
LA-UR-18-25476
Approved for public release; distribution is unlimited.

Title: Anti-Reverse-Engineering: Malware Analysis Day 6

Author(s): Pearce, Lauren

Intended for: Presentation for two week course on malware analysis

Issued: 2018-06-21



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



Anti-Reverse-Engineering
Malware Analysis Day 6

laurenp@lanl.gov



Primary Goal of Anti-RE Techniques?

• Delay or prevent the analysis of malicious code by:
• Increasing the skill level required by the malware analyst

• Increasing the time it takes a malware analyst to extract indicators



Anti-Disassembly



How does a Disassembler Work?

• Let’s think about the problem of disassembly for a moment
• Sequences of bytes can have multiple possible representations in assembly. 

It’s up to the disassembler to determine the correct one. Not a trivial 
problem.

• Anti-Disassembly techniques take advantage of the assumptions that 
disassemblers make and can cause even advanced disassemblers to 
present inaccurate code.



Linear Disassembly

• Iterate over a block of code disassembling one instruction at a time 
without deviating.

• Uses the size of the disassembled instruction to decide which byte to 
disassemble next – no regard to flow-control instructions

• Simple and easy to understand, BUT
• Error prone, even in non malicious binaries

• Will disassemble too much code – code section of binaries inevitable contains 
data that isn’t code.

• Easy to defeat because they cannot distinguish code from data



Linear Assembly: Example

Practical Malware Analysis Chapter 15, Page 331 



Flow-Oriented Disassembly

• Doesn’t blindly iterate over the 
buffer assuming everything is 
code. Examines each instruction 
and creates a list of locations to 
disassemble.

Practical Malware Analysis Chapter 15, Page 332 



Flow-Oriented Disassembly: Conditional 
Branches
• The flow oriented disassembler has a choice of two places to 

disassemble – the true or the false branch.

• In compiler generated code, there would be no difference in the 
resultant code if true or false was processed first – not so much for 
handwritten code.

• When there is a conflict, most compilers will take the false branch of 
the jump. Similarly, most compilers will take the bytes after a call 
rather than the call location. 



Defeating Flow Oriented 
Disassemblers



Call Pop

Practical Malware Analysis Chapter 15, Pages 333-334 



Fixing Ida’s Mistakes

• Sometimes you’ll have to do some manual cleanup to tell Ida how to 
disassemble some instructions. You’ll use the shortcuts C and D
• Place your cursor over the instruction that was translated incorrectly

• Press C to turn it into code

• Press D to turn it into data

Practical Malware Analysis Chapter 15, Page 334 



Jump Instructions with the Same Target

• Two back to back conditional jumps that both point to the same place 
and for which one or the other must be taken.
• jz loc_512 followed by jnz loc_512

• Technically it’s an unconditional jump

• Why is this a problem?
• Despite it being an unconditional jump, the disassembler only looks at a 

single instruction at a time and thus doesn’t recognize it as such. It continues 
disassembling the false branch even though it can never be executed.



Jump Instructions with the Same Target

Practical Malware Analysis Chapter 15, Page 335



Jump Instructions with the Same Target

Practical Malware Analysis Chapter 15, Page 336



Jump with a Constant Condition

• A conditional jump that will always be taken.
• xor eax eax followed by jz

• Why could this create a problem for a disassembler?
• Even though this is essentially an unconditional jump, the disassembler can’t 

see that. The disassembler views this as a conditional jump and so continues 
disassembling the false branch even though it can never be executed. This 
leads to conflicting instructions, and the disassembler defaults to the “false” 
branch – the one that’s technically impossible.



Jump with a Constant Condition

Rogue Byte

Practical Malware Analysis Chapter 15, Page 336 



Demo
Practical Malware Analysis Lab 15-1



Impossible Disassembly

• With the last issues, we could use Ida to fix the code and make it look 
how it should. There are some anti-disassembly techniques that 
prevent us from making the code look as it should.

• In the previous examples, the rogue byte could be completely 
disregarded – it was extraneous and there to get in our way.

• But what if that byte was necessary? A single byte that is part of two 
instructions,.
• Possible on the processor level, but there’s no disassembler that knows how 

to identify and represent this.



Impossible Disassembly

Practical Malware Analysis Chapter 15, Figure 15-4 



Impossible Disassembly

FA

-6

Practical Malware Analysis Chapter 15, Figure 15-5 



Obscuring Control Flow



Function Pointers

Practical Malware Analysis Chapter 15, Page 341 



Return Pointer Abuse

• We’ve looked at abuses of call and jmp, but ret also has an impact on 
the control flow of a program. 

• What two things happen when the call instruction is issued?
• Push

• Jump

• What two things happen when the ret instruction is issued?
• Pop

• Jump

• Ret is logically used as the inverse of call, but nothing prevents it from 
being used wherever you want to use it.



NOP
Alt+P –set function 
end to 4011D6 

Practical Malware Analysis Chapter 15, Page 342-343 



SEH Abuse

• Remember when I said Structured Exception Handling would come up 
again later?

• SEH Chain – List of functions that are designed to handle exceptions 
in a given thread. Each function in the chain either handles the 
exception, or passes it to the next link.
• In this context, what is an unhandled exception?



Traversing Structures to find the SEH Chain

• FS Segment Register  Thread 
Environment Block (TEB)  Thread 
Information Block (TIB) 
• The first element of the TIB is a 

pointer to the SEH Chain.

• The SEH chain itself is a linked list 
of 8 byte data structures, each of 
which is called an 
EXCEPTION_REGISTRATION record.
• Conceptually, operates as a stack. The 

first record entered is the last record 
accessed.



Adding a Record to the SEH Chain

• If you can add a record to the SEH chain, you can then manipulate 
control flow in a way that is difficult for an analyst to follow.

• The structure for each record contains 2 DWORDs – easy to do with 2 
pushes.
• Stack grows UP – first push is the pointer to the handler function, second 

push is pointer to the next record.

• Pointer to the handler function is easy, but where do we find the 
pointer to the next record?
• The next record is the one that is currently on top. It can be accessed “fs:[0]”

Practical Malware Analysis Chapter 15, Page 345 



Practical Malware Analysis Chapter 15, Page 346 



Breaking Stack-Frame Analysis

• Disassemblers like Ida can analyze the instructions contained in a 
function and deduce the construction of the stack-frame. This allows 
them to label parameters, local variables, etc. 
• This is not an exact science and can be broken by a determined malware 

author 





But Wait! There’s MORE!

• We’ve talked about a few specific techniques, but there are many 
more. 

• These techniques have demonstrated how a decompiler can be 
tricked, and all anti-reverse engineering techniques work by tricking 
the decompiler. 

• Hopefully you will now be able to spot the trickery even when the 
actual technique is different.



Demo
Practical Malware Analysis Lab 15-2, How to NOP a byte



Anti-Debugging



What is Anti-Debugging?

• Techniques to 
• A) Detect that a program is being debugged

• B) Fail or otherwise alter behavior if being debugged

• We focus on circumventing detection, because that can save us from 
part B. BUT, it’s important to keep in mind that a program that detects 
a debugger is not necessarily anti-debugging or malicious.



Broad Methods

1. Use the Windows API to detect the debugger

2. Manually checking OS data structures

3. Identifying Debugger Behavior

4. Interfering with the debugger functionality



Windows API

• IsDebuggerPresent – The most obvious of them all. Checks the PEB for the 
field IsDebugged.

• CheckRemoteDebuggerPresent – Behaves just like IsDebuggerPresent, but 
with the added capability of checking if a different process is being 
debugged.

• NtQueryInformationProcess – Native API function that retrieves 
information about a process. First parameter  is a handle to the target 
process, the second is a value specifying what information it wants 
returned. Value 0x7 will return debugging information.

• OutputDebugString followed by GetLastError – OutputDebugString is a call 
that only works in the presence of a debugger. If called when not being 
debugged, it will error out.



Manually Checking Structures

• The API calls are just a little obvious. Malware authors may try to be a 
little more stealthy by manually checking the same structures the API 
calls rely on.



BeingDebugged Flag

Practical Malware Analysis Chapter 16, Table 16-1



ProcessHeap Flag

• There is an undocumented 
location within Reserved4 called 
ProcessHeap.

• Located at 0x18 in the PEB 
structure.

• Contains field to tell the kernel 
whether the heap was created in 
a debugger, these are called 
ForceFlags and Flags fields.

MSDN Documentation



ProcessHeap Flag

• XP – offset for ForceFlags is 
0x10, offset for Flags is 0x0C.

• Win 7 32 bit offset for ForceFlags
is 0x44, offset for Flags is 0x40

• Flags is almost always equal to 
ForceFlags, but it is stored ORed
with 2. 
• No, I don’t know why…

Practical Malware Analysis Chapter 16, Listing 16-3



NTGlobalFlag

• The heap is built differently when a process is 
run under a debugger – there’s a location that 
stores the information that the system uses to 
determine how to create heap structures.

• This information is stored in the PEB at offset 
0x68 as a series of flags. The following flags are 
set when a process is created by a debugger:
• FLG_HEAP_ENABLE_TAIL_CHECK
• FLG_HEAP_ENABLE_FREE_CHECK
• FLG_HEAP_VALIDATE_PARAMETERS

• When those flags are set, the value of the byte 
is 0x70

Practical Malware Analysis Chapter 16, Table 16-4



Demo
Practical Malware Analysis Lab 16-1



Via Checking for System Residue

• Debuggers leave evidence of themselves on the system – malware 
can simply try to determine if Olly or Windbg exist on the system, and 
consider that enough to bail.
• Traverse the file system, traverse the process list, look at registry keys, etc.



Via Looking for Debugger Behavior

• Breakpoints and single stepping modify the code – anti debugging 
techniques can look for this modification.

• 3 Methods:
• INT Scanning

• Checksum Checks

• Timing Checks



INT Scanning

• Anyone remember how breakpoints work?
• INT 3 is a software interrupt. To implement a breakpoint, a debugger 

temporarily replaces an instruction in a running program with INT 3. When 
the INT 3 is hit, the debug exception handler is called.

• The opcode for INT 3 is 0xCC

• In reality, any INT <immediate> instruction can set an interrupt. That makes a 
2 byte opcode 0xCD <value>. Used less frequently.

• A process can scan its own code for an INT 3 modification, kill itself if 
it finds it.



INT Scanning

Practical Malware Analysis Chapter 16, Listing 16-6



Code Checksums

• Calculates a checksum on a section of code, compares it against its 
known good value.

• Look for malware to iterate over its own instructions, then compare 
some value to a constant value.



Timing Checks

• Take a time stamp, do some things (math is good), take another 
timestamp. If outside a certain threshold, you’re being debugged.

• Take a timestamp, raise an exception, take another timestamp – if 
outside a certain threshold, you’re being debugged.



Timing Checks - rdtsc

• rdtsc instruction – gives the ticks 
since the last reboot. 64 bit 
value placed in EDX:EAX.

• How is the code to the right 
using rdtsc?

Practical Malware Analysis Chapter 16, Table 16-7



QueryPerformanceCounter and GetTickCount

• They do roughly the same thing and are used in the same way as 
rdtsc. 

• How do you deal with these?
• Place a breakpoint after the check, run through them quickly

• Doesn’t always work – why?

• Patch the compare or the jump after the compare (my favorite)



Interfering with Debugger Functionality

• TLS Callbacks

• Exceptions

• Interrupt Insertion



TLS Callbacks

• When debugging in Ida, I often use the checkbox “Break at process 
entry point”. Olly does this by default. How does the debugger know 
where the entry point is?
• Entry point is defined in the PE Header

• TLS – A windows storage class that allows each thread to maintain a 
different value for a single variable. 

• When a program uses TLS, you’ll typically see a .tls section in the PE 
header.

• TLS callback functions for initializing and terminating TLS objects run 
BEFORE the start of a program.



TLS Callbacks

• In Ida, after the program has loaded press ctrl+E – you will see all the 
entry points to a program, including the TLS callback functions.

• In Olly, Options  Debugging Options  Events, set “system 
breakpoint” as the place of the first pause.

• I’ve never seen this outside of class/bookwork, but good to be aware 
of.



Exceptions

• Remember how breakpoints work? 
• Interrupt  Exception  Control given to debugger?

• By default, debuggers are at the top of the list for exceptions. When a 
process raises an exception, it doesn’t go directly to its own exception 
handler, it goes to the debugger for handling.

• When working with malware, you can change this default behavior 
and pass exceptions to the program. 
• In Olly, Options  Debugging Options  Exceptions



Inserting Interrupts – INT 3, INT 2D, 0xF1

• Sprinkle 0xCC opcodes into the 
code, drive the analyst crazy

• Remember there’s a 2 byte version 
of this, 0xCD03
• Wreaks havoc in WinDbg, Olly is fine, 

not sure about Ida

• INT 2D – breakpoint for the kernel 
debugger

• 0xF1 – This is the In-Circuit 
Emulator(ICE) breakpoint.
• An undocumented Intel instruction.
• Don’t single step over this

Practical Malware Analysis Chapter 16, Table 16-9



Olly Plugin: HideDebugger

• Available through OpenRCE.org

• Covers the basics – Not exceptionally useful with advanced actors.



Demo
Practical Malware Analysis Lab 16-3



Packers and Unpacking



Review

• What does a packer do?

• Why are packers used?

• Is packing an indication of malware?



Review

• What are some indications of packing?



Anatomy of a Packer – Unpacking Stub

• Performs 3 steps:
1. Unpacks the original program into memory

2. Resolves all of the imports of that original program

3. Transfers execution to the original entry point (OEP)

• Note that the entry point to a packed program is the entry to the STUB, not the 
“original entry point” of the program. Recovering the OEP is a major step in 
unpacking packed samples.



Anatomy of a Packer – Loading the Executable

• The PE Header of a packed executable dictates the amount of space 
that each section of the soon-to-be unpacked program will need. 

• The loader loads the unpacking stub with it’s seemingly excessive 
amount of space. The unpacking stub unpacks the original executable 
into the correct sections of the allocated space.

• What indicators of packing result from this methodology?



Anatomy of a Packer – Resolving Imports

• How are imports usually resolved? Why doesn’t that work for this 
situation?

• Resolving imports is the job of the windows loader. The loader resolved the 
imports for the packed version of the program, but it can’t see the imports for 
the packed pieces to know what to do.



Anatomy of a Packer – Resolving Imports

• Method 1 – Rebuild the IAT. 
• Most common, mentioned on day 1

• The stub imports LoadLibrary and GetProcAddress

• After unpacking original program, reads import information. Then calls 
LoadLibrary for each library and loads the necessary DLLs into memory. Lastly, 
calls GetProcAddress for each function



Anatomy of a Packer – Resolving Imports

• Method 2 – Preserve the Original IAT
• Simplest method – do not have to rebuild anything, the loader handles 

everything.

• Reveals all of the imports to static analysis

• Poor compression

• I’ve never seen this in the wild



Anatomy of a Packer – Resolving Imports

• Method 3 – Have the loader load the libraries, find the function 
addresses manually. 
• Stub imports one function from each required DLL, then rebuilds the table by 

calling GetProcAddress for the required functions.

• What are the pros and cons of this method?
• Simpler to write than method 1, harder than method 2

• Still reveals all of the libraries imported, but reveals less functionality than 
method 2.



Anatomy of a Packer – Resolving Imports

• Method 4 – Remove ALL imports
• Zero imports, including LoadLibrary and GetProcAddress.

• Stub must find those similarly to how shellcode does. If you’re interested, 
reference chapter 19. 
• Be forewarned, it’s pretty convoluted.



Anatomy of a Packer – The Tail Jump

• Once the unpacking stub has done its work, it transfers control to the 
entry point of the now unpacked program. This is the original entry 
point, or OEP. 

• This called a tail jump, presumably because of how it looks in graph 
view in Ida.

• Typically this is done with a simple jump instruction, but malware 
authors may try to obscure it using some other instruction that can 
transfer control, such as ret or call.

• May also call an OS function such as NtContinue to transfer control



Anatomy of a Packer – The Tail Jump

• If we can identify the transfer of 
control, we can identify the OEP. 
If we can identify the OEP, we’re 
significantly closer to an 
unpacked executable. 



Unpacking - Automated

• Best case scenario? Someone’s already written an unpacker. If so, use it! 
But use it with caution – you’re running somebody else's code. I suggest a 
VM.
• Most common example of this is UPX

• Second best case? Your program unpacks in an automated dynamic 
unpacker. 
• Runs the program to unpack it. Depends on identifying the OEP.
• If can’t identify OEP, unpacking fails. This occurs so frequently I don’t use them in my 

regular analysis flow.
• The word DYNAMIC means the code executes. Use a VM.
• Ex: PackerAttacker



Unpacking - Manual

• Two methods:
1. Write an unpacker

a) Study the unpacking stub, write something to do what it does (minus the anti-RE 
stuff)

b) Makes the rest of the community happy if you make it public

c) I’ve never done this. IMO, this is a research problem. There is no time for it in 
operations. We will not do this in class.

2. Manipulate the stub into unpacking the packed material, then dump the 
unpacked program from memory.

1. Easier, typically takes significantly less time

2. A few standard methods that work *most* of the time



Manual Unpacking - Olly

• When it comes to unpacking, or anything having to do with memory, 
Olly is vastly superior to Ida.

• You will need the OllyDump plugin 

• Whenever possible, use HARDWARE BREAKPOINTS when attempting 
to unpack. Why?



Methods of Manual Unpacking



Tail Jumps

• We talked about Tail Jumps and why they occur in packed 
executables, but how does that knowledge help us unpack?
• Identify the OEP, use OllyDump to dump from there.



Demo
Lab 18-1



OllyDump - Find OEP By Section Hop

1. “Find OEP by Section Hop”

2. Place hardware breakpoint at location indicated

3. Run program to breakpoint

4. Use OllyDump to dump Memory



OllyDump - Find OEP By Section Hop

• How does it work?
• Relies on the fact that section hops (jumping from one section of a PE to 

another), are rare in executables that are not packed.

• Single steps through the program, checking each instruction to see if it 
executes a section hop. 

• When a section hop is identified, you have found the OEP.

• How might malware be written to cause this not to work?



Demo
Lab 18-2



pusha and popa

• pusha pushes all the general purpose registers onto the stack in a 
specified order. It is used to save the state of the registers.

• popa pops all the general purpose registers off the stack in the 
reverse order of pusha. This is used to restore the state of the 
registers at some point after a pusha. 

• Why would a packer use these instructions?
• The unpacking stub will frequently start with a pusha instruction, then, when 

the unpacking is finished, issue a popa. 



pusha and popa

• To leverage these instructions for unpacking:
• Put a breakpoint on the pusha instruction

• Debug

• Look at EIP at the breakpoint – set a hardware breakpoint to break on access 
to that location

• Run the program, you’ll break either on or just before the OEP

• Dump



Assumptions of the Above Methods

• The stub is allowing you the privilege of running in a VM

• The stub is not killing itself when it sees the debugger

• The stub is not placing section hops, tail jumps, and random 
encoding/decoding algorithms all over the place.



Demo
18-3



Labwork Tonight

• Labs 15-3, 16-2, and 18-4

• Only 2 afternoons left to work on Obfuscated Malware Lab – be sure 
to give it some attention this afternoon.



Sources/Questions/Comments/Corrections

• As usual, much credit to Andrew Honig and Michael Sikorski’s 
Practical Malware Analysis.

• Note that animations (mostly highlighting on click) are extremely 
useful when teaching from this slide deck. Email me for slide originals.

• Questions/Comments/Corrections to Lauren Pearce –
Laurenp@lanl.gov


