VA

.
s LonLuamos

LA-UR-18-25476

Approved for public release; distribution is unlimited.

Title:
Author(s):

Intended for:

Issued:

Anti-Reverse-Engineering: Malware Analysis Day 6
Pearce, Lauren

Presentation for two week course on malware analysis

2018-06-21

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for

the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Anti-Reverse-Engineering

Malware Analysis Day 6

laurenp@lanl.gov

Primary Goal of Anti-RE Techniques?

* Delay or prevent the analysis of malicious code by:
* Increasing the skill level required by the malware analyst
* Increasing the time it takes a malware analyst to extract indicators

Anti-Disassembly

How does a Disassembler Work?

e Let’s think about the problem of disassembly for a moment

* Sequences of bytes can have multiple possible representations in assembly.
It’s up to the disassembler to determine the correct one. Not a trivial
problem.

* Anti-Disassembly techniques take advantage of the assumptions that
disassemblers make and can cause even advanced disassemblers to
present inaccurate code.

Linear Disassembly

* |[terate over a block of code disassembling one instruction at a time
without deviating.

e Uses the size of the disassembled instruction to decide which byte to
disassemble next — no regard to flow-control instructions

e Simple and easy to understand, BUT
* Error prone, even in non malicious binaries

 Will disassemble too much code — code section of binaries inevitable contains
data that isn’t code.

* Easy to defeat because they cannot distinguish code from data

Linear Assembly: Example

jmp ds:off 401050[eax*4] ; switch jump

; switch cases omitted ...

Xor eax, eax
pop esi
retn

)

off 401050 @dd offset loc 401020
dd offset loc 401027
dd offset loc 40102E
dd offset loc 401035

; DATA XREF: main+19r
; jump table for switch statement

Practical Malware Analysis Chapter 15, Page 331

and
inc
add
adc
adc
XOY

[eax],dl

eax

[edi],ah
[eax+0x0],al
cs:[eax+0x0],al
eax,0x4010

Flow-Oriented Disassembly

* Doesn’t innd.Iy iterate over ’Fhe test eax, eax
buffer assuming everything is 0z short loc 1A
code. Examines each instruction @®push Failed string
and creates a list of locations to ©call printt

O jmp short loc 1D

disassemble.

S
loc 1A: ©
XOY eax, eax

loc 1D:
retn

Practical Malware Analysis Chapter 15, Page 332

Flow-Oriented Disassembly: Conditional
Branches

* The flow oriented disassembler has a choice of two places to
disassemble — the true or the false branch.

* In compiler generated code, there would be no difference in the
resultant code if true or false was processed first — not so much for
handwritten code.

* When there is a conflict, most compilers will take the false branch of
the jump. Similarly, most compilers will take the bytes after a call
rather than the call location.

Defeating Flow Oriented
Disassemblers

Call Pop

/ \

CALL e o POP RET

ENDEIEIE = o o oo o o EAED

Figure 15-1: call instruction followed by a string

E8 06 00 00 00

call loc 4011CB

68 65 6C 6C 6F 00 aHello db "hello’,0
loc_4011CB:
58 pop eax
C3 retn
E8 06 00 00 00 call near ptr loc 4011CA+1

Practical Malware Analysis Chapter 15, Pages 333-334

68 65 6C 6C 6F Opush 6F6C6C65h

loc 4011CA:
00 58 C3 add [eax-3Dh], bl

Fixing lda’s Mistakes

* Sometimes you’ll have to do some manual cleanup to tell Ida how to
disassemble some instructions. You’ll use the shortcuts Cand D
* Place your cursor over the instruction that was translated incorrectly
* Press Cto turnitinto code
* Press D to turn it into data

E8 06 00 00 00 call 1Dc_4011CB
68 65 6C 6C 6F 00 aHello db 'hello’,0
loc 4011CB:
58 pop eax
C3 retn

Practical Malware Analysis Chapter 15, Page 334

Jump Instructions with the Same Target

* Two back to back conditional jumps that both point to the same place
and for which one or the other must be taken.
* jzloc_512 followed by jnz loc_512
* Technically it’s an unconditional jump

* Why is this a problem?

* Despite it being an unconditional jump, the disassembler only looks at a
single instruction at a time and thus doesn’t recognize it as such. It continues
disassembling the false branch even though it can never be executed.

Jump Instructions with the Same Target

74 03 jz short near ptr loc 4011C4+1
75 01 jnz short near ptr loc 4011C4+1
loc_4011C4: ; CODE XREF: sub_4011C0
; ®sub 4011C0+2]j
E8 58 C3 90 90 Ocall near ptr 90D0D521h
JZ i INZ i POP : RET :
(74]03]75]01 |BX 58 [c3] | |
| CALL ‘

Figure 15-2: A jz instruction followed by a jnz instruction

Practical Malware Analysis Chapter 15, Page 335

Jump Instructions with the Same Target

74 03
75 01

E8

58
C3

loc 4011C5:

pop eax
retn

jz short near ptr loc 4011C5
jnz short near ptr loc 4011C5
db OE8h

- o o S R S O S O O S O O O O S O O e e e e e O O O e e e e e e e e e e e e e e e e e e e s e e e e

; CODE XREF: sub 4011C0
; sub 4011C0+2]j

Practical Malware Analysis Chapter 15, Page 336

Jump with a Constant Condition

* A conditional jump that will always be taken.
e xor eax eax followed by jz

* Why could this create a problem for a disassembler?

* Even though this is essentially an unconditional jump, the disassembler can’t
see that. The disassembler views this as a conditional jump and so continues
disassembling the false branch even though it can never be executed. This
leads to conflicting instructions, and the disassembler defaults to the “false”
branch — the one that’s technically impossible.

Jump with a Constant Condition

33 Co X0Y eax, eax
74 01 jz short near ptr loc 4011C4+1
loc_4011C4: ; CODE XREF: 004011C2j
; DATA XREF: .rdata:004020ACo
E9 58 (3 68 94 jmp near ptr 94A8D521h 2
XOR SN V4 : E

[33]coi74[01

. IMP

Rogue Byte

Figure 15-3: False conditional of xor followed by a jz instruction

Practical Malware Analysis Chapter 15, Page 336

Demo

Practical Malware Analysis Lab 15-1

Impossible Disassembly

* With the last issues, we could use Ida to fix the code and make it look
how it should. There are some anti-disassembly techniques that
prevent us from making the code look as it should.

* In the previous examples, the rogue byte could be completely
disregarded — it was extraneous and there to get in our way.

e But what if that byte was necessary? A single byte that is part of two
Instructions,.

* Possible on the processor level, but there’s no disassembler that knows how
to identify and represent this.

Impossible Disassembly

JMP -1

FF colw]

|INC EAX | DEC EAX

Figure 15-4: Inward-pointing jmp instruction

Practical Malware Analysis Chapter 15, Figure 15-4

Impossible Disassembly

;/ s\s

MOV ax, O5EBh | XOR eax, eax: JZ -6 i Fake CALL
RSN 31 | co |74 FA]

M5 ReclCode
M A

Figure 15-5: Multilevel inward-jumping sequence

Practical Malware Analysis Chapter 15, Figure 15-5

Obscuring Control Flow

Function Pointers

Practical Malware Analysis Chapter 15, Page 341

004011C0 sub_4011C0
004011C0

004011C0 arg 0
004011C0

004011C0

004011C1

004011C3

004011C6

004011C9

004011CA

004011CA sub 4011C0

00401100 sub_4011D0
00401100
00401100
00401100 var_ 4
00401100 arg O
004011D0
004011D0
004011D1
00401103
004011D4
00401105
004011DC
004011DE
004011E1
004011E4
004011E6
004011E9
004011EA
004011ED
004011F0
004011F4
004011F5
004011F7
004011F8
004011F8 sub_4011D0

proc near ; DATA XREF: sub_4011D0+50

= dword ptr 8

push ebp

mov ebp, esp

mov eax, [ebp+arg 0]

shl eax, 2

pop ebp

retn

endp

proc near ; CODE XREF: main+19p
; sub_401040+8Bp

= dword ptr -4

= dword ptr 8

push ebp

mov ebp, esp

push ecx

push esi

mov @[ebp+var 4], offset sub_4011C0

push 2Ah

call @[ebp+var 4]

add esp, 4

mov esi, eax

mov eax, [ebp+arg 0]

push eax

call ®©[ebp+var 4]

add esp, 4

lea eax, [esiteax+1]

pop esl

mov esp, ebp

pop ebp

retn

endp

Return Pointer Abuse

* We've looked at abuses of call and jmp, but ret also has an impact on
the control flow of a program.

 What two things happen when the call instruction is issued?
* Push
* Jump

* What two things happen when the ret instruction is issued?
* Pop
* Jump

* Ret is logically used as the inverse of call, but nothing prevents it from
being used wherever you want to use it.

004011C0 sub_4011C0

004011C0
004011C0
004011C0 var_4
004011C0
004011C0
004011C5
004011C9

004011C9 sub_ 4011C0

004011C9

proc near

= byte ptr -4

;ﬁl N @Rar_d] y 5

retn

; CODE XREF: _main+19p

; sub_401040+8Bp

endp ; sp-analysis failed

Alt+P —set function

004011CA == === === oo mmf i m oo

004011CA
004011CB
004011CD
004011D0
004011D3
004011D5
004011D6

push ebp

mov ebp, esp
mov eax, [ebp+8]
imul eax, 2Ah
mov esp, ebp

pop ebp

retn

end to 4011D6

Practical Malware Analysis Chapter 15, Page 342-343

SEH Abuse

* Remember when | said Structured Exception Handling would come up
again later?

* SEH Chain — List of functions that are desighed to handle exceptions
in a given thread. Each function in the chain either handles the
exception, or passes it to the next link.

* |In this context, what is an unhandled exception?

Traversing Structures to find the SEH Chain

* FS Segment Register = Thread

Environment Block (TEB) = Thread struct EXCEPTION REGISTRATION {
. DWORD prev;
Information Block (TIB) | DHORD handler .
* The first element of the TIB is a FS:[0] P'};

pointer to the SEH Chain. YPF.E"' | hundler
e The SEH chain itself is a linked list Yprleqhqndler

of 8 byte data structures, each of

which is called an Yprev JEEEER == Handler Function |

EXCEPT'ON_R EGISTRATION record. Figure 15-6: Structured Exception Handling (SEH) chain

* Conceptually, operates as a stack. The
first record entered is the last record
accessed.

Adding a Record to the SEH Chain

* If you can add a record to the SEH chain, you can then manipulate
control flow in a way that is difficult for an analyst to follow.

* The structure for each record contains 2 DWORDs — easy to do with 2
pushes.

e Stack grows UP —first push is the pointer to the handler function, second
push is pointer to the next record.

* Pointer to the handler function is easy, but where do we find the
pointer to the next record?

* The next record is the one that is currently on top. It can be accessed “fs:[0]”

push ExceptionHandler
push fs:[0]
mov fs:[0], esp

Practical Malware Analysis Chapter 15, Page 345

00401050 Omov eax, (offset loc 40106B+1)

00401055 add eax, 14h

00401058 push eax

00401059 push large dword ptr fs:0 ; dwMilliseconds
00401060 mov large fs:0, esp

00401067 XO0Y ecx, ecx

00401069 ©div ecx

00401068

0040106B loc 401068B: ; DATA XREF: sub 4010500
00401068 call near ptr Sleep

00401070 retn

00401070 sub 401050 endp ; sp-analysis failed

00401070

00401070 § ====--=mm e e e e e e e e e e e - ————
00401071 align 10h

00401080 dd 824648Bh, 0A164h, 8B0000h, 0A364008Bh, 0
00401094 dd 6808C483h

00401098 dd offset aMysteryCode ; "Mystery Code"
0040109C dd 2DE8h, 4C48300h, 3 dup(0CCCCCCCCh)

Practical Malware Analysis Chapter 15, Page 346

Breaking Stack-Frame Analysis

e Disassemblers like Ida can analyze the instructions contained in a
function and deduce the construction of the stack-frame. This allows
them to label parameters, local variables, etc.

* This is not an exact science and can be broken by a determined malware
author ®

00401543 sub 401543 proc near ; CODE XREF: sub 4012D0+3Cp
00401543 ; sub_401328+9Bp
00401543
00401543 arg Fa
00401543 arg F8

dword ptr OF8h
dword ptr OFCh

00401543

00401543 000 sub esp, 8

00401546 008 sub esp, 4

00401549 o00C cmp esp, 1000h

0040154F o0o0C jl short loc_401556

00401551 0oC add esp, 4

00401554 008 jmp short loc_40155C

00401556 et ikl i
00401556

00401556 loc_401556: ; CODE XREF: sub_401543+Cj
00401556 00C add esp, 104h

0040155C

0040155C loc_40155C: ; CODE XREF: sub_401543+11j
0040155C -F8@ mov [esp-OF8h+arg F8], 1E61h

00401564 -F8 lea eax, [esp-OF8h+arg F8]

00401568 -F8 mov [esp-OF8h+arg F4], eax

0040156B -F8 mov edx, [esp-OF8h+arg F4]

0040156E -F8 mov eax, [esp-OF8h+arg F8]

00401572 -F8 inc eax

00401573 -F8 mov [edx], eax

00401575 -F8 mov eax, [esp-0OF8h+arg F4]

00401578 -F8 mov eax, [eax]

0040157A -F8 add esp, 8

0040157D -100 retn

0040157D sub_ 401543 endp ; sp-analysis failed

Listing 15-1: A function that defeats stack-frame analysis

But Wait! There’s MORE!

* We've talked about a few specific techniques, but there are many
more.

* These techniques have demonstrated how a decompiler can be
tricked, and all anti-reverse engineering techniques work by tricking
the decompiler.

* Hopefully you will now be able to spot the trickery even when the
actual technique is different.

Demo

Practical Malware Analysis Lab 15-2, How to NOP a byte

Anti-Debugging

What is Anti-Debugging?

e Techniques to
e A) Detect that a program is being debugged
* B) Fail or otherwise alter behavior if being debugged

* We focus on circumventing detection, because that can save us from
part B. BUT, it’s important to keep in mind that a program that detects
a debugger is not necessarily anti-debugging or malicious.

Broad Methods

Use the Windows API to detect the debugger
Manually checking OS data structures
ldentifying Debugger Behavior

Interfering with the debugger functionality

B w e

Windows API

* IsDebuggerPresent — The most obvious of them all. Checks the PEB for the
field IsDebugged.

* CheckRemoteDebuggerPresent — Behaves just like IsDebuggerPresent, but
with the added capability of checking if a different process is being
debugged.

* NtQuerylnformationProcess — Native API function that retrieves
information about a process. First parameter is a handle to the target
process, the second is a value specifying what information it wants
returned. Value 0x7 will return debugging information.

e OutputDebugString followed by GetlLastError — OutputDebugString is a call
that only works in the presence of a debugger. If called when not being
debugged, it will error out.

Manually Checking Structures

* The API calls are just a little obvious. Malware authors may try to be a
little more stealthy by manually checking the same structures the API
calls rely on.

BeingDebugged Flag

typedef struct _PEB {

BYTE Reservedl[2];

BYTE BeingDebugged;
BYTE Reserved2[1];
PVOID Reserved3[2];
PPEB_LDR_DATA Ldr;
PRTL_USER_PROCESS_PARAMETERS ProcessParameters,
RYTF Resarverddl1841:

Table 16-1: Manually Checking the BeingDebugged Flag

mov method push/pop method
mov eax, dword ptr fs:[30h] push dword ptr fs:[30h]

Practical Malware Analysis Chapter 16, Table 16-1

ProcessHeap Flag

* There is an undocumented typedef struct PEB {

location within Reserved4 called BYTE Reserved1[2];
PrOCESSHeap BYTE BeingDebugged;
) BYTE Reserved2[1];
* Located at 0x18 in the PEB PVOID Reserved3[2];
PPEB_LDR_DATA Ldr;
StrUCture' PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
. . BYTE Reserved4[1le4];

* Contains field to tell the kernel | OTD Reserveds[52];
whether the heap was created in PPS_POST_PROCESS_INIT_ROUTINE PostProcessInitRoutine;
a debugger, these are called BYTE Reserved6[128];

. PVOID Reserved7[1];
ForceFlags and Flags fields. ULONG sessionId:

} PEB, *PPEB;

MSDN Documentation

ProcessHeap Flag

e XP — offset for ForceFlags is
0x10, offset for Flags is OxOC.

* Win 7 32 bit offset for ForceFlags
is Ox44, offset for Flags is 0x40

* Flags is almost always equal to
ForceFlags, but it is stored ORed
with 2.

* No, | don’t know why...

Practical Malware Analysis Chapter 16, Listing 16-3

mov eax, large fs:30h

mov eax, dword ptr [eax+18h]
cmp dword ptr ds:[eax+10h], 0
jne DebuggerDetected

Listing 16-3: Manual ProcessHeap flag check

NTGlobalFlag

* The heap is built differently when a process is
run under a debugger — there’s a location that
stores the information that the system uses to
determine how to create heap structures.

* This information is stored in the PEB at offset
0x68 as a series of flags. The following flags are
set when a process is created by a debugger:

e FLG_HEAP_ENABLE_TAIL_CHECK
e FLG_HEAP_ENABLE_FREE_CHECK
* FLG_HEAP_VALIDATE_PARAMETERS

 When those flags are set, the value of the byte
Is 0x70

Practical Malware Analysis Chapter 16, Table 16-4

mov eax, large fs:30h
cmp dword ptr ds:[eax+68h], 70h
jz DebuggerDetected

Listing 16-4: NTGlobalFlag check

Demo

Practical Malware Analysis Lab 16-1

Via Checking for System Residue

* Debuggers leave evidence of themselves on the system — malware
can simply try to determine if Olly or Windbg exist on the system, and
consider that enough to bail.

* Traverse the file system, traverse the process list, look at registry keys, etc.

Via Looking for Debugger Behavior

* Breakpoints and single stepping modify the code — anti debugging
techniques can look for this modification.

3 Methods:

* INT Scanning
* Checksum Checks
* Timing Checks

INT Scanning

* Anyone remember how breakpoints work?

* INT 3 is a software interrupt. To implement a breakpoint, a debugger
temporarily replaces an instruction in a running program with INT 3. When
the INT 3 is hit, the debug exception handler is called.

* The opcode for INT 3 is OxCC

* |In reality, any INT <immediate> instruction can set an interrupt. That makes a
2 byte opcode OxCD <value>. Used less frequently.

* A process can scan its own code for an INT 3 modification, kill itself if
it finds it.

INT Scanning

call $+5

pop edi

sub edi, 5

mov ecx, 400h

mov eax, OCCh

repne scasb

jz DebuggerDetected

Listing 16-6: Scanning code for breakpoints

Practical Malware Analysis Chapter 16, Listing 16-6

Code Checksums

* Calculates a checksum on a section of code, compares it against its
known good value.

* Look for malware to iterate over its own instructions, then compare
some value to a constant value.

Timing Checks

* Take a time stamp, do some things (math is good), take another
timestamp. If outside a certain threshold, you’re being debugged.

* Take a timestamp, raise an exception, take another timestamp — if
outside a certain threshold, you’re being debugged.

Timing Checks - rdtsc

e rdtsc instruction — gives the ticks
since the last reboot. 64 bit
value placed in EDX:EAX.

* How is the code to the right
using rdtsc?

Practical Malware Analysis Chapter 16, Table 16-7

rdtsc

X0Y ecx, ecx

add ecx, eax

rdtsc

sub eax, ecx

cmp eax, OxFFF @

jb NoDebuggerDetected
rdtsc

push eax ©

ret

Listing 16-7: The rdtsc timing technique

QueryPerformanceCounter and GetTickCount

* They do roughly the same thing and are used in the same way as
rdtsc.

* How do you deal with these?

* Place a breakpoint after the check, run through them quickly
* Doesn’t always work — why?

e Patch the compare or the jump after the compare (my favorite)

Interfering with Debugger Functionality

* TLS Callbacks
* Exceptions
* Interrupt Insertion

TLS Callbacks

 When debugging in Ida, | often use the checkbox “Break at process

entry point”. Olly does this by default. How does the debugger know
where the entry point is?

* Entry point is defined in the PE Header

* TLS — A windows storage class that allows each thread to maintain a
different value for a single variable.

* When a program uses TLS, you’ll typically see a .tls section in the PE
header.

* TLS callback functions for initializing and terminating TLS objects run
BEFORE the start of a program.

TLS Callbacks

* In Ida, after the program has loaded press ctrl+E — you will see all the
entry points to a program, including the TLS callback functions.

* [n Olly, Options > Debugging Options = Events, set “system
breakpoint” as the place of the first pause.

* |'ve never seen this outside of class/bookwork, but good to be aware
of.

Exceptions

* Remember how breakpoints work?
* Interrupt = Exception = Control given to debugger?

* By default, debuggers are at the top of the list for exceptions. When a
process raises an exception, it doesn’t go directly to its own exception
handler, it goes to the debugger for handling.

* When working with malware, you can change this default behavior
and pass exceptions to the program.

* In Olly, Options = Debugging Options = Exceptions

Inserting Interrupts — INT 3, INT 2D, OxF1

* Sprinkle OxCC opcodes into the
code, drive the analyst crazy

* Remember there’s a 2 byte version
of this, OxCDO3

* Wreaks havoc in WinDbg, Olly is fine,
not sure about Ida

* INT 2D — breakpoint for the kernel
debugger

 OxF1 —This is the In-Circuit
Emulator(ICE) breakpoint.

* An undocumented Intel instruction.
* Don’t single step over this

Practical Malware Analysis Chapter 16, Table 16-9

push offset continue
push dword fs:[0]
mov fs:[0], esp

int 3

//being debugged
continue:

//not being debugged

Listing 16-9: INT 3 technique

Olly Plugin: HideDebugger

* Available through OpenRCE.org
* Covers the basics — Not exceptionally useful with advanced actors.

Hide Debugger [Options] @
Protect against:
* OllyDbg IsDebuggerPresent
File View Debug Options Window Help [Findwindow/EnumWindows
Blux]| wn] i 1 Bookmarks v ¢ 7|K[B|R|..[8] E [] TerminateProcess
C'PU 2 Command line ’ h =1 e O
3 Hide Debugger r Options C
4 Memory Manage 3 About [] Unhandled exception tricks
5 OllyDump » ["] OutputDebugString exploit
| el
[] Detach
’T' Close

Demo

Practical Malware Analysis Lab 16-3

Packers and Unpacking

Review

 What does a packer do?
* Why are packers used?
* Is packing an indication of malware?

THEMIDA U

Review

* What are some indications of packing?

ﬁWarning

/. Theimports segment seems to be destroyed. This MAY mean that
the file was packed or otherwise meodified in order to make it
more difficult to analyze. If you want to see the imports
segment in the original form, please reload it with the
'make imports section’ checkbox cleared.

[] Don't display this message again

\ IDA View-A (x| = Hex View-1 (x|
Address Length Type String
3@ text:0040F118 0000000D C KERNEL32.DLL
E text:0040F125 0000000D C ADVAPI32.DLL
\E text:0040F132 0000000D C NETAPI32.DLL
\ IDA View-A x| = Hex View-1] Structures
Address Ordinal Name Library
.= 0040F09C LoadLlibraryA KERNEL32
[¥%] 0040F0AO GetProcAddress KERNEL32
[¥Z] 0040F0A4 VirtualProtect KERNEL32
[¥£] 0040F0A8 VirtualAlloc KERNEL32
[¥Z] 0040F0AC VirtualFree KERNEL32
[¥Z] 0040FOBO ExitProcess KERNEL32
[¥Z] 0040FOB8 LookupPrivilegeValueA ADVAPI32
#z| 0040F0CO Netbios NETAPI32

Name Virtual Size Virtual A... | Raw Size
Byte[8] Dword Dword Dword
.code 0000EOOO 00001000 00000000

text 00006000 0000FO00 00005686

.rsrc 000009Ce 00015000 00000000

Anatomy of a Packer — Unpacking Stub

* Performs 3 steps:
1. Unpacks the original program into memory
2. Resolves all of the imports of that original program
3. Transfers execution to the original entry point (OEP)

* Note that the entry point to a packed program is the entry to the STUB, not the
“original entry point” of the program. Recovering the OEP is a major step in
unpacking packed samples.

Anatomy of a Packer — Loading the Executable

 The PE Header of a packed executable dictates the amount of space
that each section of the soon-to-be unpacked program will need.

* The loader loads the unpacking stub with it's seemingly excessive
amount of space. The unpacking stub unpacks the original executable
into the correct sections of the allocated space.

* What indicators of packing result from this methodology?

Anatomy of a Packer — Resolving Imports

* How are imports usually resolved? Why doesn’t that work for this
situation?

* Resolving imports is the job of the windows loader. The loader resolved the
imports for the packed version of the program, but it can’t see the imports for
the packed pieces to know what to do.

Anatomy of a Packer — Resolving Imports

e Method 1 — Rebuild the IAT.

 Most common, mentioned on day 1
* The stub imports LoadLibrary and GetProcAddress

* After unpacking original program, reads import information. Then calls
LoadLibrary for each library and loads the necessary DLLs into memory. Lastly,
calls GetProcAddress for each function

Anatomy of a Packer — Resolving Imports

* Method 2 — Preserve the Original IAT

* Simplest method — do not have to rebuild anything, the loader handles
everything.

* Reveals all of the imports to static analysis

* Poor compression

* |’'ve never seen this in the wild

Anatomy of a Packer — Resolving Imports

* Method 3 — Have the loader load the libraries, find the function
addresses manually.

* Stub imports one function from each required DLL, then rebuilds the table by
calling GetProcAddress for the required functions.

* What are the pros and cons of this method?
* Simpler to write than method 1, harder than method 2

e Still reveals all of the libraries imported, but reveals less functionality than
method 2.

Anatomy of a Packer — Resolving Imports

* Method 4 — Remove ALL imports
e Zero imports, including LoadLibrary and GetProcAddress.

e Stub must find those similarly to how shellcode does. If you’re interested,
reference chapter 19.

* Be forewarned, it’s pretty convoluted.

Anatomy of a Packer — The Tail Jump

* Once the unpacking stub has done its work, it transfers control to the
entry point of the now unpacked program. This is the original entry
point, or OEP.

* This called a tail jump, presumably because of how it looks in graph
view in Ida.

* Typically this is done with a simple jump instruction, but malware
authors may try to obscure it using some other instruction that can
transfer control, such as ret or call.

* May also call an OS function such as NtContinue to transfer control

Anatomy of a Packer — The Tail Ju

* If we can identify the transfer of
control, we can identify the OEP.
If we can identify the OEP, we're
significantly closer to an
unpacked executable.

I

L

BFW

ki

mp

L

malliy

pusﬁ esi
ppppppp

push esi

pppppp
pop esi

Unpacking - Automated

e Best case scenario? Someone’s already written an unpacker. If so, use it!
But use it with caution — you’re running somebody else's code. | suggest a
VM.

* Most common example of this is UPX

e Second best case? Your program unpacks in an automated dynamic
unpacker.
* Runs the program to unpack it. Depends on identifying the OEP.

* If can’t identify OEP, unpacking fails. This occurs so frequently | don’t use them in my
regular analysis flow.

e The word DYNAMIC means the code executes. Use a VM.
* Ex: PackerAttacker

Unpacking - Manual

e Two methods:

1. Write an unpacker

a) Study the unpacking stub, write something to do what it does (minus the anti-RE
stuff)

b) Makes the rest of the community happy if you make it public

c) I've never done this. IMO, this is a research problem. There is no time for it in
operations. We will not do this in class.

2. Manipulate the stub into unpacking the packed material, then dump the
unpacked program from memory.

1. Easier, typically takes significantly less time
2. A few standard methods that work *most™ of the time

Manual Unpacking - Olly

* When it comes to unpacking, or anything having to do with memory,
Olly is vastly superior to Ida.

* You will need the OllyDump plugin

* Whenever possible, use HARDWARE BREAKPOINTS when attempting
to unpack. Why?

Methods of Manual Unpacking

Tail Jumps

* We talked about Tail Jumps and why they occur in packed
executables, but how does that knowledge help us unpack?

* |dentify the OEP, use OllyDump to dump from there.

Demo

OllyDump - Find OEP By Section Hop

1. “Find OEP by Section Hop”

2. Place hardware breakpoint at location indicated
3. Run program to breakpoint

4. Use OllyDump to dump Memory

* OllyDbg - fc_sp.exe

File View Debug Options Window Help

BlWx| win| %1 1 pookmarks » Hlcl/|k[B|R|.|s| i|H]?]

: 2 Command line v |
CPU - main thr
L

5o 1 3000 Ve 3 OllyDump 4 Dump debugged process =

: 5
oadidon; | et B BVTE PTR 0: CERRT, AL =t

¥ . . .
66413667 | vE8_B@ LOOPONE SHORT fc_sp. Bidi 3860 Find OEP by Section Hop (Trace into) e
e |t

4 ; : . . :
0413011 @aLe AOD EYTE PIR DS:CEAXI.OL Find OEP by Section Hop (Trace over) Dagt
G0413013| BB ADO BYTE PTR DS:[EAX1. AL o
G0413015| 0620 ADD BYTE PTR DS:[EAX1, AH
80413017 | B188 ADD DWORD PTR DS:[EAX],EAX A B4 1
00415615 BE4E @1 AOD EWTE FTR DS:LEAX+13,AL puons ES
B041301C| p@23 ADD BYTE PTR DS:[ECXI,CA =
G041301E| A9 BBPESFSS | TEST EAX,SSEFEGED =
B0413623| B9ES HOU EEF, ESP About 5
60413025 B1EC 18808008 | SUEB ESP, 15 B
80413028 E97D0 ES MOU DWORD PTR SS:[EBP-121,EDI - Go
bo41302E| EG FORQRR@D | CALL fo_sp.B@41313m | X
B0413053| B94E FC HOU DWORD PTR 55: [EBP-41,EAR RE

OllyDump - Find OEP By Section Hop

* How does it work?

» Relies on the fact that section hops (jumping from one section of a PE to
another), are rare in executables that are not packed.

* Single steps through the program, checking each instruction to see if it
executes a section hop.

* When a section hop is identified, you have found the OEP.
* How might malware be written to cause this not to work?

Demo

pusha and popa

* pusha pushes all the general purpose registers onto the stack in a
specified order. It is used to save the state of the registers.

* popa pops all the general purpose registers off the stack in the
reverse order of pusha. This is used to restore the state of the

registers at some point after a pusha.

* Why would a packer use these instructions?

* The unpacking stub will frequently start with a pusha instruction, then, when
the unpacking is finished, issue a popa.

pusha and popa

* To leverage these instructions for unpacking:
e Put a breakpoint on the pusha instruction
* Debug

Look at EIP at the breakpoint — set a hardware breakpoint to break on access
to that location

Run the program, you’ll break either on or just before the OEP
* Dump

Assumptions of the Above Methods

* The stub is allowing you the privilege of running in a VM
* The stub is not killing itself when it sees the debugger

* The stub is not placing section hops, tail jumps, and random
encoding/decoding algorithms all over the place.

Demo

Labwork Tonight

e Labs 15-3, 16-2, and 18-4

* Only 2 afternoons left to work on Obfuscated Malware Lab — be sure
to give it some attention this afternoon.

Sources/Questions/Comments/Corrections

* As usual, much credit to Andrew Honig and Michael Sikorski’s
Practical Malware Analysis.

* Note that animations (mostly highlighting on click) are extremely
useful when teaching from this slide deck. Email me for slide originals.

e Questions/Comments/Corrections to Lauren Pearce —
Laurenp@lanl.gov

