

Co-Optimization of
Fuels & Engines

better fuels | better vehicles | sooner

Fuel Property and Engine Combustion Research of the US Co-Optima Initiative

Mark Musculus
Combustion Research Facility
Sandia National Laboratories

Contributing PIs:

Scott Curran, ORNL **Paul Miles, SNL**
John Dec, SNL **Chuck Mueller, SNL**
Andrew Ickes, ANL **Jim Szybist, ORNL**

Energy Efficiency &
Renewable Energy

SAND2017-6420C

Tailor-Made Fuels From Production to Propulsion 5th International Conference

June 20th – 22nd 2017
Eurogress, Aachen Germany

Co-Optima Leadership Team: John Farrell (NREL), John Holladay (PNNL), Chris Moen (SNL), Robert Wagner (ORNL)

US Department of Energy (DOE) Bioenergy Technologies
Office Program Managers: Alicia Lindauer, Borka Kostova
US DOE Vehicle Technologies Office Program Managers:
Gurpreet Singh, Kevin Stork, Leo Breton & Michael Weismiller

US DOE Co-Optimization of Fuels & Engines (Co-Optima): increase efficiency, diversify fuels

Light-duty

Up to 15% fuel economy (FE) improvement*

Phase 1: boosted SI; Phase 2: multi-mode SI/ACI

Heavy-duty

Up to 1-4% FE improvement (worth \$1-5B/year)*

Potential lower cost path to meeting next tier of criteria emissions regulations

Fuels

Diversifying resource base

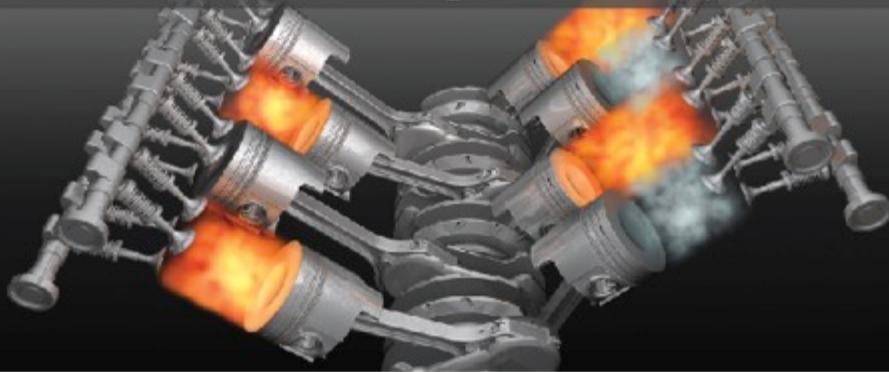
Providing economic options to fuel providers to accommodate changing global fuel demands

Increasing supply of domestically sourced fuel by up to 25 billion gallons/year

Cross-cutting goals

Stimulate domestic economy

Adding up to 500,000 new jobs


Providing clean-energy options

* Beyond projected results of current R&D efforts. The team is actively engaging with OEMs, fuel providers, and other key stakeholders to refine goals and approaches to measuring fuel economy improvements

Primary technical challenges of Co-Optima: Target fuel properties? How to make them?

What fuel do engines *really* want?

Identifying key fuel properties that impact efficiency for advanced spark ignition and compression ignition combustion approaches

What fuels *should* we make?

Identifying fuel formulations that provide target ranges of key fuel properties when blended with petroleum blendstocks

Central Engine Hypothesis

There are engine architectures and strategies that provide higher thermodynamic efficiencies than are available from modern internal combustion engines; new fuels are required to maximize efficiency and operability across a wide speed / load range

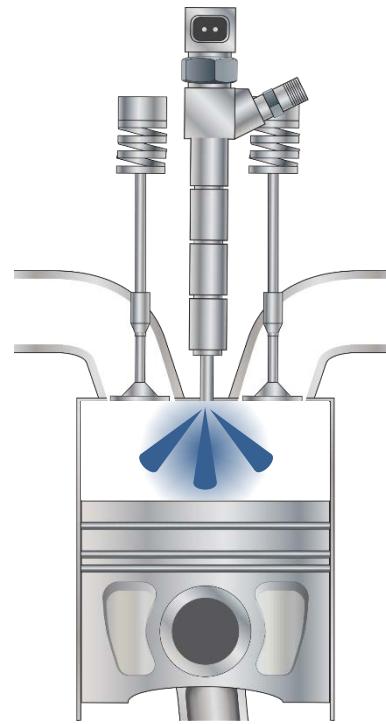
Central Fuel Hypothesis

If we identify target values for the critical fuel properties that maximize efficiency and emissions performance for a given engine architecture, then fuels that have properties with those values (regardless of chemical composition) will provide comparable performance

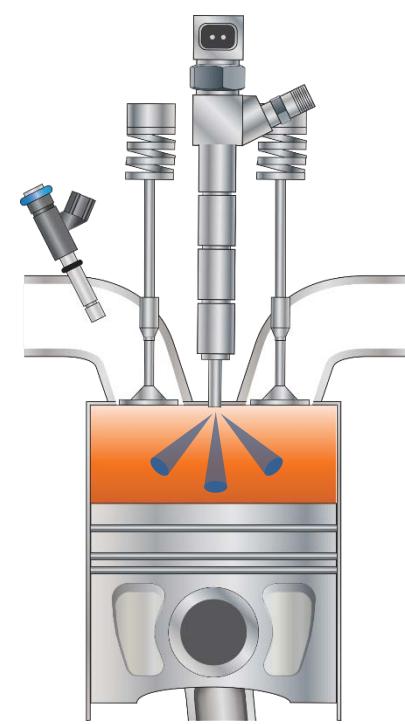
Co-Optima engine & fuel research proceeds along two parallel application/mode tracks

Light-Duty

Boosted SI


Near-term

Multi-mode
SI / ACI


Mid-term

Medium and Heavy-Duty

Mixing
Controlled

Near-term

Kinetically
Controlled

Longer-term⁵

Three-tiered approach to screen, measure, analyze, and evaluate candidate blendstocks

Tier 1

> 470 blendstocks

14 chemical families

Identify broad range of potential hydrocarbon and oxygenated blendstocks

Utilize property information on blendstocks from literature or estimates to identify Tier 2 blendstocks

Tier 2

41 blendstocks

10 chemical families

Measure blendstock properties

Evaluate blendstock performance in BOBs at 10-30% blend levels

Remove candidates from list if improved data indicate they do not meet criteria

Add new candidates as our understanding improves of how fuel structure impacts key properties

Tier 3

8 representative* blendstocks

5 chemical families

Refine property measurements

Develop improved blending models

Produce/procure blendstocks in quantity for testing and validate engine and fuel economy performance

Characterize/compare benefits and identify challenges for commercial introduction

*These blendstocks constitute a representative subset of a broader range of molecules/mixtures that meet the Tier 3 criteria

Properties of many Tier 1 blendstock candidates are catalogued in a publicly accessible database*

Tier 1

> 470 blendstocks

14 chemical families

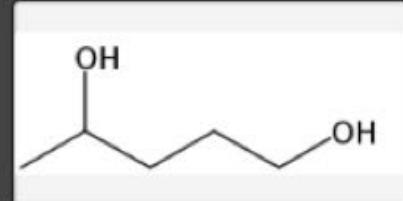
Identify broad range of potential hydrocarbon and oxygenated blendstocks

Utilize property information on blendstocks from literature or estimates to identify Tier 2 blendstocks

Found Pure Compound Correct or Update this record

IUPAC name

1,4-Pentanediol


Molecular Weight

Molecular Formula

CAS#

Functional Group

Drop an Image of the Structure here:

SEARCH PROPERTIES

With "pure" IUPAC compound name "methyl" both "methyl" and "fuel blends" will be searched. (IE: **methyl** will find both "methyl" and "methyl" in the name AND a boiling point range between 0 and 14 will be found.)

Molecular Weight

Molecular Formula

CAS#

Safety

LEL/UEL (%) UPL/UEL (%)

Flash Point (°C) Autoignition Temp (°C)

Peroxide Former

Health

Rel Oral LD50 (mg/kg)

Properties

Melting Point (°C)	Boiling Point (°C)	Peroxide Value	T50 (°C)
Cloud Point (°C)		BP (°C)	T90 (°C)
Density (g/cm³)	Heat of Vaporization (kJ/mol)	FP (°C)	Surface Tension (dyn/cm)
Viscosity (cSt)	Vapor Pressure (kPa)	Corrosion	PI
MON	RON	Lubricity	
UV	OCN	Stability	Functional Group
Critical Pressure (kPa)	Critical Temperature (K)	Oxidation Stability	Thermal Stability
Azeotrope Factor	Acid Value	Water Solubility (mg/L)	Dispersion

* Available at: <https://fuelsdb.nrel.gov/fmi/webd#FuelEngineCoOptimization>

41/470 candidate blendstocks passed through Tier 1 screening for boosted SI engines

- Tier 1 screening applies criteria based on boiling point, melting point, solubility, corrosion, toxicity, fuel handling safety, biodegradation, and autoignition characteristics (e.g., RON for boosted SI)

Alcohols (9)		Esters (13)	Furans
1	Methanol	16 Ethyl acetate	33 2,5-Dimethylfuran/2-methylfuran
2	Ethanol	17 Ethyl butanoate	Branched alkanes
3	1-Propanol	18 Ethyl isobutanoate	34 2,2,3-Trimethylbutane
4	Isopropanol	19 Isopropyl acetate	
5	1-Butanol	20 Butyl acetate	
6	2-Butanol	21 2-Methylpropyl acetate	
7	Isobutanol	22 3-Methylpropyl acetate	
8	2-Methylbutan-1-ol	23 mixed esters	
Ethers		Ketones (9)	Alkenes
10	Anisole	24 2-Butanone	35 Diisobutylene
Esters (13)		25 2-Pentanone	Multicomponent mixtures (6)
11	Methyl acetate	26 3-Pentanone	36 Methanol-to-gasoline
12	Methyl butanoate	27 Cyclopentanone	37 Ethanol-to-gasoline
13	Methyl pentanoate	28 3-Hexanone	38 Bioreformate via multistage pyrolysis
14	Methyl isobutanoate	29 4-Methyl-2-Pentanone	39 Bioreformate via catalytic conversion of sugar
15	Methyl-2-methylbutanoate	30 2,4-Dimethyl-3-Pentanone	40 Mixed aromatics via catalytic fast pyrolysis
		31 3-Methyl-2-butanone	41 Aromatics and olefins via pyrolysis-derived sugars
		32 Ketone mixture	

The “merit function” is an algebraic expression for determining what fuel properties engines want

Project Lead: Paul Miles, Sandia National Laboratories

The overall engine and emissions-control system thermal efficiency can be expressed as a product of sub-efficiencies

$$\eta_{th} = \eta_{ideal} * \eta_{glh} * \eta_{comb} * \eta_{pump} * \eta_{ht} * \eta_{emiss} \dots$$

$$\eta_{ideal} = 1 - \frac{1}{CR^{\gamma-1}}$$

η_{glh} = combustion phasing (“degree of constant V combustion”)

η_{comb} = combustion efficiency

η_{pump} = pumping losses

η_{ht} = heat transfer losses

η_{emiss} = emission control losses

Fuel properties play roles in many of the sub-efficiency terms of the merit function

Project Lead: Paul Miles, Sandia National Laboratories

Since we are interested in relative efficiency, we can differentiate to get:

$$\frac{d\eta_{th}}{\eta_{th}} = \frac{d\eta_{CR}}{\eta_{CR}} + \frac{d\eta_{\gamma}}{\eta_{\gamma}} + \frac{d\eta_{glh}}{\eta_{glh}} + \frac{d\eta_{comb}}{\eta_{comb}} + \frac{d\eta_{pump}}{\eta_{pump}} + \frac{d\eta_{ht}}{\eta_{ht}} + \frac{d\eta_{emiss}}{\eta_{emiss}} + \dots$$

PMI, $T_{c,90}$

HOV

Flame Speed

RON, octane sensitivity, HOV

How can we quantify these in terms of fuel properties for each combustion mode?

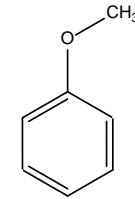
Boosted SI merit function quantifies engine & fuel effects on percentage change in efficiency

Project Lead: Paul Miles, Sandia National Laboratories

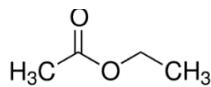
- First term is based on the Octane Index (OI), where K is indicative of the engine operating condition
 - K=0: “Research Octane Number” (RON) test condition (cold)
 - K=1: “Motor Octane Number” (MON) test condition (hot)
 - K<0: “beyond RON,” e.g., boosted spark ignition (SI)
 - K>1: “beyond MON,” e.g., advanced compression ignition

$$\begin{aligned} Merit [\Delta\%] &= \frac{(RON_{mix} - 91)}{1.6} - K \frac{(S_{mix} - 8)}{1.6} & OI &= RON - K \cdot S \\ &+ \frac{0.085[ON / \text{kJ/kg}] \cdot ((HoV_{mix} / (AFR_{mix} + 1)) - (415[\text{kJ/kg}] / (14.0[-] + 1)))}{1.6} & &= RON - K \cdot (RON - MON) \\ &+ \frac{((HoV_{mix} / (AFR_{mix} + 1)) - (415[\text{kJ/kg}] / (14.0[-] + 1)))}{15.2} + \frac{(S_{Lmix} - 46[\text{cm/s}])}{5.4} \\ &- H(PMI_{mix} - 1.6)[0.7 + 0.5(PMI_{mix} - 1.4)] + 0.008^\circ C^{-1}(T_{c,90,conv} - T_{c,90,mix}) \end{aligned}$$

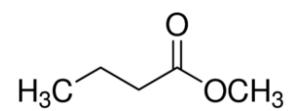
Boosted SI fuel matrix designed to determine if octane index can predict engine efficiency limits



Project Lead: Jim Szybist, Oak Ridge National Laboratory

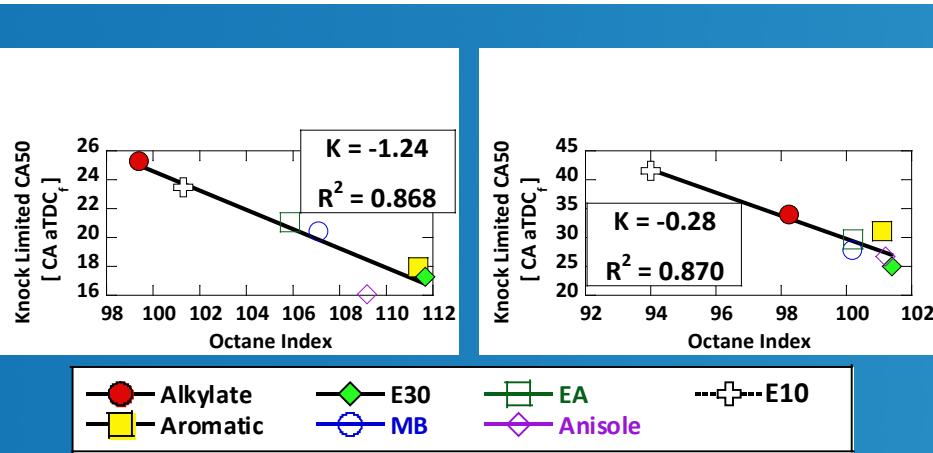

	Co-Optima "Alkylate"	Co-Optima "Aromatic"	Co-Optima "E30"	"Tier III" E10 EEE	25 mol% Methyl Butyrate Blend "MB"	25 mol% Ethyl Acetate Blend "EA"	25 mol% "Anisole" Blend
RON	97.9	98	98.3	91.8	98.1	98.5	98.8
MON	96.7	87.3	87.6	84.2	90.9	92.6	90.5
S	1.2	10.7	10.7	7.6	7.2	5.9	8.3
Aromatic	0	35.8	8.1	22.6	23 mol%	23 mol%	23 mol%
Saturates	100	65	57.1	71.2	47 mol%	47 mol%	47 mol%
Olefins	0	4.2	5	5.2	5 mol%	5 mol%	5 mol%
Ethanol	0	0	29.95	9.8	0	0	0
T10	93.1	59.4	60.7	54.6	-	-	-
T50	100.3	108.1	74.3	89.9	-	-	-
T90	105.9	157.9	155.2	157.9	-	-	-
C (wt%)	83.75	87.22	74.78	82.63	79.37	79.18	83.95
H (wt%)	15.80	13.12	13.79	13.66	12.89	12.85	12.23
O (wt%)	0	0	11.19	3.71	7.74	7.97	3.82

Fuels: Co-Optima "core" fuels, tier III cert gasoline, and 3 bio-blendstock candidates


Anisole
RON = 103
S = 12

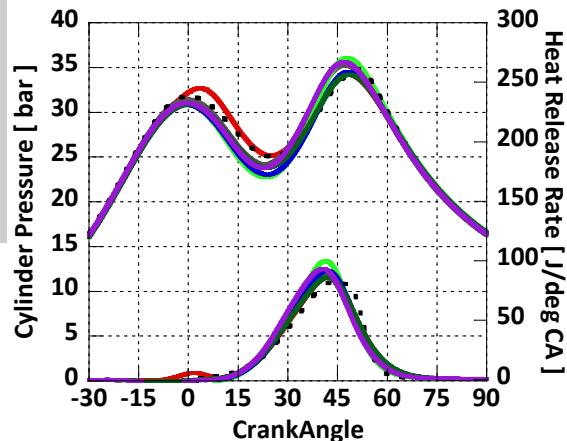
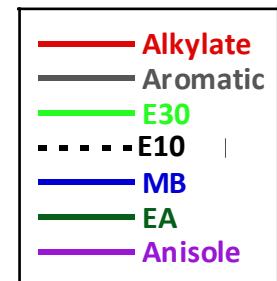
Ethyl Acetate
RON = 118
S = -2

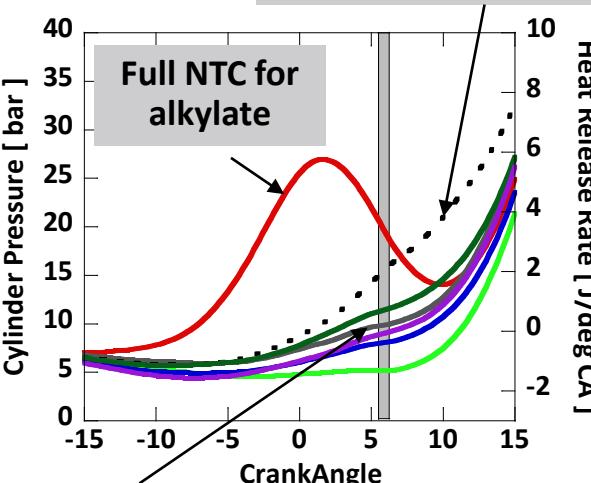
Methyl Butyrate
RON = 107
S = 2


Operating Conditions: Constant fueling rate (14.5-19.0 bar IMEP), varying intake temperature, backpressure, and EGR

	Sweep 1	Sweep 2	Sweep 3	Sweep 4	Sweep 5	Sweep 6	Sweep 7	Sweep 8
Intake T [°C]	35	35	35	35	90	90	90	90
Manifold DP [kPa]	>20	8	8	8	>20	8	8	8
EGR [%]	0	0	10	20	0	0	10	20

Boosted SI: For $\phi \approx 1$, octane index correlates well with knock-limited combustion phasing



Project Lead: Jim Szybist, Oak Ridge National Laboratory


$$OI = RON - K^*S$$

- Octane index includes the two most impactful terms in the merit function
- Experiments confirm that OI correlates with knock-limited phasing much better than AKI, RON, or MON
- Despite good correlation coefficients, significant outliers were observed
 - Anisole fuel blend generally out-performs OI prediction (earlier knock-limited CA50)
 - Aromatic fuel blend under-performs with high intake manifold temperature

Focusing on retarded phasing, significant differences in early combustion phases are apparent

Pre-Spark Heat Release (PSHR) for E10 Fuel is between alkylate & aromatic

Some PSHR for aromatic

Premixed ACI: at $\phi = 0.4$, different CA50 for fuels with same RON & S; “O₂” Oil analysis works well

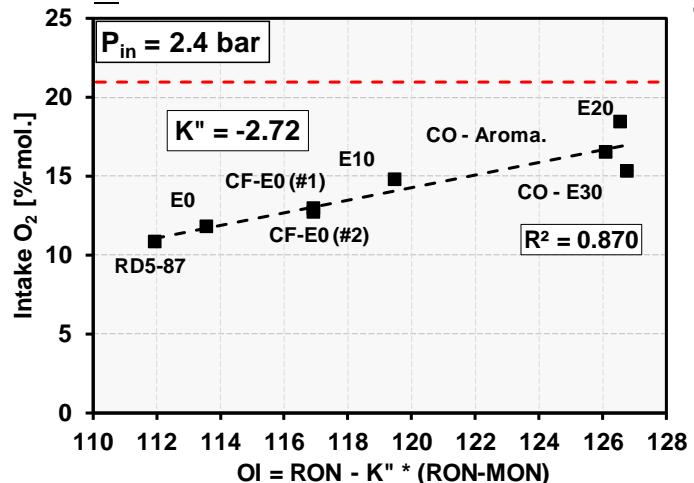
Project Lead: John Dec, Sandia National Laboratories

Advanced Compression Ignition (ACI)

- Designed fuel test matrix with five fuels with RON ≈ 98 , four with S ≈ 10.5 , one with S ≈ 1

Co-Optima Core Fuels	Alkylate	E30	Aromatic	Olefin	Cyclo-alkane
RON	98.0	97.4	98.1	98.2	98.0
MON	96.6	86.6	87.8	88.0	87.1
S	1.4	10.8	10.3	10.2	10.9
Aromatics	0.7	13.8	39.8	13.4	33.2
n+i-Paraffin	98.1	40.5	46.2	56.4	40.6
Cycloalkane	0.0	7.0	8.0	2.9	24.2
Olefins	0.1	6.0	4.5	26.5	1.6
Ethanol	0.0	30.4	0.0	0.0	0.0

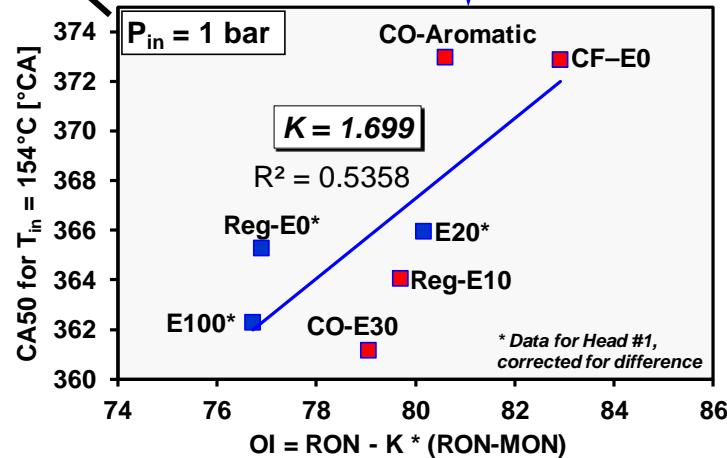
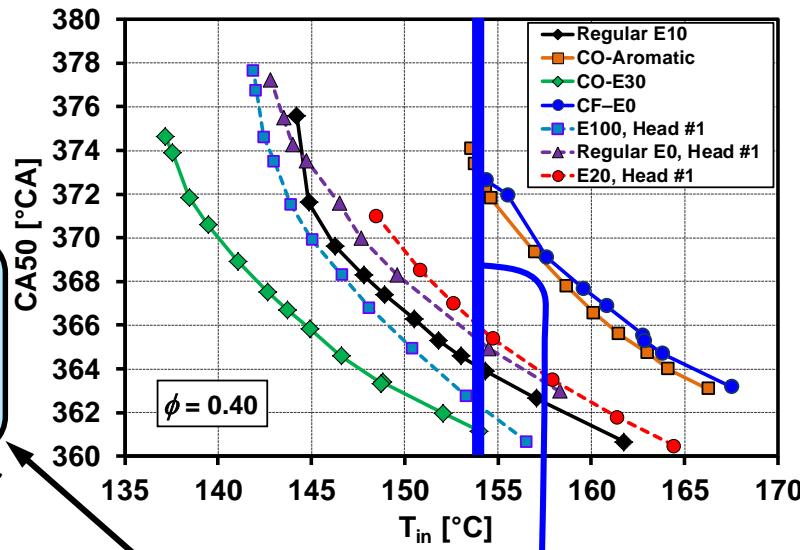
Premixed ACI: at $\phi = 0.4$, different CA50 for fuels with same RON & S; “O₂” OI" analysis works well



Project Lead: John Dec, Sandia National Laboratories

Advanced Compression Ignition (ACI)

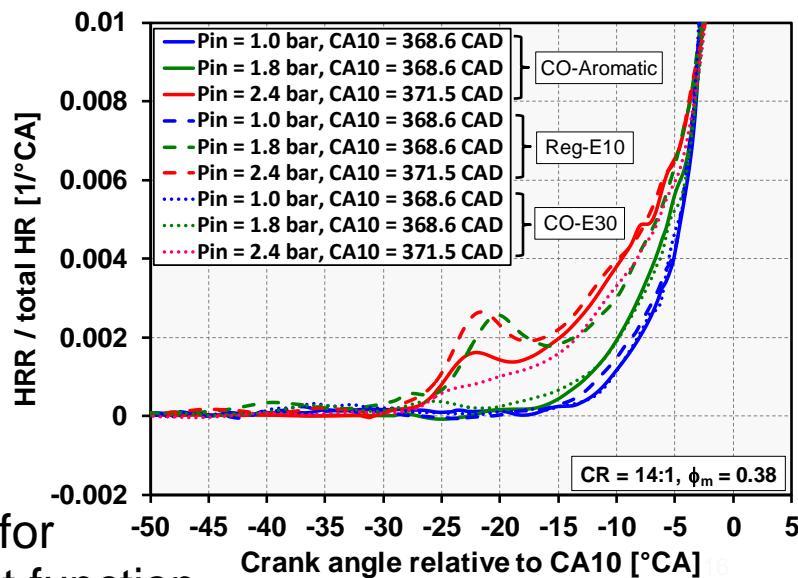
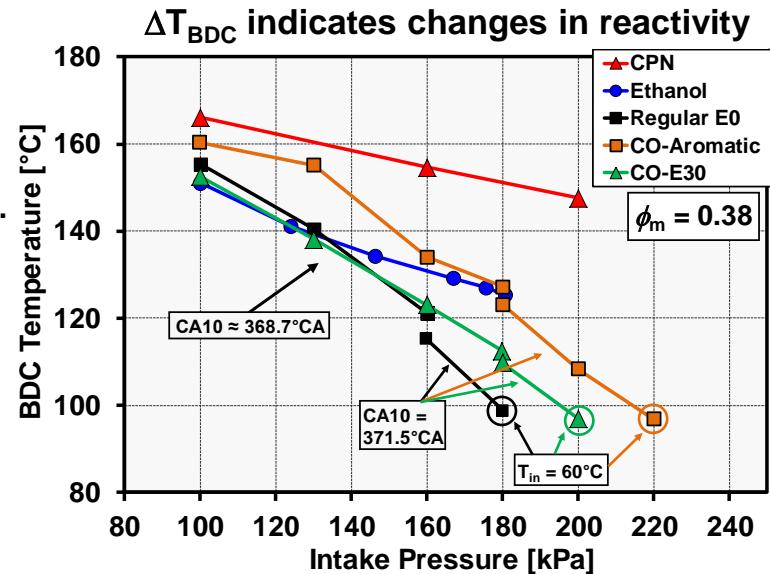
- Designed fuel test matrix with five fuels with RON ≈ 98 , four with S ≈ 10.5 , one with S ≈ 1
- P_{in} = 1.0 bar: Surprisingly, reactivity varies among matched RON&S fuels: E30>>Aromatic
 - For LTGC at P_{in} = 1 bar with these fuels, Octane Index (OI) gives poor correlation ($R^2 = 0.536$)
 - RON and MON appear insufficient for specifying fuel reactivity for lean LTGC ($\phi = 0.4$) at this cond.
 - Perhaps this is because E30 is less ϕ -sensitive, or differences in HOV \Rightarrow Further studies are planned



- P_{in} = 2.4 bar: Try OI" based on intake O₂, since

T_{in} = 60°C for all

- OI" correlates fuels fairly well at P_{in}=2.4 bar, R² = 0.870
- Improved understanding of this intake-O₂ based OI" is needed

Required T_{in} for P_{in} = 1.0 bar, Indicates Reactivity



Premixed ACI: Reactivity of E30 (high RON & S) similar to E0, correlates with ITHR & ϕ -sensitivity

Project Lead: John Dec, Sandia National Laboratories

Reactivity Changes w/ Boost

- Increased fuel autoignition reactivity with boost is a key challenge for both LTGC and SI
 - LTGC: High EGR required for CA50 control limits O_2 .
 - SI: Increased knock propensity limits CR
- Despite higher RON & S, E30 has similar reactivity to Reg-E0 for $P_{in} = 1.0 - 1.6$ bar
 \Rightarrow Somewhat less reactive for higher P_{in}
- Higher RON & S aromatic fuel is much less reactive than Reg-E0, esp. at $P_{in} \geq 1.8$ bar
 - At $P_{in} = 1.8$ bar, aromatic & E30 have lower ITHR than Reg-E10 \Rightarrow may affect reactivity trends
 - Also agrees with lower ϕ -sensitivity (for PFS)

Future Work:

- Evaluate E30 ϕ -sensitivity & high load behavior
- Evaluate the other three fuels in test matrix
 \Rightarrow High-Olefin, High-Cycloalkane, & Alkylate
- Investigate Co-Optima fuels with good potential for full-time LTGC-ACI engines \Rightarrow Support ACI merit function

Reactivity Controlled Compression Ignition (RCCI): LD multi-cyl. metal & HD single-cyl. optical engines

Project Lead: Scott Curran, Oak Ridge National Laboratory

Motivation for Using RCCI in ACI Engines

On-the-fly in-cylinder mixing of two fuels =

Control of combustion phasing & HRR

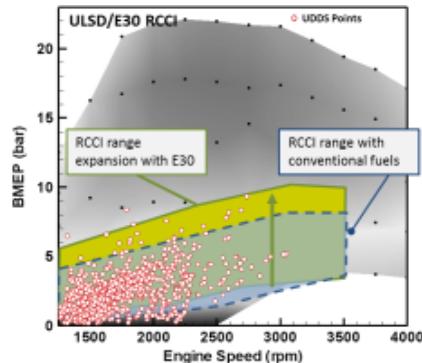
- Global octane number adjusted by fuel ratio
- Reactivity stratification by injection timing

RCCI Challenges

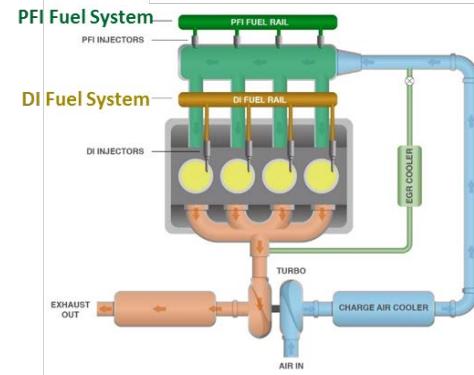
Peak pressure rise rate (PPRR) limits high load

- E30 extends limit \Rightarrow not well understood

Incomplete combustion at lowest loads

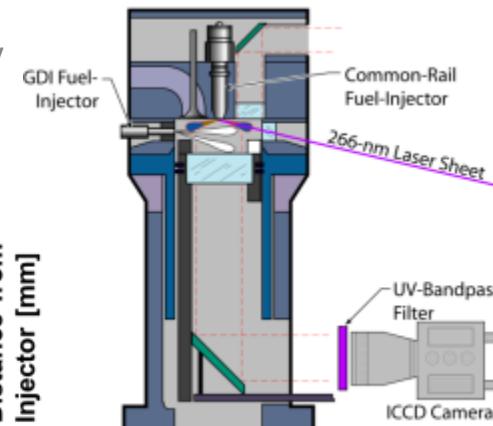
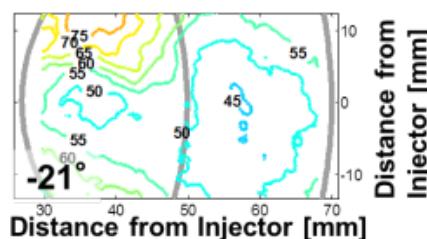

- Reasons are unclear

Approach for RCCI Work


- Use ORNL multi-cylinder metal engine to identify key fuel-property & operating-condition combinations where an improved understanding is required
- Use SNL single-cylinder optical engine to image in-cylinder mixing, ignition, and combustion processes at these conditions

ORNL Metal Engine

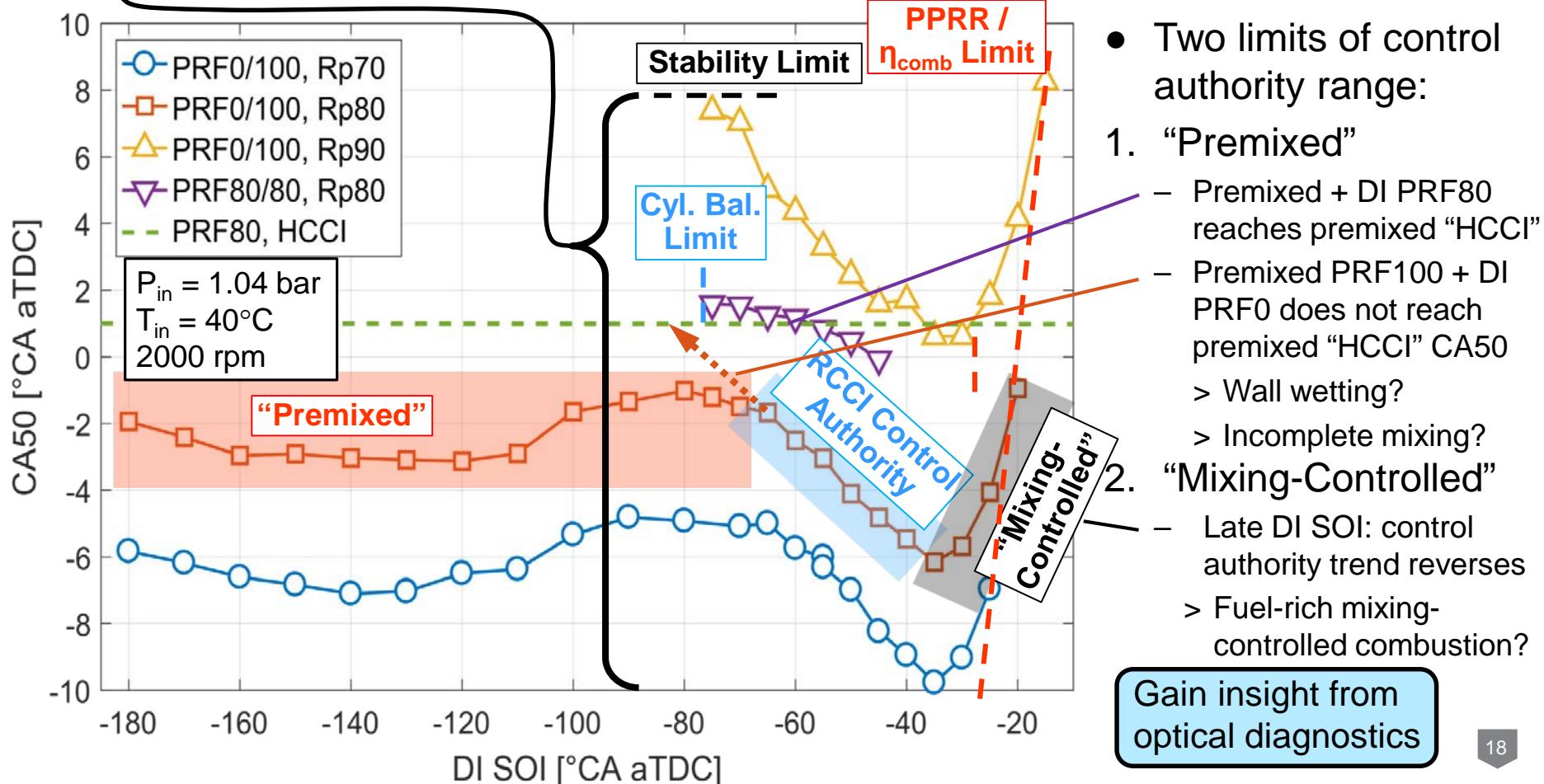
- Multi-cylinder light-duty diesel engine (PFI + DI)



- Transient capable + emissions characterization

Project Lead: Mark Musculus, Sandia National Laboratories

SNL Optical Engine

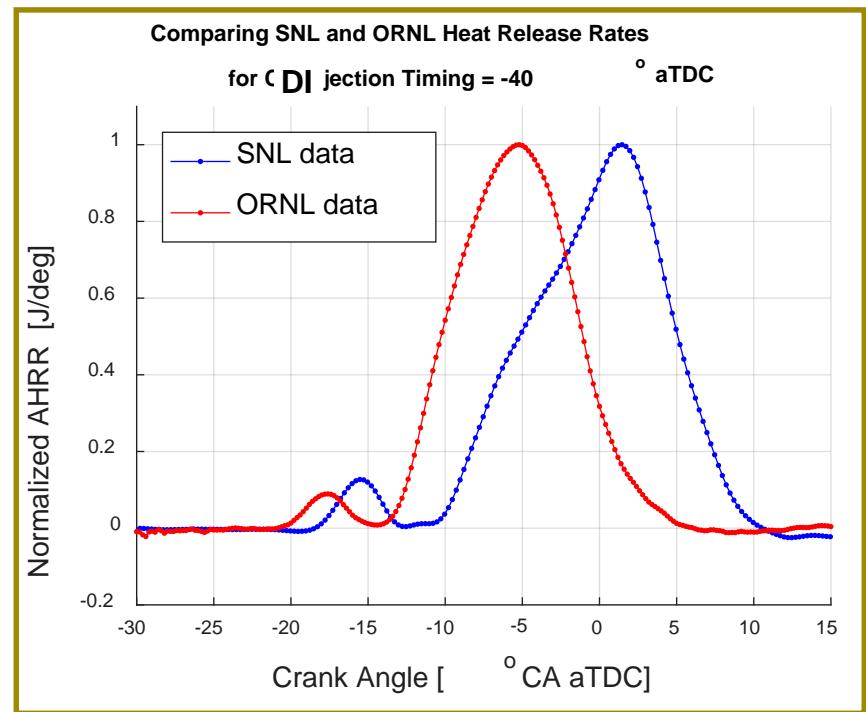
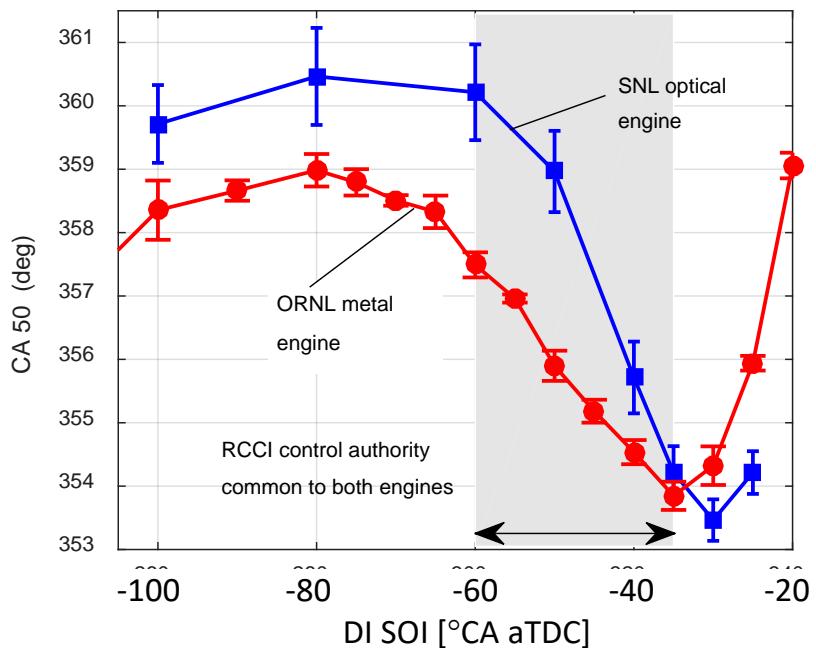
- Single-cylinder heavy-duty diesel engine (GDI + DI)
- Image combustion & in-cylinder mixing (PRF)



RCCI: At constant PRF, CA50 control authority limits approach premixed & mixing-controlled

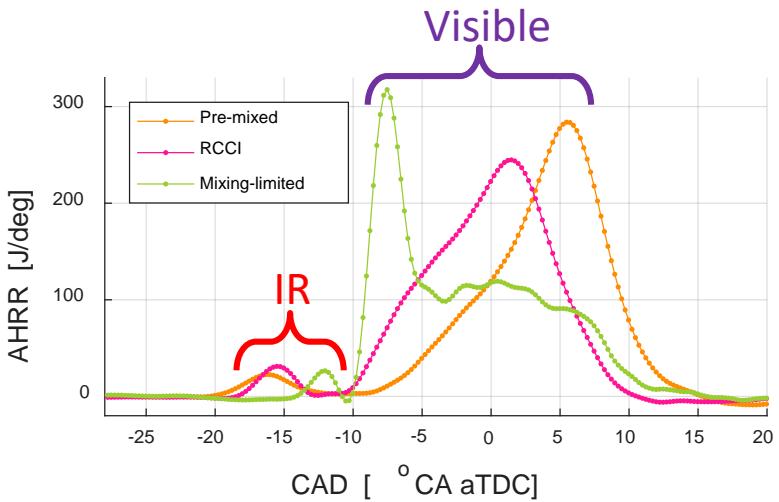
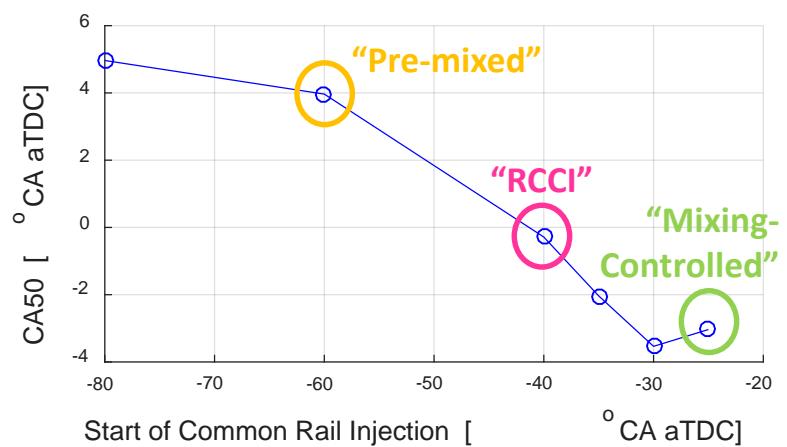
Project Lead: Scott Curran, Oak Ridge National Laboratory

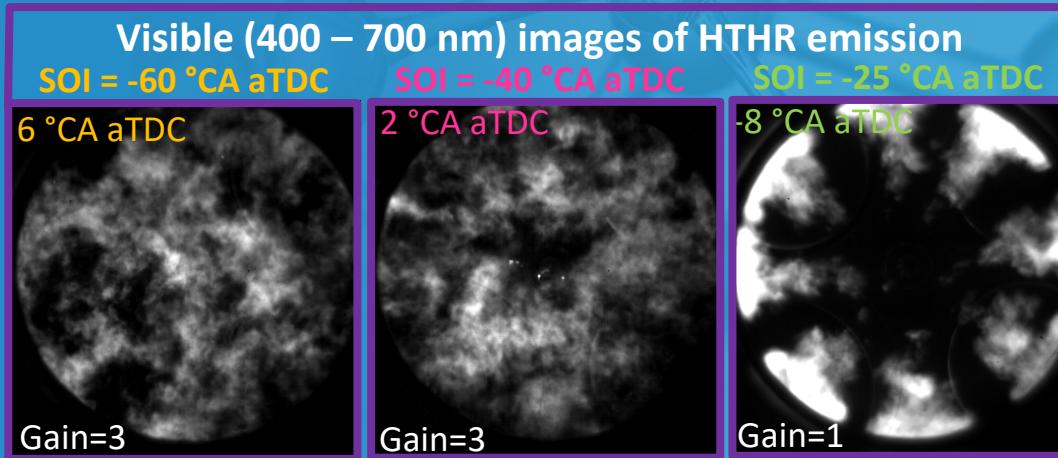
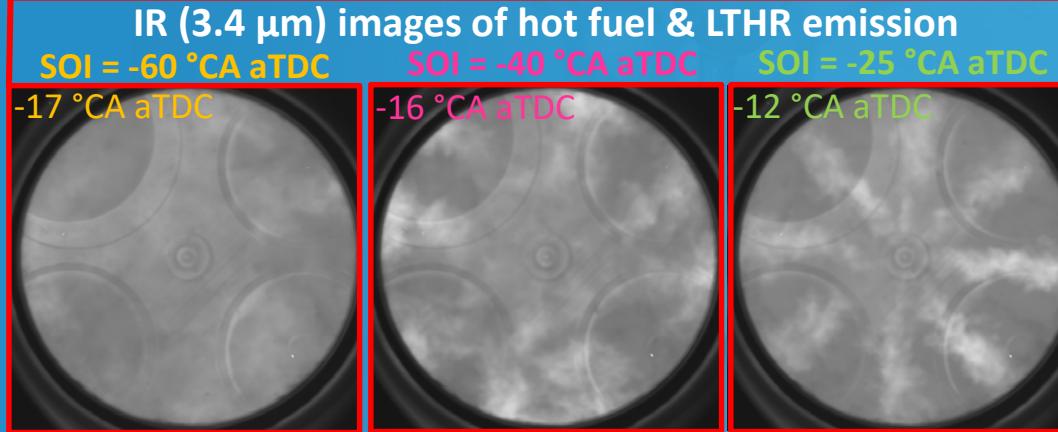
- Use PRFs (iso-octane & n-heptane): similar physical properties, different reactivity
 - DI SOI from -70 to -35 °CA aTDC have characteristic RCCI CA50 control authority
 - Control authority is limited by constant PRF in each sweep
 - Varying PRF by changing premixed ratio (R_p) would yield much greater CA 50 control

RCCI: Good matching of combustion phasing & control authority in optical & metal engines

Project Lead: Mark Musculus, Sandia National Laboratories



The mid-point of combustion heat release (CA50) depends on the injection timing of high-reactivity (PRF 0) fuel from the common rail (CR) DI injector



Heat release phasing is shifted, but the 2 engines yield the same characteristic shapes

- Matching SNL HD optical engine with ORNL LD metal engine: 1. charge-gas ρ & T @ **mid-control-authority DI injection**, 2. **premixed iso-octane (80%)**, 3. **global Φ (0.35)**
- Even with different engine displacement (heavy-duty vs light-duty), compression ratios, and piston geometry, the **combustion characteristics are similar**, with three CA50 regimes (pre-mixed, RCCI, & mixing-controlled) and similar heat release shapes

Fundamental Stratified ACI (SNL, Musculus): Structure in IR & visible images (=incomplete mixing?), bright @ late DI (=rich?)

Project Lead: Mark Musculus, Sandia National Laboratories

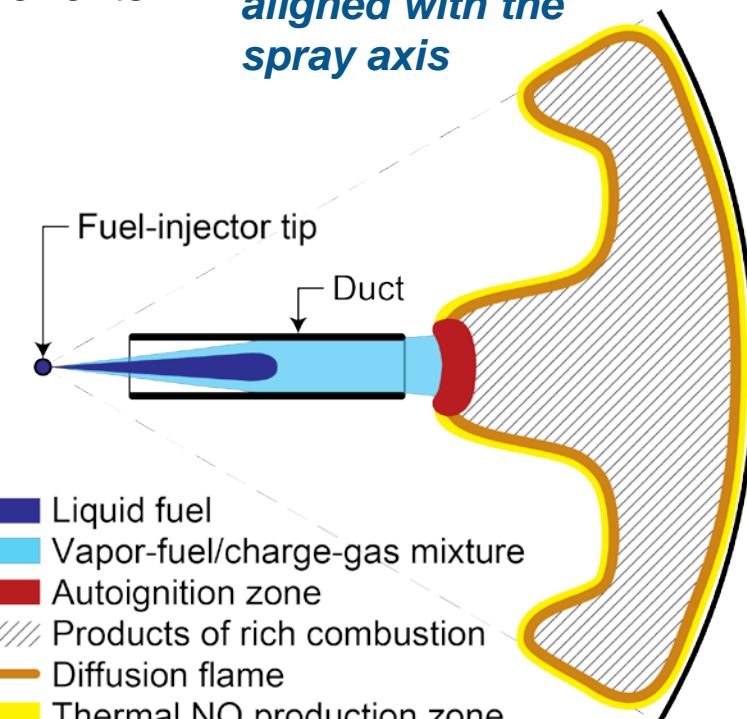
- Structure in IR imaging of 1st-stage and visible imaging of 2nd-stage ignition at all conditions – incomplete mixing?
- Brightening jet structure in visible imaging indicates transition to richer mixtures

Next steps

- Follow up with laser-sheet mixing diagnostics to quantify mixing effects for these PRFs
- Image combustion phenomena for ORNL fuels with different physical properties

Mixing-Controlled Compression Ignition (MCCI): Ducted fuel injection for high efficiency, low soot

Project Lead: Chuck Mueller, Sandia National Laboratories

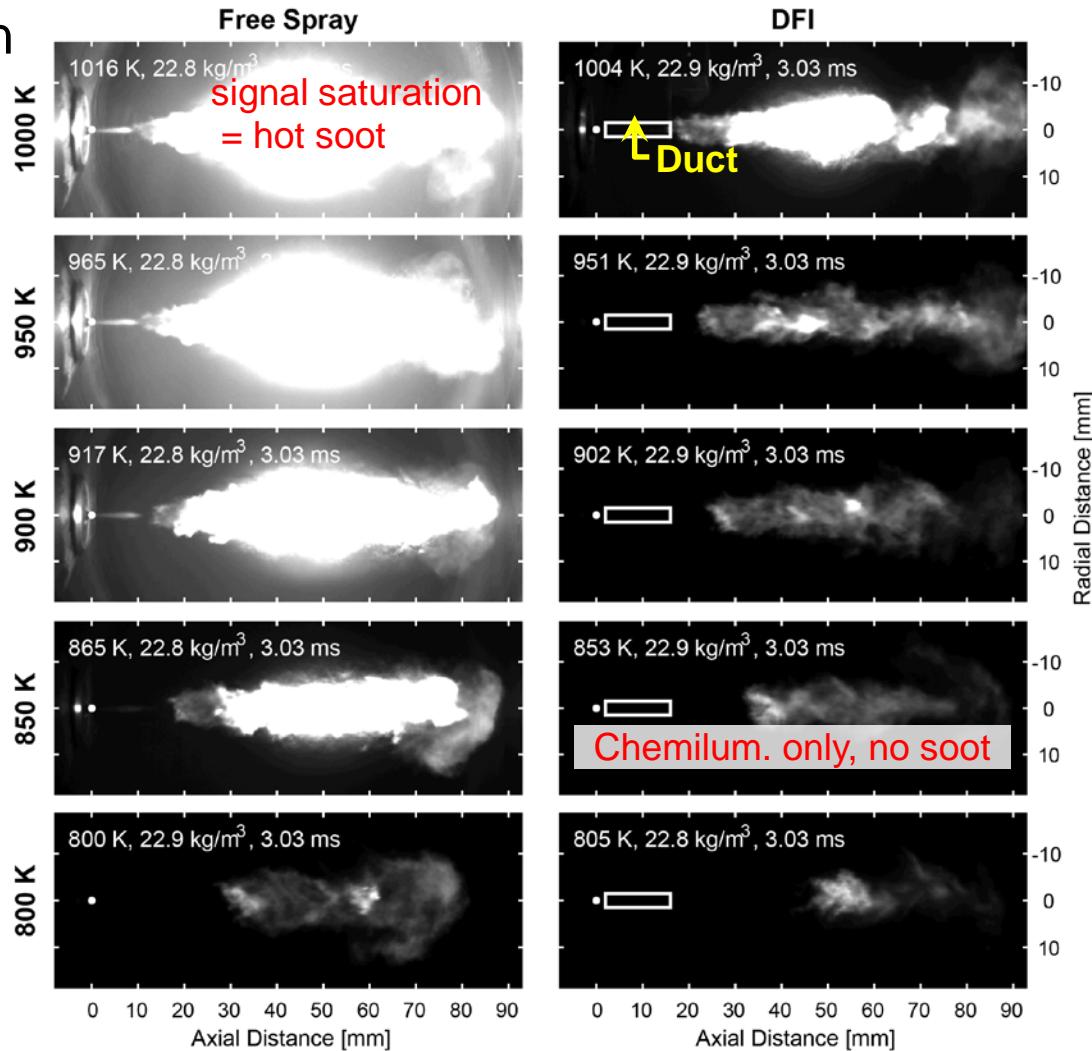
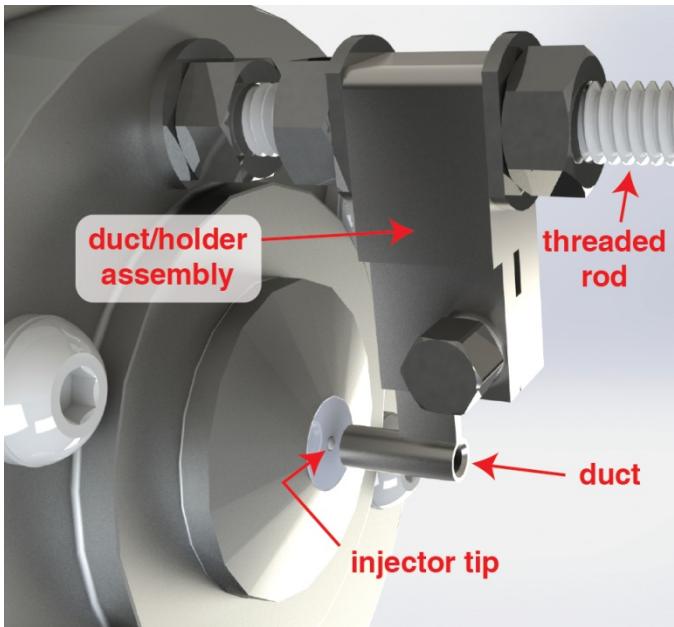

- Mixing-controlled CI combustion is desirable for many reasons

- > Inherently high efficiencies, low HC & CO emissions
 - > Ignition timing easily controlled by injection timing
 - > Inherently fuel-flexible (cetane # is key fuel parameter)
- Soot is a barrier to fully achieving the above benefits
 - > Soot is a potent toxin
 - > 2nd only to CO₂ as a climate-forcing species
 - > Limits amount of EGR possible for NO_x control
 - > Aftertreatment is expensive, has efficiency penalties (backpressure, regeneration)

- **Approach:** Use Ducted Fuel Injection (DFI) to make richest autoigniting mixtures leaner

- **Effective at lowering soot** (next slide)
 - Geometrically & conceptually simple
 - Tolerant to dilution for NO_x control
 - Synergistic with Co-Optima oxygenated fuels, but does not require oxygenation
 - Might increase comb. efficiency by limiting over-mixing at spray periphery

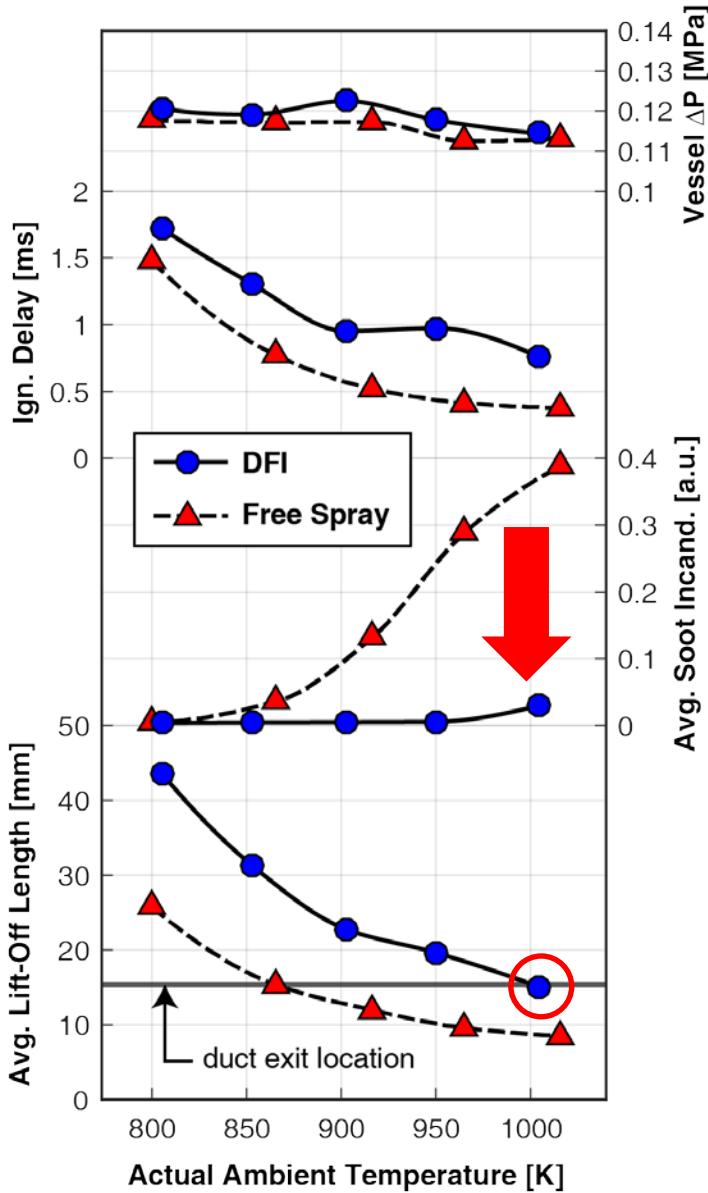
DFI Concept:
*Inject fuel down a
small tube/duct
aligned with the
spray axis*

MCCL: Initial DFI data show considerable soot reduction even with non-oxygenated fuel, no EGR

Project Lead: Chuck Mueller, Sandia National Laboratories

- Ducted Fuel Injection (DFI) in Sandia constant-volume combustion vessel
 - 90 μm orifice diameter
 - 1500 bar injection pressure
 - 21 mol% oxygen (no EGR)
 - n-dodecane fuel (not oxygenated)

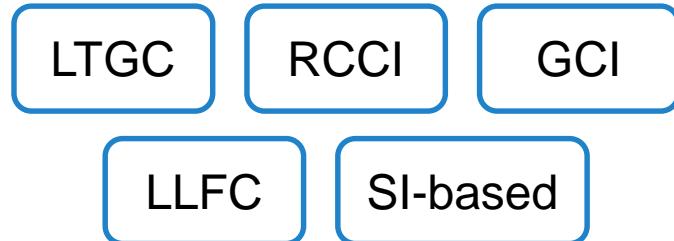


DFI is effective at lowering or preventing soot incandescence over a range of temperatures


MCCI: DFI reduces in-cylinder soot by factor of ~10, longer lift-off, higher pressure rise

Project Lead: Chuck Mueller, Sandia National Laboratories

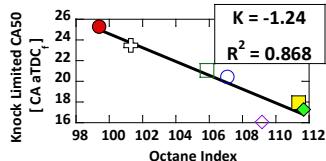
- Effects of DFI on combustion observables
 - Lift-off lengths increase with DFI
 - > Flame anchors to duct exit at 1000 K
 - > Longer ignition delay could increase noise
 - Soot incandescence decreases by 10×
 - > Similar for quantitative in-cylinder soot
 - Total pressure rise (ΔP) in vessel is slightly, but consistently larger with DFI
 - > Higher combustion efficiency?
 - > Reduce over-mixing at spray periphery?
- Future Work:
 - Optical engine tests
 - > emissions, efficiency, & fuel effects
 - > Vertical-sheet LII
 - Develop merit function



ACI Merit Function: Quantify how fuel properties & engine conditions enable high-efficiency ACI

Project Lead: Andrew Ickes, Argonne National Laboratory

- ACI merit function: quantify enabling engine conditions & fuel properties
 - Boosted SI merit function quantifies efficiency effects to guide fuel and engine co-optimization
 - ACI approaches already have high efficiency; quantify enabling fuel & engine effects to guide co-optimization
- Will synthesize results from multiple Co-Optima ACI approaches
 - > Highlight key enabling fuel properties for each combustion approach
 - > Relate fuel properties to engine features that affect operating range and efficiency
- Design engine and fuel experiments to inform merit function(s) across the suite of ACI combustion concepts


(Industry solutions incorporated based on published literature and industry support/guidance)

Identify enabling fuel properties and engine features and quantify their effects for each ACI approach

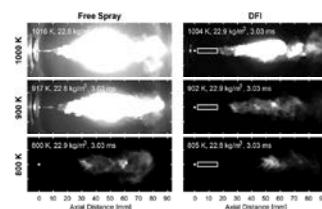
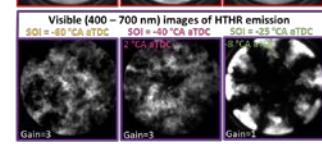
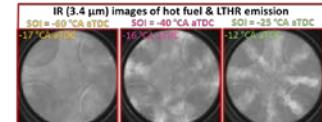
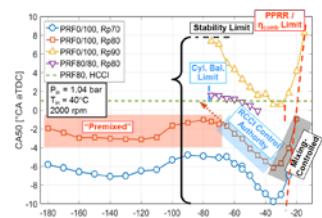
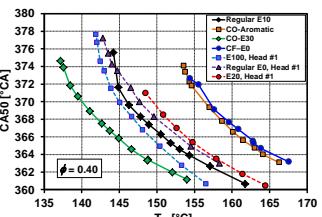
Specific focus on properties/ranges that preclude each ACI approach

Property guidance and merit function to direct ACI engine & fuel co-optimization

Summary: US DOE Co-Optimization of Fuels & Engines (Co-Optima) Initiative

SI MF { Blendstock screening focuses on optimal fuel properties
 • SNL lead
 • Miles

SI { At $\phi \approx 1$, octane index correlates well with knock-limited CA50
 • ORNL
 • Szybist






ACI { At $\phi = 0.4$, same RON & S, diverging CA50; "O2" OI works well
 • SNL
 • Dec

RCCI { Const. PRF control-authority limits = premixed, mixing-control
 • ORNL
 • Curran

RCCI { Matched optical/metal engine comb. phasing & control auth.
 • SNL
 • Musculus

MCCI { DFI reduces in-cyl. soot 10X w/ non-oxygenated fuel, no EGR
 • SNL
 • Mueller

ACI MF { Identify/quantify fuel properties enabling high-efficiency ACI
 • ANL lead
 • Ickes

Acknowledgement

- Portions of the work on boosted SI merit function development, premixed ACI, Stratified ACI (RCCI), and MCCI were performed at the Combustion Research Facility, Sandia National Laboratories, Livermore, CA.

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Backup Slides

Tiered Blendstock Identification

Tier 1

> 470 blendstocks

14 chemical families

Identify broad range of potential hydrocarbon and oxygenated blendstocks

Utilize property information on blendstocks from literature or estimates to identify Tier 2 blendstocks

Hydrocarbons

Normal paraffins

Iso-paraffins

Cycloparaffins

Olefins

Aromatics

Multi-ring aromatics

Alcohols

Furans

Ethers

Carbonyls

Ketones

Aldehydes

Esters

Volatile fatty acid esters

Fatty esters

Carboxylic Acids

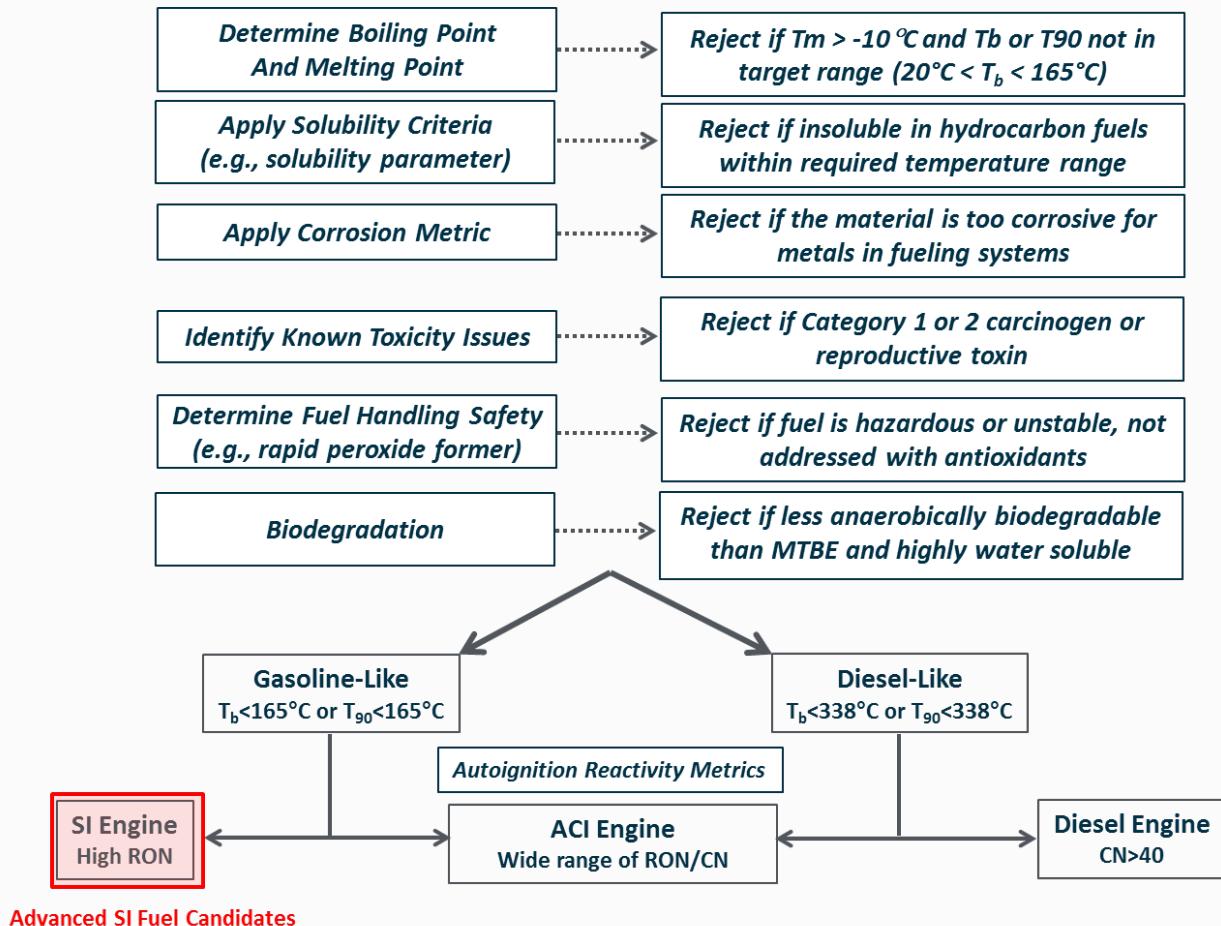
Present in commercial fuels

Not present in commercial fuels

A major goal of Co-Optima is to conduct a comprehensive and consistent survey of blendstock options:

What blendstocks are able to increase boosted SI performance?

Tiered Blendstock Identification


Tier 1

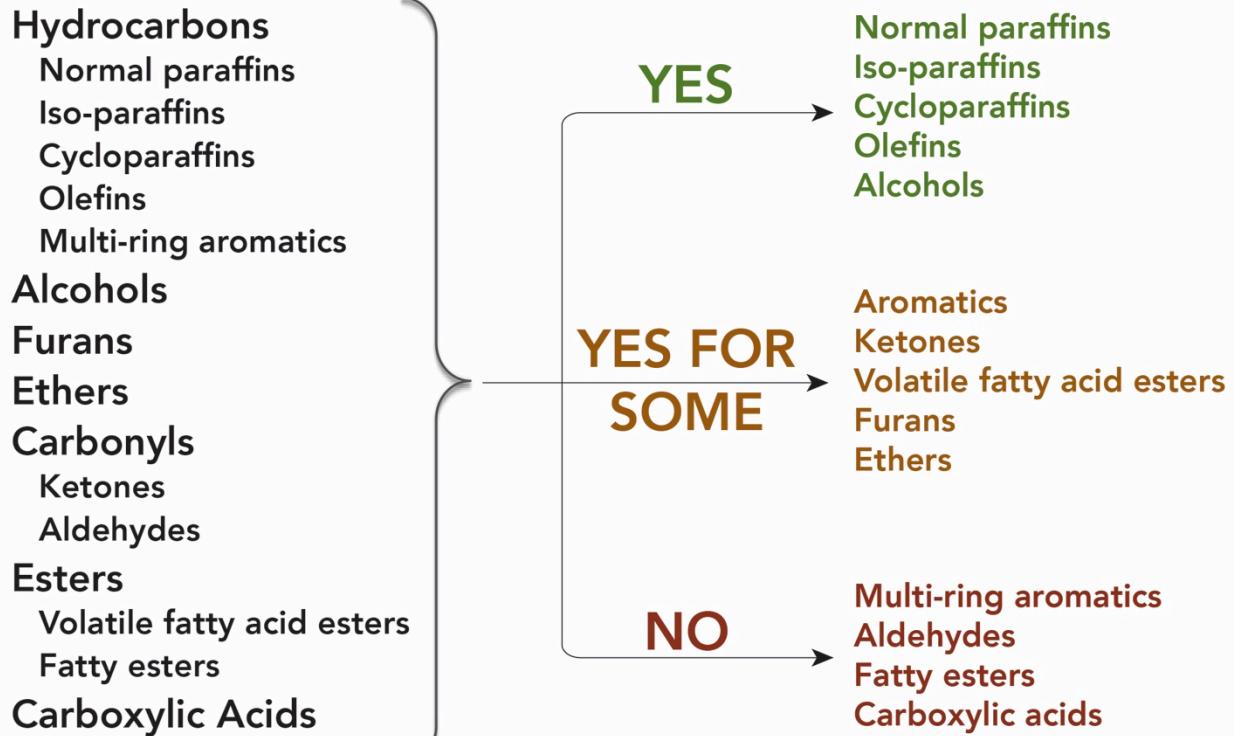
> 470 blendstocks

14 chemical families

Identify broad range of potential hydrocarbon and oxygenated blendstocks

Utilize property information on blendstocks from literature or estimates to identify Tier 2 blendstocks

Tier 1: Blendstock Screening


Tier 1

> 470 blendstocks

14 chemical families

Identify broad range of potential hydrocarbon and oxygenated blendstocks

Utilize property information on blendstocks from literature or estimates to identify Tier 2 blendstocks

