at high PV penetrations, but how this occurs and what happens at lower 
358 PV penetrations varies by scenario. Figure 6 summarizes these impacts as 
359 the difference, by technology, in annual generation between each flexibility 
360 scenario minus its baseline for mid natural gas prices. Avoided curtailment 
361 appears as an increase in solar generation. The columns correspond to dif-
362 ferent operational flexibility/battery packages, and the rows show different 
363 levels of DR. Comparing the Base + High DR scenario with the 1 GW Bat-
364 tery + No DR scenario reveals similar impacts on coal and PV generation, 
365 but DR is more likely to preempt combustion turbine use than is battery 
366 capacity, whose main effect is to shift generation away from gas combined 
367 cycle (CC) units. Comparing the Flex System with the battery-only sce-
368 narios shows the batteries consistently shifting generation away from CC 
369 units and toward coal, PV, and–at low PV penetrations–additional imports. 
370 In contrast, simply operating the system more flexibly consistently reduces 
371 imports and increases generation from CCs at low PV penetration. 

372 In all mid-gas-price flexibility scenarios, coal generation increases, particu-
373 larly at low PV penetrations. Supplementary Figure 17 shows the corre-
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Figure 6: Differences in annual generation from the baseline scenario at each PV penetra-
tion, using mid gas prices 

374 sponding changes in generation for the low-gas-price scenarios; in general, 
375 these scenarios have higher CC use and lower coal use owing to changes in 
376 generator merit order. The Flex System package in particular has a larger 
377 impact in the low-gas-price scenarios, because its reduced CC minimum gen-
378 eration levels complement low natural gas prices. 

379 The modeled effects of our flexibility options on generation in FRCC have 
380 various impacts on the components of the value PV provides to the system. 
381 Figure 7 shows the incremental value of PV, by value component, for each 
382 mid-gas-price scenario. In general, PV derives positive value from offsetting 
383 fuel, variable operating and maintenance (VO&M), and emissions costs, and 
384 from providing capacity. However, PV’s tendency to increase the cycling 
385 of traditional generators and the associated start and shutdown costs is a 
386 consistently negative drag on its value. The value impact of imports on 
387 PV is generally small and slightly positive, because PV generation allows 
388 FRCC to reduce its imports from SERC. As PV penetration increases, the 
389 capacity value of the next increment quickly degrades from its already modest 
390 level, and it is unaffected by the addition of flexibility options. The largest 
391 value streams for PV – offsetting fuel, VO&M, and emissions costs – also 
392 decline as PV penetrations increase, but our flexibility options help preserve 
393 some of their value. The effectiveness of flexibility at preserving PV value 

17 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted 
manuscript. The published version of the article is available from the relevant publisher.



394 is largely determined by its ability to reduce marginal curtailment rates (see 
395 Supplementary Information Section 7.4). 

Figure 7: The component-wise incremental value of PV in FRCC under mid natural gas 
prices. Incremental PV value is measured by comparing each scenario to the one identical 
to it save for the PV penetration being 5 percentage points less on an annual generation, 
pre-curtailment basis. 

396 Overall, our flexibility options help preserve PV’s value in FRCC at high PV 
397 penetrations. Figure 8 shows the total incremental value of PV for all mid-
398 and low-gas-price scenarios. Lower natural gas prices lead to lower average 
399 fuel costs and emission rates, thereby eroding the value of the next increment 
400 of PV and placing the value curves of the low-gas-price scenarios below the 
401 mid-gas-price curves. With low natural gas prices, the flexibility options also 
402 tend to shift more generation to CC units, which enhances the trend of lower 
403 avoided fuel and emissions values at low PV penetrations. For both the low-
404 and mid-gas-price scenarios, flexibility options add little value at lower PV 
405 penetrations. However, the flexibility options–particularly the larger battery 
406 capacities available to shift electricity use–reduce curtailment and increase 
407 PV value substantially at high PV penetrations. 
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Figure 8: Total incremental value of PV as a function of annual PV penetration for mid-
and low-gas-price scenarios and a variety of flexibility packages. The PV LCOE range 
represents the likely range of PV prices expected in 2026, represented by the ATB mid-
to low-PV-price trajectories. 

408 3.3. Flexibility Can Increase the Economic Carrying Capacity of PV 

409 The economic carrying capacity of PV can be elicited from Figure 8 by as-
410 suming it is economically efficient to install PV until its incremental value 
411 is equal to its cost. For example, at a PV cost of $60/MWh, the baseline 
412 economic carrying capacity of PV is about 12% (low gas prices) or 21% (mid 
413 gas prices) of annual generation. The impact of different flexibility measures 
414 on PV integration can be measured as the percentage-point increase in eco-
415 nomic carrying capacity achieved by that flexibility measure as compared 
416 with the baseline scenario, for a given PV cost. Figure 9 shows that metric 
417 as a function of PV cost for several flexibility options and mid gas prices. The 
418 analogous figure for low gas prices is available in Supplementary Information 
419 Figure 20. 

420 Our flexibility options generally increase the economic carrying capacity of 
421 PV in FRCC. The larger of the two battery capacities (4 GW) has the great-
422 est impact on PV carrying capacity, enabling 4 to 6 percentage points more 
423 PV than the base scenario at low PV costs. The Low DR scenario has a 
424 minimal impact, less than one additional percentage point, at all PV costs 
425 considered here. The High DR scenario performs similarly to a 1-GW bat-
426 tery by this measure; both result in a 1-2 percentage point increase in the 
427 economic carrying capacity of PV. The findings with low gas prices are sim-

19 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted 
manuscript. The published version of the article is available from the relevant publisher.



Figure 9: Increase in the economic carrying capacity of PV under mid gas prices for several 
flexibility scenarios, compared with the base scenario 

428 ilar for low PV costs; however at high PV costs and low gas prices, system 
429 flexibility actually reduces the economic carrying capacity of PV by reducing 
430 the cost of the generation that PV ultimately replaces. The crossover point 
431 varies somewhat by flexibility option, see the Supplementary Information for 
432 details. 

433 We extend the above analysis by using the 2016 Annual Technology Baseline 
434 (ATB) projections for PV costs in 2026 to translate economic carrying capac-
435 ity into potential deployment levels in 2026 (NREL, 2016). The costs for a 
436 20% capacity factor utility-scale system are $63/MWh for the mid-PV-price 
437 trajectory, and $49/MWh for the low-PV-price trajectory, on a LCOE basis. 
438 With the mid PV price, maximum economic deployment of PV in FRCC 
439 in 2026 ranges from 10%-24% depending on system gas price and flexibility. 
440 Low PV prices increase this estimate to 18%-30%. Those ranges assume a 
441 $50/metric ton social cost of carbon. If we instead allow for a range of carbon 
442 cost assumptions, we see a wide range of potential penetrations (Figure 10).6 

6Note that while the social cost of carbon attempts very specifically to measure and 
blend the costs and likelihoods of various potential climate change impacts, additional 
value assigned to PV generation over and above that derived from reduced production and 
capacity costs can also be interpreted as a more general preference for cleaner, more local, 
or more diverse sources of electricity. People generally express very high willingness to pay 
for such benefits in survey data (Borchers et al., 2007; Longo et al., 2008; Claudy et al., 
2011). Lower bounds can be estimated from voluntary green power market participation 
rates and costs (Heeter et al., 2014). 
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Figure 10: Potential economic penetration of PV in FRCC in 2026 under different flexi-
bility, PV price, gas price, and carbon cost assumptions. 

443 If no costs are assigned to carbon emissions, the potential economic penetra-
444 tion in 2026 under mid PV prices is zero if natural gas prices are also low. 
445 However, either higher natural gas prices or lower PV prices are enough to 
446 make PV an attractive investment up to penetrations of at least 5%–and up 
447 to 13% if both conditions hold–even if carbon emissions and other reasons to 
448 prefer PV over other types of generation remain fully externalized. Energy-
449 shifting flexibility, such as that provided by battery storage and certain types 
450 of DR, increases economic carrying capacity more at higher PV penetrations 
451 and thus only comes into play in the 2026 timeframe if conditions are fa-
452 vorable enough for PV. Under mid PV and low natural gas prices, assumed 
453 carbon costs must be around $100/metric ton for this flexibility to make a 
454 significant impact in our modeled 2026 system. Under other conditions, our 
455 baseline assumption of $50/metric ton is sufficient for system flexibility to 
456 have a positive effect on PV deployment potential in 2026. 

457 3.4. Emissions Impacts of Flexibility Depend on Gas Price and PV Penetra-
458 tion 

459 Reducing carbon emissions is important owing to both climate impacts and 
460 the correlation of carbon with other emissions that impact air and water 
461 quality. However, because there is no national carbon tax or other explicit 
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462 price on emissions, we do not include emission costs in the production cost 
463 optimization. Thus the lowest-cost operations simulated by our models may 
464 increase system emissions when flexibility is added (Figure 11). 

Figure 11: Total carbon emissions in the combined FRCC-SERC system by natural gas 
price regime and for several flexibility scenarios 

465 All mid-gas-price scenarios with batteries or DR, except for the 1GW + Flex 
466 System scenario, increase emissions over the baseline scenario for PV pen-
467 etrations up to 30%, a result similar to that in Fares and Webber (2017). 
468 This means that any emissions reductions achieved by reducing PV curtail-
469 ment are canceled out by other effects, including increased load required 
470 to compensate for battery roundtrip efficiency losses and the tendency to 
471 shift generation from natural gas peaking plants to lower-cost conventional 
472 sources, such as coal. Above 30% PV penetration, batteries can charge and 
473 DR can increase load almost exclusively during times of PV curtailment and 
474 then shift this energy use to other times of the day, thus lowering overall sys-
475 tem emissions. Flexibility reduces emissions for all low-gas-price scenarios, 
476 because in this regime flexibility predominantly reduces coal generation in 
477 favor of natural gas. The size of this effect for scenarios including the Flex 
478 option is approximately equivalent to increasing the PV penetration by 5%. 

479 In general, at PV penetrations lower than those that result in significant 
480 curtailment, the effect of system flexibility on externalized emissions depends 
481 highly on the current makeup of the generator fleet and relative fuel prices. If 
482 coal generators have a marginal price advantage over CC units, for instance, 
483 energy storage is likely to increase, rather than reduce, emissions when PV 
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484 penetrations are modest. On the other hand, at least in the FRCC system 
485 we studied, flexibility generally reduces emissions when gas prices are low or 
486 the PV penetration is high. 

487 4. Conclusions 

488 Our modeling study determines the value of PV in FRCC under a wide 
489 range of conditions finding that Florida should prepare for penetrations of 
490 at least 5%, and more likely 10-24%, within the next decade under all but 
491 the most pessimistic of conditions for PV deployment. At the higher end 
492 of these central estimates, our modeling shows the emergence of some duck 
493 curve challenges in Florida, the associated loss of PV value under baseline 
494 flexibility assumptions, and the ability of flexibility options to preserve some 
495 of this value and thereby enable higher levels of PV deployment. DR is 
496 one effective option; our High DR option preserves enough value to boost 
497 the economic carrying capacity of PV by 1-2 percentage points at mid gas 
498 prices. This impact is comparable to the impact of implementing 1 GW 
499 of battery storage, whereas adding 4 GW of storage expands the economic 
500 carrying capacity by up to 6 percentage points at low PV prices. Batteries, 
501 however, are likely to cost substantially more than at least some forms of 
502 DR even in the 2026 timeframe, depending on the required energy capacity 
503 (Nykvist and Nilsson, 2015; Cole et al., 2016b; Alstone et al., 2016). Among 
504 the options we analyze, enhanced operational flexibility–a combination of 
505 reducing CC minimum generation, allowing PV to provide contingency and 
506 regulation reserves, and improving balancing authority cooperation–typically 
507 has little impact on the ECC of PV with a tendency to reduce it at higher 
508 PV prices. 

509 By applying PV price projections, we calculate Florida’s economic PV poten-
510 tial to be 20%-24% of annual generation in 2026 without flexibility options, 
511 at mid gas prices and assuming a carbon cost of $50/metric ton. With flex-
512 ibility options, this potential penetration rises to 20%-30%. The benefits 
513 of flexibility options become more significant after incremental curtailment 
514 rates start to climb at PV penetrations around 15%-20%. 

515 We also analyze the sensitivity of economic PV deployment potential with 
516 and without flexibility options under varying natural gas prices and carbon 
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517 costs. Both are significant drivers of PV value. Lower natural gas prices re-
518 duce the value of avoided fuel and emissions, such that the economic deploy-
519 ment potential drops to 11%-18% without flexibility options and 10%-22% 
520 with them. The ex-post assumed social cost of carbon has a particularly large 
521 impact, yet it is highly uncertain; our literature review revealed estimates of 
522 $8-$284 per metric ton for the mid-2020s timeframe. Under most conditions, 
523 however, if a carbon cost of at least $50/metric ton were to emerge from the 
524 public discourse, that would be sufficient to support PV penetrations at or 
525 above the point where flexibility options enhance potential PV penetration. 

526 Future work could include expanding the range of flexibility options consid-
527 ered. For example, it would be worthwhile to examine under what conditions 
528 energy storage cost trends warrant larger storage buildouts than our 4-GW 
529 option. In addition, a wider range of DR possibilities could be explored, 
530 particularly the large potential of scheduled electric vehicle charging. DR 
531 modeling methods could be refined to account realistically for all relevant 
532 physical phenomena such as the time-varying roundtrip efficiencies for ther-
533 mal mass-based energy shifting seen for individual end-uses in Beil et al. 
534 (2015); Cole et al. (2014); O’Connell et al. (2015). 
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752 Supplementary Information 

753 6. Additional Information on Methods 

754 6.1. Production Cost Model 

755 PLEXOS is a commercial production cost model that minimizes the total 
756 operational cost of meeting a power system’s time varying load on a rolling 
757 horizon basis, subject to generator, transmission, and reliability constraints. 
758 For this analysis, we modeled the projected generation mix in Florida Relia-
759 bility Coordinating Council (FRCC) in the year 2026. All transmission lines 
760 and bulk power level generators are included in the model (Denholm et al., 
761 2016). Figure 2 shows the total installed capacity of FRCC for increasing 
762 photovoltaic (PV) penetrations and for each demand response (DR) scenario. 
763 The scenarios with batteries added 1 GW or 4 GW of battery capacity for 
764 the small and large battery scenarios, respectively. The demand response 
765 capacity is measured as the non-coincident sum of each virtual generator’s 
766 peak capacity for providing contingency reserves. 

Figure 12: Installed capacity in FRCC at increasing PV penetration for each DR scenario. 
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767 Relevant generator operational constraints were modeled, including maxi-
768 mum capacity, minimum operational levels, minimum up and down times, 
769 ramp rates, planned and forced outages, and start costs. Transmission lines 
770 were modeled using a DC power flow formulation, with line limits enforced 
771 on all lines with voltages at or above 200 kV. 

772 For this analysis we modeled the commitment of all generators in the day 
773 ahead market at hourly resolution. We did not include a second phase of 
774 real-time dispatch for the system; thus the impact of forecast errors does not 
775 appear in the results. The model optimizes one day at a time, computing 
776 the optimal solution for all 24 hours simultaneously. It additionally has 24 
777 of “look-ahead”, where the model has some foresight of the future but is 
778 not attempting to optimize those time periods. This allows us to represent 
779 constraints with daily time horizons in the model, such as the number of 
780 hours per day a DR provider is willing to operate. Longer-term constraints, 
781 such as monthly hydropower limits, are modeled using a mid-term optimiza-
782 tion, which runs before the day ahead market and optimizes the full year 
783 at a monthly resolution using a load-duration curve method. The results of 
784 this optimization are used to formulate shorter-term constraints for the hy-
785 dropower generation, such that it can be optimized each day but still adhere 
786 to the longer-term requirements on its operation. 

787 One important source of flexibility in the model is the transmission connec-
788 tion between FRCC and the SERC Reliability Corporation (SERC). Previous 
789 work modeled the market friction between FRCC and SERC with a hurdle 
790 rate, a price on energy exchanged between regions. These hurdle rates have 
791 been adjusted since Denholm et al. (2016) to better represent the actual 
792 flexibility of the FRCC-SERC connection. Additionally, a price on ramping 
793 across the interface was added to limit the flexibility associated with imports 
794 and exports between FRCC and its neighbors to better measure the impacts 
795 of increased flexibility within FRCC. 

796 6.2. Demand Response Resource Models 

797 The demand response resource scenarios were built up by applying time 
798 varying fractional filters to an estimate, by utility, of the electricity load 
799 broken down by end use. An example week of this load data for all of FRCC 
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800 is shown in Figure 13. 7 The first filter applied to transform this data into 
801 a flexible resource is the shed filter, which represents the amount of load 
802 that could be subtracted from or added to the baseline load level absent 
803 any limitations on communications, or control, or customer incentives. The 
804 methodology for estimating this filter is largely unchanged from that in Olsen 
805 et al. (2013). For this project the dataset was extended to cover all of the 
806 United States, and to be time synchronous with our production cost model, 
807 whose weather year is 2006. 

Figure 13: Load timeseries data for end-uses modeled as providing demand response for 
one spring week. 

808 Further filters were applied to construct two demand response scenarios: Low 
809 DR and High DR. The methods for doing this differed depending on whether 
810 the end-use was categorized as a direct load control (DLC), or energy man-
811 agement system (EMS) resource. DLC resources are assumed to be directly 
812 controlled by the utility or other demand response aggregator. EMS based 
813 demand response may also receive signals from a utility or other aggregator, 
814 but the control is more sophisticated, perhaps holistically actuating a num-
815 ber of different systems and appliances spread across an entire building or 
816 site, and able to take in information about owner and occupant preferences. 

817 As mentioned in the Methods, for DLC end-uses, after accounting for shed-
818 dability, the amount of load able to provide demand response was further 

7The load data was built up from 2013 EIA Form 861 data (EIA, 2015), and many 
other data sources as described in Olsen et al. (2013). The load data shown in the figure, 
and the demand response resource data used in this work, was increased by 10.4% based 
on a 0.826% annual growth rate (EIA, 2013) to better match the 2026 load levels modeled 
in the FRCC production cost model. 
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819 limited by the U.S. Energy Information Administration (EIA) Form 861 data 
820 on current proportions of customers enrolled in DLC programs (EIA, 2016c). 
821 Based on tuning the Low DR scenario to approximately match current de-
822 mand response levels in Florida and looking for an aggressive, yet achievable 
823 High DR scenario, we used the 95th percentile of fractional non-zero partic-
824 ipation rates in DLC programs in the FRCC utilities for Low DR, and the 
825 95th percentile of fractional non-zero participation rates in DLC programs in 
826 the entire United States for High DR, both on a by-sector basis. The result-
827 ing filter values are shown in Table 3. For the end uses listed below that are 
828 marked as municipal, the average of the commercial and industrial filter val-
829 ues are applied. Since there is no additional customer interaction once DLC 
830 is installed, no further filters reducing the amount of load able to provide 
831 demand response were constructed, except for an additional multiplicative 
832 factor of 0 and 0.05, respectively, on the amount of residential cooling load 
833 able to provide regulation reserves in the Low DR and High DR scenarios. 

Table 3: Demand Response Resource Filters Derived from EIA Form 861 Data 

End- DR EIA Form 861 Residential Commercial Industrial 
Use 
Type 

Scenario Participation Rate 

DLC Low DLC, 95th Percentile of Non- 0.25 0.003 0.04 
Zero Values, FRCC Utilities 

High DLC, 95th Percentile of Non-
Zero Values, All Utilities 

0.64 0.64 1.00 

EMS Low AMI, 80th Percentile of All Util- 0.99 0.88 1.00 
ities 

EMS 
High 
Low 

N/A 
DR Program, 95th Percentile of 
Non-Zero Values, FRCC Utili-

1.00 
0.25 

1.00 
0.18 

1.00 
0.17 

ties 
High DR Program, 95th Percentile of 

Non-Zero Values, All Utilities 
0.64 0.94 1.00 

834 EMS controlled end-uses are limited by both the fraction of customers as-
835 sumed to be able to implement such controls and communicate with a utility 
836 or aggregator (controllability), and the degree to which end-users might be 
837 willing to sign up for demand response programs that would modify how their 
838 loads operate (acceptability). Controllability is estimated using EIA data on 
839 advanced metering infrastructure (AMI) penetration. The 80th percentile 
840 values of all utility AMI rates used for the Low DR scenario are already 
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841 fairly high, so AMI/advanced communications and controls is assumed to 
842 be universally available in the High DR scenario. Acceptability is modeled 
843 based on current reported participation in demand response programs. Sim-
844 ilar to the DLC participation rates, we use the 95th percentile of non-zero 
845 values across the FRCC utilities and all U.S. utilities for the Low and High 
846 DR scenarios, respectively. The values are reported by sector in Table 3. 
847 Regulation reserves are further limited by an additional multiplicative filter 
848 of 0.02 for Low DR and 0.15 for High DR. Finally, for EMS end-uses located 
849 in buildings, we apply a filter that is inversely proportional to an occupancy 
850 proxy, and equal to 1.0 at lowest occupancy and 0.5 at highest occupancy. 
851 For commercial end-uses, we use lighting load as the occupancy proxy. Our 
852 residential occupancy proxy is water heating, since our load dataset does not 
853 include residential lighting. 

Table 4: Demand Response Resource Summary by End-Use 

Sector End-Use 
Resource 
Type 

Control 
Type 

Proportion 
of FRCC 
Load by 

End-Use (%) 

Proportion of End-use Load Able to Provide the Service 
(%), Range Listed for Time-varying Filters 
Energy Contingency Regulation 

Low DR High DR Low DR High DR Low DR High DR 

Residential 
Cooling 
Heating 
Water 
Heating 

Storage 
Storage 
Schedule 

DLC 
EMS 
DLC 

17 
6 
10 

18 
2-5 
6 

44 
6-13 
16 

18 
2-5 
6 

44 
6-13 
16 

0 
0-0.1 
6 

2 
1-2 
16 

Commercial 

Cooling 
Heating 
Lighting 
Ventilation 

Storage 
Storage 
Shed 
Shed 

EMS 
EMS 
EMS 
EMS 

4 
9 
24 
9 

4-9 
4-9 
0 
0 

24-51 
27-54 
0 
0 

3-7 
3-7 
2-3 
3-6 

20-42 
20-42 
11-19 
20-34 

0-0.1 
0-0.1 
0-0.1 
0-0.1 

4-6 
3-6 
2-3 
3-5 

Municipal 
Outdoor 
Lighting 
Wastewater 
Pumping 
Water 
Pumping 

Shed 

Schedule 

Schedule 

DLC 

DLC 

DLC 

18 

1 

1 

0 

0.1 

0.1 

0 

4 

4 

0.1 

0.1 

0.1 

4 

4 

4 

0.1 

0 

0 

4 

0 

0 

Industrial 

Agricultural 
Pumping 

Schedule 

Datacenters Schedule 
ManufacturingSchedule 
Refrigerated 
Warehouses 

Storage 

DLC 

DLC 
EMS 
DLC 

<0.5 

<0.5 
<0.5 
2 

4 

0.1 
0.8 
0.2 

100 

3 
5 
5 

4 

0.1 
2 
0.4 

100 

3 
10 
10 

4 

0.1 
0 
0.4 

100 

3 
0 
10 

854 The result of categorizing and applying filters to all the end uses is summa-
855 rized in Table 4. Example availability stacks for each grid service are shown 
856 in Figure 14 for the same week as the load data plotted in Figure 13. To 
857 turn these resources into virtual generators to be dispatched by our produc-
858 tion cost model, we apply assumptions appropriate to each end-use’s cate-
859 gorization as sheddable, thermal storage, or schedulable. The end result is 
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860 generators modeled with some amount of storage capacity and no fuel use 
861 that are used to shift energy use or provide reserves. The generators are also 
862 modeled as having zero variable cost, consistent with most demand response 
863 costs being capital or fixed, rather than tied to the exact amount of demand 
864 response used from day-to-day. 

865 Sheddable resources, such as the commercial ventilation load available in our 
866 model to provide contingency and a limited amount of regulation reserves, as 
867 shown in Figure 15a, are modeled as simple reserves-only generators without 
868 storage. Under the assumption that contingency reserves are always held, 
869 but rarely (up to several or a dozen times per year) called, and that any 
870 load providing regulation reserves experiences very little to no degradation 
871 of the main service it is providing, we do not apply any constraints on the 
872 use of these reserves beyond enforcing their availability profiles. Availability 
873 profiles are enforced by product. The sum of services provided is also required 
874 to be less than the maximum availability across all offered products. Thus, 
875 for our commercial ventilation example, if one MW-h of regulation reserves 
876 is provided in a given hour, this reduces the amount of contingency capacity 
877 available in that hour by one MW-h. 

878 Thermal storage and schedulable resources are modeled as generators with 
879 storage (that is, similar to pumped hydro) to capture their energy-shifting 
880 abilities. Their availability for reserves is modeled similarly to the sheddable 
881 resources, and the sum of all services provided in a given hour must be less 
882 than the max capacity across all services offered, including energy. For lack 
883 of better data, 100% round-trip efficiency is assumed for all energy-shifting,8 

884 but otherwise the storage constraints differ depending on the specific end use 
885 being modeled. These typically include a constraint on the number of hours a 
886 resource can be used per day, a total number of times a resource can be called 
887 per day, and a restriction on which hours it may be used. One difficulty we 
888 had modeling these resources originates from the fact that the methodology 
889 used to estimate the size of the demand response resource did not explicitly 
890 account for the capacity of end-uses to increase load. We thus estimate the 
891 ability of the resources to increase load, referred to as pumping capacity 
892 in Table 5, based on assumptions applied to the energy service timeseries 

8O’Connell et al. (2015); Beil et al. (2015) are end-use specific examples showing vari-
ations in round-trip efficiency from demand response used as storage. 
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Figure 14: Demand response resource for the High DR scenario by end use and grid service 
for one spring week. 
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Figure 15: Example demand response resources from the High DR scenario, average values 
by hour and season. a) Commercial ventilation, a shed resource, b) Commercial heating, 
a thermal storage resource, and c) Agricultural pumping, a schedulable resource. 

893 data. These estimates are provided in Table 5 with Ei being the energy 
¯894 service availability at time i, E = maxj Ej the maximum of energy service 

895 availability taken over the whole year, and Di the set of all time indicies that 
896 fall on the same day as i. 

897 The virtual pumping capacity is thus limited by the overall capacity implied 
898 by the energy service timeseries, if that timeseries contains significant vari-
899 ability, as it does for heating and cooling. For less volatile loads more blunt 
900 assumptions for the pumping capabilities, such as the ability to double load 
901 from baseline levels, are used. Finally, limitations based on the maximum 
902 amount of energy service available from a given end use on a given day are 
903 used to prohibit unseasonable operation, such as shifting heating energy use 
904 when the predominant form of space conditioning is cooling. 

905 The final column of Table 5 specifies a maximum number of hours a resource 
906 is allowed to be used per day. Since such a restriction should be applied to 
907 individual sites, which are generally much smaller than the overall capacity 
908 of the aggregated resource, and the capacity of the resource may vary by 
909 hour, this constraint is implemented as X Gi ≤ Tday, (1)

Ei
j∈Di 

910 where Gi is the amount of load reduction dispatched in hour i, Ei is the 
911 amount of energy shifting resource available in hour i (as above), and Tday is 
912 the number of hours that the resource may be used per day. Note that only 
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Table 5: Modeling Details for Thermal Storage and Schedulable Demand Response Re-
sources 

Daily 
Duration 

Pumping Balancing Restric-
Resource Time Frequency tion 

Sector End-Use Type Pumping Capacity Restrictions (days) (h) 

Cooling Storage min( Ē − Ei, maxj∈Di Ej ) 5 am-6 pm 1 1 
Residential Heating Storage min( Ē − Ei, maxj∈Di Ej ) 3 am-7 pm 1 1 

Water Schedule min(2Ei, Ē) − Ei - 1 -
Heating 

Commercial 
Cooling 
Heating 

Storage 
Storage 

min( Ē − Ei, maxj∈Di Ej ) 
min( Ē − Ei, maxj∈Di Ej ) 

5 am-6 pm 
3 am-7 pm 

1 
1 

2 
2 

Municipal 
Wastewater 
Pumping 

Schedule min(2Ei, Ē) − Ei - 1 3 

Water Schedule min(2Ei, Ē) − Ei - 1 2 
Pumping 
Agricultural Schedule min(2Ei, Ē) − Ei - 7 8 

Industrial 
Pumping 
Datacenters Schedule min( Ē − Ei, maxj∈Di Ej ) 4 am-8 pm 1 4 
ManufacturingSchedule Ei - 1 -
Refrigerated Storage min(2Ei, Ē) − Ei - 1 4 
Warehouses 

913 load reduction duration is limited by Tday. Make up, or pumping, energy is 
914 then constrained to balance within its own parameters. 

915 The demand response models are programmatically created and applied to 
916 the PLEXOS FRCC model with a Python package called beetle. That pack-
917 age has the option to spread DR out to the top n load nodes per region, in 
918 proportion to their relative load participation factors. One new generator 
919 per DR end-use is created at each such node. Based on runs with DR placed 
920 on the top 1, 2, 5, and 10 load nodes, we moved forward with models that 
921 place DR at the top two load nodes per region, that is, at 12 nodes in total 
922 throughout FRCC. We found this level of dispersion to be a good balance 
923 between computational complexity and model realism. 

924 6.3. Capacity Cost Assumption 

925 This study assumes a capacity price of $75/kW-year, based on the Annual 
926 Energy Outlook (AEO) reported annualized costs for combustion turbines. 
927 The 2016 AEO gives combustion turbine costs of $78.40/kW-yr for 2020, 
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928 $74.4/kW-yr in 2030, and $71.75/kW-yr in 2040. We performed a sensi-
929 tivity over this assumption, but that level of variability is not enough to 
930 significantly impact the value of PV, having less than 1% impact, and less 
931 than 0.5% impact at penetrations above 20% PV. However, it can be argued 
932 that $75/kW-yr should be considered an upper bound on capacity price, since 
933 systems with excess capacity often report significantly lower capacity prices. 
934 For example, California has made capacity payments ranging from $5/kW-yr 
935 to $100/kW-yr, with an average price paid of $35.50/kW-yr in 2016 (Chow 
936 et al., 2017). Even using this lower capacity price only impacts lower PV 
937 penetrations, with a median impact of 5-8% change at low PV penetrations, 
938 and 1-3% change at higher penetrations. This is due to the rapid decline of 
939 the incremental capacity value of PV, such that at higher penetrations, PV 
940 capacity value is not a significant factor in the overall PV value. 

941 6.4. Photovoltaic Cost Projections 

942 The Annual Technology Baseline (ATB) provides low, mid, and high cost 
943 projections for many developing technologies through 2050 (NREL, 2016). 
944 For this analysis, we used the midline and low cost trajectories for utility 
945 scale photovoltaics. To match the $/MWh units of our PV value outputs, 
946 and the average capacity factors of the PV facilities in our model, we pulled 
947 levelized cost of energy (LCOE) trajectories for 20% capacity factor plants. 
948 Figure 16 shows those projected trajectories, which both start at $118/MWh, 
949 but then quickly diverge to $84/MWh and $65/MWh in 2020, $60/MWh and 
950 $43/MWh in 2030, and $50/MWh and $28/MWh in 2050 for the mid and 
951 low cost trajectories, respectively. For the analysis presented in the paper, we 
952 used the mid and low cost projections for the year 2026, the year represented 
953 in our model. 

954 7. Additional Results 

955 In this section we present some additional results that may be of interest to 
956 readers. In particular, we present more details on our natural gas price sen-
957 sitivities, describe how the value of PV results change with different social 
958 cost of carbon assumptions, take a closer look at the extent to which de-
959 mand response may be able to support PV integration in Florida, and more 
960 explicitly connect incremental curtailment rates with incremental PV value. 
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Figure 16: PV cost trajectories from the 2016 ATB 
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961 7.1. Natural Gas Price Sensitivity 

962 Our natural gas prices are based on the South Atlantic region price trajecto-
963 ries from the Annual Energy Outlook. These prices vary by month based on 
964 historical patterns and are the same prices used in the Eastern Renewable 
965 Generation Integration Study (Bloom et al., 2016). The original analysis was 
966 performed using the reference case gas prices for 2026 from AEO 2014 (EIA, 
967 2014). The low natural gas price sensitivity was performed by scaling the ref-
968 erence monthly gas prices by the ratio of the AEO 2016 low natural gas price 
969 scenario (EIA, 2016a) to the original AEO 2014 value. For this sensitivity, 
970 we did not change the prices of coal, nuclear, or oil. This led to a change 
971 in the merit order of generators, such that more efficient gas combined cycle 
972 (CC) units came to have a lower marginal cost relative to most coal plants. 
973 Coal plants went from being the marginal plant 71% of the time to being 
974 the marginal plant 25% of the time. Gas CC units increased to being the 
975 marginal unit 72% of the time from 26% of the time. The merit order of gas 
976 combustion turbine (CT) units did not change significantly. Gas CT units 
977 were marginal 3% of the time in both cases. All values are calculated as the 
978 median across all scenarios by gas price. 

979 We ran all flexibility scenarios, except the battery-only scenarios, using low 
980 natural gas prices and analyzed the ways in which lower natural gas prices 
981 changed our results. The changes are quite significant, starting with which 
982 generators are impacted by the various flexibility measures. As shown in 
983 Figure 17, almost all flexibility options tend to increase gas CC generation 
984 and reduce coal generation, to take advantage of the CC generators’ marginal 
985 price advantage in this low gas price environment. The Flex System package 
986 of options is especially consequential, because it includes a reduction in the 
987 minimum generation level of gas CC units that allows more of them to stay 
988 on through the mid-day solar peak. All of the Flex System scenarios show a 
989 remarkable increase in the amount of natural gas used, replacing nearly all 
990 coal with gas CC generation, as shown in Figure 18. On its own, demand 
991 response tends to increase the use of natural gas and decrease the use of 
992 coal at low PV penetrations, but increases PV generation over both gas and 
993 coal at high PV penetrations. As with the mid gas price scenarios, demand 
994 response alone and paired with other flexibility options reduces the use of 
995 gas CT units. 

996 Low natural gas prices also reduce the value of the next increment of PV by 

42 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted 
manuscript. The published version of the article is available from the relevant publisher.



Figure 17: Annual generation differences by technology between the various low natural 
gas price scenarios and the Base, low natural gas price, no DR scenario with the same PV 
penetration. 

Figure 18: Dispatch stacks for the scenario with 30% pre-curtailment PV penetration, low 
natural gas prices, and the Flex + 4 GW package of flexibility options. 
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Figure 19: Component-wise incremental value of PV for all scenarios. The low natural 
gas scenarios are shown in brighter colors than the corresponding mid gas price scenarios. 

997 reducing the value of fuel and emissions avoided per unit of PV generation. 
998 Figure 19 shows this by plotting each component of incremental PV value 
999 for the low (in bright colors) and midline (in lighter colors) natural gas price 

1000 scenarios. Low natural gas prices have no impact on the capacity value, and 
1001 very little impact on the value of imports or starts and shutdowns; however 
1002 the impact on value derived from avoided fuel and emissions is clear. The 
1003 net impact of flexibility options in the low gas price scenario are shown in 
1004 Figure 20. Flexibility options are able to preserve PV value at high pene-
1005 trations in this case, just as they are with mid natural gas prices, but the 
1006 effect is muted to the extent that flexibility also increases gas CC generation, 
1007 see especially the Flex System curve. Overall, 4 GW of battery capacity in 
1008 FRCC is able to increase the economic penetration of PV by three to five 
1009 percentage points at low PV cost. The impact of DR is similar to that of the 
1010 mid gas price scenario, increasing the economic carrying capacity of PV by 
1011 one to two percentage points. 

1012 7.2. Social Cost of Carbon Sensitivity 

1013 The central results of this paper use a $50 per metric ton of CO2 social cost 
1014 of carbon based on the Interagency Working Group analysis for the year 2030 
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Figure 20: Percentage point increase in economic PV penetration when flexibility options 
are applied to the low natural gas price base scenarios. 

1015 and a 2.5% discount rate (Interagency Working Group, 2010). As described 
1016 in the Methods, we also consider a range of cost values covering the litera-
1017 ture, from $8.2 per metric ton CO2 to $284.1 per metric ton. In the main 
1018 paper we show the effects of a narrower range, $0 to $100 per metric ton, 
1019 on the economic carrying capacity of PV in FRCC in 2026. Figure 21 shows 
1020 the impacts of this range of carbon costs on the overall incremental value of 
1021 PV to the system. The range assumed in the paper is shown in the shaded 
1022 area, the 95th percentile social cost of carbon, $284.1, is shown as a line at 
1023 the top of the plot. This figure makes it clear that assuming a high cost of 
1024 carbon emissions translates into PV being cost competitive today, and fur-
1025 ther implies an accelerated timeline for the importance of system flexibility, 
1026 especially as it relates to preserving PV value at higher penetrations. Al-
1027 ternatively, if no cost is assigned to carbon emissions, PV costs must drop 
1028 below $50/MWh or even $40/MWh to match PV incremental value. 

1029 7.3. Demand Response Impacts 

1030 Demand response (DR) is an intuitively attractive form of system flexibility 
1031 based on its relatively low capital costs as compared to other flexible tech-
1032 nologies like pumped hydro and battery storage. We thus set out in this 
1033 study to determine to what extent DR may be able to help integrate PV into 
1034 the Florida system via flexible load operations. 
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Figure 21: Sensitivity of PV value to the social cost of carbon. The shaded area shows 
the impact of a social cost of carbon ranging from $0 to $100 per metric ton. The 95th 

percentile social cost of carbon, $284.1, is shown as an outlier line. The assumed cost of 
carbon has a high impact on the overall value of PV to the system. 

1035 In the main body of the paper, annual generation differences by technology 
1036 show that our High DR scenario is able to elicit generation changes of a 
1037 magnitude similar to that achieved by 1 GW of battery capacity spread 
1038 throughout FRCC. It is also apparent that the mechanisms through which 
1039 the two technologies reduce system costs are different, because DR tends to 
1040 reduce CT generation to a much greater extent than does battery capacity. In 
1041 fact, the demand response resources we model contribute mostly by providing 
1042 reserves, rather than explicitly shifting energy. As shown in Figure 22, the 
1043 commitment of DR greatly exceeds is dispatch most of the time, which is 
1044 in contrast to the commitment and dispatch patterns for battery capacity 
1045 in that same plot. We also see that the peak generation and charging for 
1046 the two resources are similar, at around 1 GW, while the peak commitment 
1047 for DR generally ranges higher, between 3 GW and 6 GW. These patterns 
1048 reflect the fact that the use of demand response for energy shifting is highly 
1049 restricted; a number of end-uses are not allowed to provide energy shifting 
1050 at all, and those that do are subject to various energy constraints related to 
1051 how much energy the end-use requires over a given period of time and what 
1052 level of deviation from baseline operations is allowed. 

1053 Figures 23-24 show the by-technology provision of annual reserves for con-
1054 tingency and regulation for each mid natural gas price scenario. With no 
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Figure 22: Commitment and dispatch for the 1GW, High DR, mid gas price, 30% PV 
scenario 

1055 demand response in the system, batteries are able to provide a substantial 
1056 amount of the required reserves, both contingency and regulation. However, 
1057 with demand response modeled as a no-variable cost resource, when present 
1058 even at low levels it can provide nearly all contingency reserves. In the High 
1059 DR scenarios, demand response can also provide most of the regulation re-
1060 serves, especially at low to intermediate levels of PV. For those scenarios 
1061 including the Flex System package, the ability for PV to provide reserves 
1062 was only significantly utilized at PV penetrations above 30%, and was most 
1063 predominantly used to provide regulation reserves. Low natural gas prices 
1064 did not substantially alter these findings. As Figure 23 and Figure 24 visu-
1065 ally indicates, in this study we did not model any caps on the proportion of 
1066 reserves that could be provided by demand response, storage, or PV, either 
1067 alone or in combination. As such caps are in place in multiple jurisdictions, 
1068 these results should be interpreted as an upper bound on the possibilities for 
1069 flexible technologies providing reserves. 

1070 As shown in the main body, the operational changes induced in the system 
1071 by DR do increase the economic carrying capacity of PV in FRCC once 
1072 sufficiently high PV penetrations are reached. Figure 25 shows the analogue 
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Figure 23: Contingency reserves provision by generator type for each flexibility and DR 
scenario 

Figure 24: Regulation reserves provision by generator type for each flexibility and DR 
scenario 
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1073 of Figure 9 and Figure 20 just for DR, that is, it shows the amount by 
1074 which DR increases the economic carrying capacity of PV compared to the 
1075 analogous scenario without DR, holding PV costs constant. Overall, we can 
1076 see that DR usually increases the ability of FRCC to integrate PV, even in 
1077 combination with other forms of flexibility like battery storage. The presence 
1078 of those other technologies does depress the impact of DR, albeit with varying 
1079 levels of effect depending on the underlying conditions. In general, at low PV 
1080 costs the efficacy of the Low DR scenario at increasing PV penetration drops 
1081 from about 0.75 % pt to about 0.25 % pt when battery storage capacity is 
1082 added. The analogous change for the High DR scenario is from about 1.5 % 
1083 pt without storage to about 0.75 % pt with storage. 

Figure 25: Percentage point increases in economic carrying capacity of PV due to demand 
response. The figure on the left shows mid natural gas prices. The figure on the right 
shows low natural gas prices. 

1084 7.4. Curtailment Impacts 

1085 The marginal curtailment of solar PV units is important as this represents 
1086 the amount of the total energy produced by new plants that is actually 
1087 unusable by the power system as a whole. In the baseline scenario with 
1088 mid gas prices and no flexibility options, 80% of the final increment of PV, 
1089 which corresponds to increasing the pre-curtailment penetration from 40% to 
1090 45%, is curtailed. The flexibility options considered in this study are able to 
1091 reduce marginal curtailment to 55%, but this is still a large amount of energy 
1092 to throw away from a new PV plant, and requires very low cost PV to make 
1093 such installations economically attractive. Figure 26 shows that the 4 GW 
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1094 of battery storage is most effective at reducing curtailment in this system, 
1095 demonstrating that the combined economics of PV and battery storage are 
1096 important future considerations. 

Figure 26: Marginal curtailment by pre-curtailment penetration for each flexibility scenario 
in the mid natural gas price scenario. 

1097 Curtailment reduction is a large piece of the additional value flexibility op-
1098 tions bring to PV. The ability to increase the fraction of utilized solar energy 
1099 allows for higher benefits from the resource. As such, we analyzed the corre-
1100 lation of reduced marginal curtailment with increased PV value for each of 
1101 the scenarios in our analysis. Figure 27 shows this correlation 

1102 We found R2 values ranging from 0.56 to 0.87 for the reference natural gas 
1103 price scenarios. The low natural gas price scenarios typically had lower cor-
1104 relation, with R2 values ranging from 0.18 to 0.87. The median R2 values 
1105 were 0.75 and 0.58 for the reference and low natural gas price scenarios, 
1106 respectively. 
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Figure 27: Marginal curtailment vs increased PV value from the baseline scenario, for 
each pre-curtailment penetration. 
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