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ABSTRACT

Quantum emitters are an integral component for a broad range of quantum technologies
including quantum communication, quantum repeaters, and linear optical quantum computation.
Solid-state color centers are promising candidates for scalable quantum optics due to their long
coherence time and small inhomogeneous broadening. However, once excited, color centers
often decay through phonon-assisted processes, limiting the efficiency of single photon
generation and photon mediated entanglement generation. Herein, we demonstrate strong
enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond
embedded within a monolithic optical cavity, reaching a regime where the excited state lifetime
is dominated by spontaneous emission into the cavity mode. We observe 10-fold lifetime
reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance
with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited
state energy decay occurring through spontaneous emission into the cavity mode. We also

demonstrate the largest to date coupling strength (g/27 =4.9+0.3 GHz ) and cooperativity (

C =1.4) for color-center-based cavity quantum electrodynamics systems, bringing the system

closer to the strong coupling regime.
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Solid-state quantum emitters such as color centers in solids' are suitable for implementing an
on-chip integrated platform for many applications in quantum information processing,”*
including boson sampling,”’ quantum key distributions,*” as well as photonic interfaces for

10-13

entanglement distribution. Many color centers exhibit a spin degree of freedom with long

1418
coherence time,

which can be used as optically addressable spin qubits. Compared to other
widely studied solid-state quantum emitters such as semiconductor quantum dots, they are
particularly promising for scalable operations due to their small inhomogeneous broadening."

In order to take advantage of their long spin coherence time and narrow inhomogeneous
broadening, a cavity-based spin-photon interface is required to enhance the coherent emission of
photons into the zero-phonon line (ZPL), which would improve the heralded entanglement
generation rate. In addition, quantum emitters with their emission enhanced by cavities act as
ultrafast single photon sources, which may find applications in high-repetition-rate quantum key
distribution. However, in prior works which demonstrated enhancement of color center emission

20-29

into the ZPL via resonant coupling with nanophotonic cavities, the measured lifetime

reduction has been limited due to the poor quantum efficiency of the emitter, small branching
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ratio into the ZPL, limited optical quality factor of the cavity, or low coupling strength between

the emitter and the cavity.

In this work, we demonstrate 10-fold lifetime reduction combined with 42-fold intensity
enhancement for individual color centers in diamond coupled to monolithic optical cavities,
reaching a regime where spontaneous emission through the ZPL into the cavity mode dominates
all other decay channels. Moreover, we demonstrate the largest to date coupling strength and
cooperativity for color-center-based cavity quantum electrodynamics systems. We use negatively
charged silicon-vacancy (SiV") color centers in diamond, grown by chemical vapor deposition
(CVD),”**!" embedded within nanofabricated photonic crystal cavities. The resulting SiV~ centers
do not exhibit significant spectral diffusion, with linewidths comparable to those reported in bulk
diamond and in nanobeams.'” ** A high yield of emitter-cavity systems displaying strong
enhancement is observed, based on measurements of cavities nearly resonant with the ZPL

emission.

Fabrication of emitter-cavity systems began with a single-crystal diamond plate (Type Ila, <
1 ppm [N], Element Six), on which a nominally 100-nm-thick layer of diamond containing SiV~
centers was grown homoepitaxially via microwave plasma chemical vapor deposition
(MPCVD).” Silicon atoms are readily available in the growth chamber during this MPCVD step,
due to hydrogen plasma etching of a silicon carrier wafer placed underneath the diamond
substrate. SiV™ centers were subsequently formed in sifu by silicon incorporation into the
evolving diamond layer via plasma diffusion.
Nanophotonic cavities were fabricated in this silicon rich diamond using electron beam

34-36

lithography (EBL) followed by angled-etching of the bulk single-crystal diamond, with

details given elsewhere?’ and presented in the Supplementary Information. Figures 1 (a) and (b)
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display a zoomed-in top and angled view of a typical fabricated nanophotonic cavity,
respectively. The optical cavity architecture used in this work is a “nanobeam” photonic crystal
cavity’’, formed by a one dimensional lattice of elliptical air holes along the freestanding
waveguide. An optical cavity mode is localized in the structure by positively tapering the air hole
major radius (perpendicular to the waveguide axis) from each end towards the center device
mirror plane. Device dimensions (details in the Supplementary Information) were chosen to
target a cavity mode near the ZPL emission of SiV™ center in diamond at A ~ 737 nm. The figures
of merit for our nanobeam cavity design (obtained by simulation via finite-difference-time-

domain (FDTD) methods) yield a theoretical quality factor of Q ~ 10,000, and wavelength scale

3
mode volume of V' = I.S(ij , where n=2.402 is the refractive index of diamond. The cavity
n

mode profiles are shown in Figure 1(c).

Optical characterization of fabricated devices was performed in a home built confocal
microscope setup at cryogenic temperatures (~ 5 K). A low temperature photoluminescence (PL)
spectrum from a representative device under 720 nm laser excitation is shown in Figure 1(d).
Upon cooling to liquid helium temperature, four characteristic optical transitions between spin-
orbit eigenstates (labeled A to D in Figure 1(d)) of the SiV™ center are revealed. In the PL
spectrum, the cavity mode is observed blue-detuned from the SiV™ emission lines at ~ 734.5 nm,
with a Q ~ 8300 extracted from the full width at half maximum (FWHM).

The SiV™ optical transition C linewidth, characterized by photoluminescence excitation
(PLE), approaches ~ 304 MHz (full-width-half-maximum) as the excitation power was reduced
to minimize power broadening effects (Figure 2(a)). This is 3.6 times the Fourier-transform
limited natural linewidth, and is comparable to that of ion-implanted SiV~ centers.’”” The

linewidth is slightly broader than that of CVD grown SiV's in bulk,"” which could be due to
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nanofabrication induced strain and proximity to surfaces. We confirm the single photon nature of
the emission through a second-order correlation measurement of the same SiV~ emission in our
emitter-cavity system under non-resonant pulsed laser excitation from a Ti:sapphire laser, which
yields a g?(0)=0.04 (Figure 2(b)).

Purcell enhancement of the SiV™ emission is observed as our cavity mode was tuned into
resonance with the individual dipole transitions of the SiV™ center. Figure 3(a) shows the device
PL spectra as we continuously red-shifted the cavity wavelength by gas tuning (for details see
Supplementary Information). Observed emission intensities of individual SiV™ dipole transitions
resonantly coupled to the optical cavity were strongly enhanced due to the Purcell effect. Figure
3(b) displays two spectra collected at the detuning conditions indicated by the colored dashed
lines in Figure 3(a), where the optical cavity was far detuned from (green) and on resonance with
(blue) transition B. With the cavity on resonance, transition B exhibits an emission intensity
increase by a factor of ~ 42.4 compared to the far detuned case. We have not been able to
saturate transition B under resonant condition with up to of 1.8 mW excitation power, limited by
our ability to stabilize the cavity frequency under high excitation power. With a maximum
excitation power of 1.8 mW, we collect 1.33x10° counts per second from transition B when it is
resonant with the cavity.

To quantitatively explore this observed Purcell enhancement further, measurements of
the SiV™ center spontaneous emission rate were performed with the cavity both on and off

resonance. When the cavity was far detuned, with the temporal profile shown in Figure 3(c), the

spontaneous decay rate is extracted from a single exponential fit to be 7,, =1.84+0.04ns. When

the cavity was tuned on resonance with transition B, time-resolved spectroscopy was performed

with a streak camera (Hamamatsu C5680), which has a faster instrument response time (<5 ps)
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compared to that of hundreds of picoseconds for a single photon counting module (SPCM). The
intensity of the cavity enhanced transition B dominates all other emission lines (blue curve,
Figure 3(b)), such that we are able to select the corresponding spectral region on the streak
camera image, as shown by the dotted box in Figure 3(e). Fitting this binned luminescence to a
single exponential decay yields a significantly decreased resonant lifetime of 7, =194£8 ps
(Figure 3(d)). For this device, we focus on the spontaneous emission lifetime when the cavity is
resonant with transition B, because this transition exhibits the largest improvement in brightness
when resonant with the cavity. The 10-fold lifetime reduction combined with a 42-fold intensity
increase on resonance implies a large Purcell factor. Because of the non-unity off-resonance

branching ratio into transition B, 2> 28 3847

the actual Purcell factor is even higher than the
directly measured lifetime reduction 7, /7, . Through quasi-resonant pumping and detection,
an upper bound for the off-resonance branching ratio of 0.325 was measured, corresponding to a

minimum Purcell factor of F, =26.141.8% (details of both the branching ratio measurement

and the Purcell factor calculation are in the Supplementary Information).
Furthermore, we demonstrate that the strong Purcell enhancement leads to a regime where
spontaneous emission through the ZPL into the cavity mode dominates all other decay channels.

We use the g -factor to characterize the fraction of the excited state energy decay through
spontaneous emission into the cavity mode, defined as f=1-7,, /7, . The p -factor scales from

0 to 1, with 1 being the excited state lifetime completely determined by the spontaneous emission
into the cavity mode, and 0 being the excited state not emitting into the cavity at all. We estimate

the g -factor to be 89.7+0.6%, demonstrating that the lifetime of the excited state is now

dominated by the spontaneous emission into the cavity enhanced zero-phonon line. The large B-
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factor combined with the short lifetime of 194 ps, yields a single photon emission rate /7, of ~

27-0.74 GHz into the cavity mode. Therefore, our system shows potential for an ultrafast,
nearly gigahertz single photon source.

We also show that the strong light-matter coupling enables a coherent dipole induced
transparency effect.”® We use a tunable continuous-wave laser to excite the device from the
notch at one end of the waveguide, and collect the transmitted light from an identical notch at the
other end. Figure 4(a) shows the transmission spectrum of the bare cavity mode, where the cavity
is far detuned from all four transitions of the SiV". The bare cavity shows a single Lorentzian
lineshape that strongly suppresses transmission at the cavity resonance. In contrast, when we
tune the cavity into resonance with transition B of the SiV~, we observe a clear transmission peak
at transition B due to dipole induced transparency. By fitting the measured data (blue dots) to a
numerical model (red solid line; fitting see Supplementary Information), we extract the coupling

strength between transition B and the cavity to be g/27 =4.9+0.3 GHz, and the cavity energy

decay rate x/27 =49.7+2.0 GHz. We also calculate the cooperativity of the system, defined as

C= 4g2/l<7/, tobe C =1.4, where y/27 =1.36+0.06 GHz is the linewidth of transition B when

the cavity is far detuned, obtained through photoluminescence excitation measurements.* To the
best of our knowledge, both the coupling strength and the cooperativity are the highest values
reported so far for color center based cavity quantum electrodynamics systems. The origin of the
superior performance of our devices compared to the previous works>® might be better alignment
of the emitter to cavity field maxima for those devices that we measured, or better emitter quality
due to the CVD growth method. However, the exact origin requires further investigation. We

also determine the coupling strength between transition C and the cavity to be 1.4+ 0.1 GHz by

performing the same measurements on transition C (see Supplementary Information). We
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attribute the difference in the coupling strength for transitions B and C to strain induced
difference in the selection rules.”® In fact, this particular device we measured shows a much
larger ground state splitting (155.0+£2.5 GHz) compared with typical values, suggesting a large
strain is present at the emitter location.'®

Finally, we observe a high yield of the strongly cavity enhanced SiV™ centers, as
summarized in Table 1. Eight devices were found displaying cavity resonances blue detuned by
several nanometers from the SiV" ZPL emission, which is within the tuning range of the gas

tuning method. Of the eight devices, four contain stable SiV™ centers with low spectral diffusion,

with the cavity tuning range reaching the ZPL wavelengths. In Table 1, 7, 7, 7, /7

on?’ on >

on [

I /1 . and g are the on-resonance lifetime, off-resonance lifetime, lifetime reduction factor,
intensity increase factor, and fraction of the excitation decay through the spontaneous emission
into the cavity mode, respectively. These four systems all exhibit a lifetime reduction greater
than 5.5, and a ,B -factors greater than 82%.

In summary, we have demonstrated Purcell enhancement of single photon emission from
as-grown SiV™ centers in diamond by coupling them to monolithic photonic crystal cavities. The
cavity coupled SiV~ centers exhibit ~10-fold lifetime reduction, from which we extract a [3-
factor of 89.7+0.6%, an emitter-cavity coupling strength of g/27=4.9+0.3 GHz, and a
cooperativity of 1.4. All the parameters represent state-of-the-art values for color-center-based
cavity quantum electrodynamics systems. The large /S -factor suggests promising potential for
scalable single photon sources operating at the gigahertz regime. Further work on improving the
extraction efficiency of the coupled system, through either far-field optimization for free space

extraction’' or through an efficient fiber-coupled diamond nanophotonic interface,”” would push
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SiV™ closer towards scalable quantum networks. This platform could also be readily extended to
other color centers such as the germanium-vacancy centers>> and neutral silicon-vacancy
center in diamond,** which also exhibit desirable optical properties and hold great promise for
quantum information processing. The high Purcell enhancement and large coupling strength
demonstrated in our system brings us closer to reaching the strong coupling regime, by either
improving the cavity parameters™ (i.e. improving Q by a factor of 2 and decreasing V by a factor

of 1.5) or by incorporating multiple (~7) emitters.’*>*
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34 Figure 1. High-Q nanobeam photonic crystal cavity. (a) Scanning electron microscopy (SEM)
36 images of a nanobeam photonic crystal (PhC) cavity fabricated from single crystal diamond, with
the inset showing the angled-view of the cavity region. Scale bars in (a) and the inset: 5 yum and
41 1 um respectively. (b) Electric field intensity profile of the fundamental cavity mode of the
43 photonic crystal cavity. (c) Cross-sectional electric field intensity profile of the fundamental
cavity mode of the photonic crystal cavity, taken at the center plane in the x-direction. (d) Low
48 temperature photoluminescence (PL) spectrum of a SiV™ center and the cavity mode. The four
50 narrow lines correspond to the four optical transitions of a SiV", as shown by the double arrows
in the level structure in the inset. The cavity mode is blue-detuned from the SiV emission at ~

55 734.5 nm.
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Figure 2. Emission properties of the single SiV™~ centers. (a) The linewidth of transition C of a

SiV™ in the nanobeam photonic crystal cavity. The linewidth at low excitation power reaches 304

MHz, as shown in the inset. (b) Second-order autocorrelation measurement of the cavity coupled

SiV~ center emission under pulsed excitation, yielding g (0)=0.04.
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Figure 3. Enhanced photoluminescence due to coupling to the photonic crystal cavity. (a)
High resolution PL spectra over the SiV™ emission region, as the cavity is tuned across the SiV~
emission through argon gas condensation. The resonant and detuned cases are taken at the blue
and green dashed lines respectively. (b) High resolution PL spectra of the SiV™ center when the
cavity is detuned from (green) and resonant with (blue) transition B of the SiV". (c-d) Time-

resolved photoluminescence measurements of transition B of the SiV™ yields a detuned lifetime
7,;, =1.84£0.04 ns (c), and resonant lifetime 7, =194%8 ps (d). (e) Time-resolved
spectroscopy measurement of transition B on-resonance. In this streak camera image, the

wavelength is dispersed in the horizontal direction by a grating and time is resolved in the

vertical direction. The binned region is boxed by the dotted lines.
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Figure 4. (a) Cavity transmission spectrum when the cavity is far detuned from all transitions of

the Si1V™.

cavity is resonant with transition B of the SiV". In both panels, blue dots are measured data, and

red solid lines are fit to a numerical model.
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Table 1: Purcell enhancement parameters of the SiV™ centers

SiV- # 7 [ns] T [0s] | 7,,/7, 1,/1, |8 (%)

1 0.340+0.017 | 1.88+0.02 | 5.5+0.3 17.7 82.4+1.0
2 0.208+0.011 | 1.79+0.02 | 8.6+0.6 5.6 88.6+0.7
3 0.194£0.008 | 1.84+0.04 | 9.5+0.6 42.4 89.7+0.6
4 0.158+0.003 | 1.70+0.02 | 10.8+0.3 39.1 91.0+0.3
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23 Figure 4. (a) Cavity transmission spectrum when the cavity is far detuned from all transitions of the SiV~

24 . (b) Dipole induced transparency peak in the transmission spectrum when the same cavity is resonant with

transition B of the SiV". In both panels, blue dots are measured data, and red solid lines are fit to a
numerical model.
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