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US DOE Co-Optimization of Fuels & Engines 
(Co-Optima): increase efficiency, diversify fuels
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Primary technical challenges of Co-Optima:
Target fuel properties? How to make them?
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Identifying key fuel 
properties that impact 
efficiency for advanced 
spark ignition and 
compression ignition 
combustion approaches

Identifying fuel formulations 
that provide target ranges 
of key fuel properties when 
blended with petroleum 
blendstocks



Co-Optima research is structured around 
two guiding hypotheses on engines and fuels
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Central Engine Hypothesis 
There are engine architectures and strategies 
that provide higher thermodynamic efficiencies 
than are available from modern internal 
combustion engines; new fuels are required to 
maximize efficiency and operability across a 
wide speed / load range

Central Fuel Hypothesis
If we identify target values for the critical fuel 
properties that maximize efficiency and 
emissions performance for a given engine 
architecture, then fuels that have properties 
with those values (regardless of chemical 
composition) will provide comparable 
performance



Co-Optima engine & fuel research proceeds 
along two parallel application/mode tracks
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Light-Duty Medium and 
Heavy-Duty

Boosted SI Mixing
Controlled

Kinetically
Controlled

Multi-mode
SI / ACI

Near-term Near-termMid-term Longer-term



Three-tiered approach to screen, measure, 
analyze, and evaluate candidate blendstocks
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Tier 3
8 representative* 

blendstocks

chemical 
families5

Refine property measurements
Develop improved blending 
models
Produce/procure blendstocks in 
quantity for testing and validate 
engine and fuel economy 
performance
Characterize/compare benefits 
and identify challenges for 
commercial introduction

*These blendstocks constitute a representative subset of a broader range of molecules/mixtures 
that meet the Tier 3 criteria



7* Available at: https://fuelsdb.nrel.gov/fmi/webd#FuelEngineCoOptimization

Properties of many Tier 1 blendstock candidates 
are catalogued in a publicly accessible database*



41/470 candidate blendstocks passed through 
Tier 1 screening for boosted SI engines
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Alcohols (9)
1 Methanol
2 Ethanol
3 1-Propanol
4 Isopropanol
5 1-Butanol
6 2-Butanol
7 Isobutanol
8 2-Methylbutan-1-ol
9 2-Pentanol

Ethers
10 Anisole

Esters (13)
11 Methyl acetate
12 Methyl butanoate
13 Methyl pentanoate
14 Methyl isobutanoate
15 Methyl-2-methylbutanoate

Esters (13)
16 Ethyl acetate
17 Ethyl butanoate
18 Ethyl isobutanoate
19 Isopropyl acetate
20 Butyl acetate
21 2-Methylpropyl acetate
22 3-Methylpropyl acetate
23 mixed esters

Ketones (9)
24 2-Butanone
25 2-Pentanone
26 3-Pentanone
27 Cyclopentanone
28 3-Hexanone
29 4-Methyl-2-Pentanone
30 2,4-Dimethyl-3-Pentanone
31 3-Methyl-2-butanone
32 Ketone mixture

Multicomponent mixtures (6)
36 Methanol-to-gasoline 
37 Ethanol-to-gasoline 
38 Bioreformate via multistage 

pyrolysis 
39 Bioreformate via catalytic 

conversion of sugar 
40 Mixed aromatics via catalytic 

fast pyrolysis
41 Aromatics and olefins via 

pyrolysis-derived sugars 

Furans
33 2,5-Dimethylfuran/2-methylfuran

Branched alkanes
34 2,2,3-Trimethylbutane

Alkenes
35 Diisobutylene

• Tier 1 screening applies criteria based on boiling point, melting point, 
solubility, corrosion, toxicity, fuel handling safety, biodegradation, and 
autoignition characteristics (e.g., RON for boosted SI)



The “merit function” is an algebraic expression 
for determining what fuel properties engines want
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The overall engine and emissions-control system thermal 
efficiency can be expressed as a product of sub-efficiencies

Project Lead: Paul Miles, Sandia National Laboratories



Fuel properties play roles in many of the 
sub-efficiency terms of the merit function
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Since we are interested in relative efficiency, we can 
differentiate to get:

How can we quantify these in terms of fuel properties 
for each combustion mode? 

RON, octane sensitivity, HOV
Flame Speed

HOV
PMI, Tc,90

Project Lead: Paul Miles, Sandia National Laboratories



Boosted SI merit function quantifies engine & 
fuel effects on percentage change in efficiency

● First term is based on the Octane Index (OI), where K is 
indicative of the engine operating condition
– K=0: “Research Octane Number” (RON) test condition (cold)
– K=1: “Motor Octane Number” (MON) test condition (hot)
– K<0: “beyond RON,” e.g., boosted spark ignition (SI)
– K>1: “beyond MON,” e.g., advanced compression ignition
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Fuels: Co-Optima “core” fuels, tier 
III cert gasoline, and 3 bio-
blendstock candidates

12

Co
-O

pt
im

a 
“A

lk
yl

at
e”

Co
-O

pt
im

a 
“A

ro
m

at
ic

”

Co
-O

pt
im

a 
“E

30
”

“T
ie

r I
II”

E1
0 

EE
E

25
 m

ol
%

 M
et

hy
l 

Bu
ty

ra
te

Bl
en

d 
“M

B”

25
 m

ol
%

 E
th

yl
 

Ac
et

at
e 

Bl
en

d 
“E

A”

25
 m

ol
%

 
“A

ni
so

le
” 

Bl
en

d

RON 97.9 98 98.3 91.8 98.1 98.5 98.8
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Aromatic 0 35.8 8.1 22.6 23 mol% 23 mol% 23 mol%
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Olefins 0 4.2 5 5.2 5 mol% 5 mol% 5 mol%
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T90 105.9 157.9 155.2 157.9 - - -

C (wt%) 83.75 87.22 74.78 82.63 79.37 79.18 83.95

H (wt%) 15.80 13.12 13.79 13.66 12.89 12.85 12.23

O (wt%) 0 0 11.19 3.71 7.74 7.97 3.82
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RON = 103

S = 12

Ethyl Acetate
RON = 118

S = -2

Methyl Butyrate
RON = 107

S = 2

Operating Conditions: Constant 
fueling rate (14.5-19.0 bar IMEP), 

varying intake temperature, 
backpressure, and EGR

Project Lead: Jim Szybist, Oak Ridge National Laboratory

Boosted SI fuel matrix designed to determine if 
octane index can predict engine efficiency limits
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Alkylate
Aromatic

E30
MB

EA
Anisole

Tier III

OI = RON – K*S
• Octane index includes the two most 

impactful terms in the merit function
• Experiments confirm that OI correlates 

with knock-limited phasing much better 
than AKI, RON, or MON

• Despite good correlation coefficients, 
significant outliers were observed

• Anisole fuel blend generally out-performs OI 
prediction (earlier knock-limited CA50)

• Aromatic fuel blend under-performs with high 
intake manifold temperature
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Focusing on 
retarded phasing, 

significant 
differences in early 
combustion phases 

are apparent
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Full NTC for 
alkylate

Some PSHR for 
aromatic

Pre-Spark Heat Release (PSHR) 
for E10 Fuel is between 

alkylate & aromatic

Boosted SI: For φ≈1, octane index correlates 
well with knock-limited combustion phasing

Project Lead: Jim Szybist, Oak Ridge National Laboratory
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Co-Optima 
Core Fuels Al
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RON 98.0 97.4 98.1 98.2 98.0

MON 96.6 86.6 87.8 88.0 87.1

S 1.4 10.8 10.3 10.2 10.9

Aromatics 0.7 13.8 39.8 13.4 33.2

n+i-Paraffin 98.1 40.5 46.2 56.4 40.6

Cycloalkane 0.0 7.0 8.0 2.9 24.2

Olefins 0.1 6.0 4.5 26.5 1.6

Ethanol 0.0 30.4 0.0 0.0 0.0

Premixed ACI: at φ = 0.4, different CA50 for fuels 
with same RON & S; “O2” OI analysis works well
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Advanced Compression Ignition (ACI)
● Designed fuel test matrix with five fuels with 

RON ≈ 98, four with S ≈ 10.5, one with S ≈ 1

Project Lead: John Dec, Sandia National Laboratories
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Required Tin for Pin = 1.0 bar, Indicates Reactivity 

Tin = 60°C for all
– OI" correlates 

fuels fairly well at 
Pin=2.4 bar, 
R2 =0.870

– Improved  
understanding of 
this intake-O2 based 
OI" is needed

Advanced Compression Ignition (ACI)
● Designed fuel test matrix with five fuels with 

RON ≈ 98, four with S ≈ 10.5, one with S ≈ 1
● Pin = 1.0 bar:  Surprisingly, reactivity varies 

among matched RON&S fuels: E30>>Aromatic
– For LTGC at Pin = 1 bar with these fuels, Octane 

Index (OI) gives poor correlation (R2 =0.536)
– RON and MON appear insufficient for specifying 

fuel reactivity for lean LTGC (φ = 0.4) at this cond.
– Perhaps this is because E30 is less φ-sensitive, or 

differences in HOV ⇒ Further studies are planned

● Pin = 2.4 bar:  Try OI" based on intake O2, since

Project Lead: John Dec, Sandia National Laboratories

Premixed ACI: at φ = 0.4, different CA50 for fuels 
with same RON & S; “O2” OI" analysis works well
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Reactivity Changes w/ Boost
● Increased fuel autoignition reactivity with boost 

is a key challenge for both LTGC and SI
– LTGC: High EGR required for CA50 control limits O2.
– SI: Increased knock propensity limits CR

● Despite higher RON & S, E30 has similar 
reactivity to Reg-E0 for Pin = 1.0 – 1.6 bar
⇒ Somewhat less reactive for higher Pin

● Higher RON & S aromatic fuel is much less 
reactive than Reg-E0, esp. at Pin ≥ 1.8 bar

– At Pin = 1.8 bar, aromatic & E30 have lower ITHR
than Reg-E10 ⇒ may affect reactivity trends 

– Also agrees with lower φ-sensitivity (for PFS)

Future Work:
● Evaluate E30 φ-sensitivity & high load behavior
● Evaluate the other three fuels in test matrix

⇒ High-Olefin, High-Cycloalkane, & Alkylate
● Investigate Co-Optima fuels with good potential for 

full-time LTGC-ACI engines ⇒ Support ACI merit function
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Reactivity Controlled Compression Ignition (RCCI):
LD multi-cyl. metal & HD single-cyl. optical engines
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Motivation for Using RCCI in ACI Engines
On-the-fly in-cylinder mixing of two fuels = 
Control of combustion phasing & HRR

• Global octane number adjusted by fuel ratio
• Reactivity stratification by injection timing

RCCI Challenges
Peak pressure rise rate (PPRR) limits high load

• E30 extends limit ⇒ not well understood
Incomplete combustion at lowest loads

• Reasons are unclear

Approach for RCCI Work
• Use ORNL multi-cylinder metal engine to 

identify key fuel-property & operating-
condition combinations where an 
improved understanding is required

• Use SNL single-cylinder optical engine to 
image in-cylinder mixing, ignition, and 
combustion processes at these 
conditions

SNL Optical Engine
• Single-cylinder heavy-duty 

diesel engine (GDI + DI) 
• Image combustion & in-

cylinder mixing (PRF) 

17

ORNL Metal Engine 
• Multi-cylinder light-duty 

diesel engine (PFI + DI)
• Transient capable + 

emissions characterization

Project Lead: Scott Curran, Oak Ridge National Laboratory

Project Lead: Mark Musculus, Sandia National Laboratories



RCCI: At constant PRF, CA50 control authority 
limits approach premixed & mixing-controlled
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● Use PRFs (iso-octane & n-heptane): similar physical properties, different reactivity
– DI SOI from -70 to -35 °CA aTDC have characteristic RCCI CA50 control authority
– Control authority is limited by constant PRF in each sweep

> Varying PRF by changing premixed ratio (Rp) would yield much greater CA 50 control

“Premixed”

PPRR / 
ηcomb Limit

Cyl. Bal.
Limit

Stability Limit

Pin = 1.04 bar 
Tin = 40°C
2000 rpm

● Two limits of control 
authority range:

1. “Premixed”
– Premixed + DI PRF80 

reaches premixed “HCCI”
– Premixed PRF100 + DI 

PRF0 does not reach 
premixed “HCCI” CA50 
> Wall wetting?
> Incomplete mixing?

2. “Mixing-Controlled”
– Late DI SOI: control 

authority trend reverses
> Fuel-rich mixing-

controlled combustion?
Gain insight from
optical diagnostics

Project Lead: Scott Curran, Oak Ridge National Laboratory



RCCI: Good matching of combustion phasing & 
control authority in optical & metal engines
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• Matching SNL HD optical engine with ORNL LD metal engine: 1. charge-gas ρ & T @ 
mid-control-authority DI injection, 2. premixed iso-octane (80%), 3. global Ф (0.35)

• Even with different engine displacement (heavy-duty vs light-duty), compression 
ratios, and piston geometry, the combustion characteristics are similar, with three 
CA50 regimes (pre-mixed, RCCI, & mixing-controlled) and similar heat release shapes

The mid-point of combustion heat release (CA50) 
depends on the injection timing of high-reactivity 
(PRF 0) fuel from the common rail (CR) DI injector
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Project Lead: Mark Musculus, Sandia National Laboratories



Fundamental Stratified ACI (SNL, Musculus): Structure in IR 
& visible images (=incomplete mixing?), bright @ late DI (=rich?)
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• Structure in IR imaging of 1st-stage and 
visible imaging of 2nd-stage ignition at all 
conditions – incomplete mixing?

• Brightening jet structure in visible imaging 
indicates transition to richer mixtures
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Project Lead: Mark Musculus, Sandia National Laboratories

Next steps
• Follow up with laser-sheet mixing diagnostics 

to quantify mixing effects for these PRFs
• Image combustion phenomena for ORNL

fuels with different physical properties



Mixing-Controlled Compression Ignition (MCCI): 
Ducted fuel injection for high efficiency, low soot
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● Mixing-controlled CI combustion is desirable for many reasons
> Inherently high efficiencies, low HC & CO emissions
> Ignition timing easily controlled by injection timing
> Inherently fuel-flexible (cetane # is key fuel parameter)

– Soot is a barrier to fully achieving the above benefits
> Soot is a potent toxin
> 2nd only to CO2 as a climate-forcing species
> Limits amount of EGR possible for NOx control 
> Aftertreatment is expensive, has efficiency 

penalties (backpressure, regeneration)

● Approach: Use Ducted Fuel Injection (DFI) 
to make richest autoigniting mixtures leaner
– Effective at lowering soot (next slide)
– Geometrically & conceptually simple
– Tolerant to dilution for NOx control
– Synergistic with Co-Optima oxygenated 

fuels, but does not require oxygenation
– Might increase comb. efficiency by limiting over-mixing at spray periphery

DFI Concept:
Inject fuel down a 
small tube/duct 
aligned with the 
spray axis

Project Lead: Chuck Mueller, Sandia National Laboratories



MCCI: Initial DFI data show considerable soot 
reduction even with non-oxygenated fuel, no EGR
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● Ducted Fuel Injection (DFI) in 
Sandia constant-volume 
combustion vessel
– 90 µm orifice diameter
– 1500 bar injection pressure
– 21 mol% oxygen (no EGR)
– n-dodecane fuel (not 

oxygenated)

DFI is effective at lowering or preventing soot 
incandescence over a range of temperatures

Duct
signal saturation
= hot soot

Chemilum. only, no soot

Project Lead: Chuck Mueller, Sandia National Laboratories



MCCI: DFI reduces in-cylinder soot by factor of 
~10, longer lift-off, higher pressure rise
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● Effects of DFI on combustion observables
– Lift-off lengths increase with DFI

> Flame anchors to duct exit at 1000 K
> Longer ignition delay could increase noise

– Soot incandescence decreases by 10×
> Similar for quantitative in-cylinder soot

– Total pressure rise (ΔP) in vessel is 
slightly, but consistently larger with DFI
> Higher combustion efficiency?
> Reduce over-mixing at spray periphery?

● Future Work:
– Optical engine tests

> emissions, efficiency, 
& fuel effects

> Vertical-sheet LII
– Develop merit 

function

Project Lead: Chuck Mueller, Sandia National Laboratories



ACI Merit Function: Quantify how fuel properties
& engine conditions enable high-efficiency ACI
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● ACI merit function: quantify enabling 
engine conditions & fuel properties
– Boosted SI merit function quantifies 

efficiency effects to guide
fuel and engine co-optimization

– ACI approaches already have high 
efficiency; quantify enabling fuel & 
engine effects to guide co-optimization

● Will synthesize results from multiple 
Co-Optima ACI approaches

> Highlight key enabling fuel properties for 
each combustion approach

> Relate fuel properties to engine features 
that affect operating range and efficiency

● Design engine and fuel experiments 
to inform merit function(s) across 
the suite of ACI combustion 
concepts

LTGC RCCI GCI

LLFC SI-based

(Industry solutions incorporated based on published 
literature and industry support/guidance)

Identify enabling fuel properties 
and engine features and quantify 

their effects for each ACI approach
Specific focus on properties/ranges 
that preclude each ACI approach

Property guidance and merit function to 
direct ACI engine & fuel co-optimization

Project Lead: Andrew Ickes, Argonne National Laboratory



25

Blendstock screening focuses on optimal fuel properties
SI merit function quantifies fuel property effects on efficiency

At φ≈1, octane index correlates well with knock-limited CA50
Large pre-spark heat release variations among fuels tested

At φ=0.4, same RON & S, diverging CA50; “O2” OI works well 
E30 reactivity similar to E0, correlates w/ ITHR & φ-sensitivity

Const. PRF control-authority limits = premixed, mixing-control
Wall-wetting/incomplete-mixing may narrow premixed limit

Matched optical/metal engine comb. phasing & control auth.
Image struct. (=incomplete mixing?), bright @ late DI (=rich?)

DFI reduces in-cyl. soot 10X w/ non-oxygenated fuel, no EGR
Longer lift-off & ignition delay (noise?), higher ∆P (efficiency?)

Identify/quantify fuel properties enabling high-efficiency ACI
Merit function to guide ACI engine & fuel co-optimization

RCCI
•ORNL
•Curran

RCCI
•SNL
•Musculus

MCCI
•SNL
•Mueller

ACI MF
•ANL lead
•Ickes

SI
•ORNL
•Szybist
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Summary: US DOE Co-Optimization of 
Fuels & Engines (Co-Optima) Initiative
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