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... All viruses depend
upon similar electrical
charges at their
surfaces to connect to
the cells that they are
trying to infect. If the
charges on viruses
and cells could
somehow be meddled
with, it should make
things harder for the
virus to infect the
host...

IN THE medical armoury vaccines are a wonderful piece of ammunition. But they are like bullets
that can hit one target only. Different vaccines are needed to prevent specific viral infections. If a
person is already ill, vaccines won't help. Various antiviral drugs might, shortening the time
people are ill or preventing serious complications. The trouble is viruses are a moving target
because they can evolve rapidly. Researchers have tinkered with some antiviral treatments that
might work against a wide spectrum of diseases, but all have had shortcomings. Now one group
thinks they have found a method that might protect cells in the body from a viral invasion.

The new research, led by James Hedrick of the IBM Almaden Research Center in
California, Naoki Yamamoto of the National University of Singapore and Yi Yan Yang of
the Institute of Bioengineering and Nanotechnology, also in Singapore, stems from an old
tactic that has been problematic in the past. All viruses depend upon similar electrical
charges at their surfaces to connect to the cells that they are trying to infect. If the
charges on viruses and cells could somehow be meddled with, it should make things
harder for the virus to infect the host.

Lots of experiments have demonstrated that the theory is In this section Follow The

sound. Unfortunately, many of the materials used to interfere Prw— i
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with the electrical charges have also been toxic to the cells P A

they are supposed to protect. Dr Hedrick and his colleagues ~ ©tting the pulse racing li g m

speculated that it might be possible to work around this General knowledge
problem with polvethvienimine. Previous work has shown Risrddy ran unil enara 2
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Pothole Formation

The addition of adhesion promoters to bitumen 1s common practice and numerous

research papers and reviews have been published on different compounds used and the
effects of anti-strip agents on performance of asphalt mixes. Basic, amine anti-strip
agents are generally used to improve adhesion of bitumen with siliccous aggregates.
Logaraj (2002) states that'the two main characteristics of anti-strip additives are (a) they
have a polar amine end group which will chemically bond with the siliceous aggregate
surface. and (b) they have a hydrocarbon chain with similar properties to that of the
bitumen so that they will interact and become part of the bitumen. A primary amine
(RNH23) and tertiary amine (NR3) are schematically illustrated in Figure 15.
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How to Model Qil-Rock Adhesion?

* Disjoining pressure
e Zeta potentials
* Bond product sum

n

Concentration (pmol/m?)

Example: Oil-NH* to
Kaolinite >AlO-, pH 7, 0.1M NaCl,
100°C.

Bond product = [-NH*][>AlO"] =
0.4*1.9 = 0.76 (umol/M?)?

Surface concentration (umol/m?)




Kaolinite-Oil Adhesion

1.6 Brady, Patrick V., and James L. Krumhansl. "A
[- N H+] [>A| :Si-O'] ] surface complexation model of oil-brine—
['COOCE+] [}A| ZSI'O'] sandstone interfaces at 100° C: Low salinity
) waterflooding." Journal of Petroleum Science
Hi Na; Ca and Engineering 81 (2012): 171-176.

Hi Na, Ca

N

-
0o

-
o

0.10

0.08 |

Concentration (umol/M?)?
~

0.06

&Desorption|Adhesion—>
&Water wet | Oil wet—>

004 |
0.02 | PH /~
0.00 | | !

0024 5 V7 8

-0.04




0.10

i
I
P
a8
>
< - N
T -
o
-+ w0
86420“4
S @ & 9 & 9 9
S © ©o ©o oo o o
2(zIN/1oww)

Jonpoud puog

"€10C 'A191023Y |10 panodw|
uo wnisodwAs unadoing yi/T-€10Z YOI Ul ,,"420Y
pue aulg ‘|10 apnJ) Jo duepodw| aAlle|dY YL
-3ulpoo|4 Ajlul|eS MO 40} J91aWeled |ed1Md) Y],
IgNYsJeD-|v ‘N 'S ‘| pue ‘edueo S Y ‘954919l
'['D"S ‘UJ00] "H 'V ‘SI|92EA "IN "H 'V ‘Bpui
Jap UeA 'y "H ‘@assnug ' "N YeseiN-1e)30( ‘A
NNNQIHMNG “IN I 8 “4 T ‘USPUIM UBA WIS

- O

55

0.24

STMSV

0.15-

0.14

0.05-

pH LS water



Bond Products and
imbibition
measurements

Oil remaining after imbibition
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From: Eftekhari, A. A., H. Baghooee, M. la Cour Christensen,
K. Thomsen, H. M. Nick, and E. Stenby. "Uncertainties in the
Mechanistic Models of the Modified Brine Water-flooding of
Chalk." In IOR 2017-19th European Symposium on Improved

Oil Recovery. 2017.
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Figure 3—The bond product of the dominant electrostatic pair linkage in kaolinite

=Al-O- < =COOMg+ =Al-0- &

From: Erzuah, S, I. Fjelde, and A. V. Omekeh. "Wettability Estimation
by Surface Complexation Simulations." In 79th EAGE Conference and

Exhibition 2017-SPE EUROPEC. 2017.
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Bond Products and Core
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From: Qiao, Changhe, Li Li, Russell T. Johns, and
Jinchao Xu. "A mechanistic model for wettability
alteration by chemically tuned waterflooding in
carbonate reservoirs." SPE Journal 20, no. 04
(2015): 767-783.

Bond product sum (pmol/M?)?

01 + \_ [>Cas0.1[-CO0Ca:Mg’]

0.0 - : : : 5.0
0 5 10 15 20 25
Pore volumes

Brady, Patrick V., and Geoffrey Thyne. "Functional wettability
in carbonate reservoirs." Energy & Fuels 30, no. 11 (2016):
9217-9225.



Oil Surface Chemistry Peculiarities

1.Smudged pK.’s,
2.Self-association of acids and bases,

3.0Other surface groups,
4."“Hairiness”.

Paaed

H,O’s not shown

After Somasundaran et al., 1993 "Role of reconformation of hairs in anomalous deposition of zwitterionic
latex particles." Colloids and Surfaces A: Physicochemical and Engineering Aspects 142, no. 1: 83-89.



Hairy DLVO

Drummond and Israelachivilli (2004) “It is important
to emphasize that the results obtained with this
crude oil cannot be explained in terms of the DLVO
theory alone, and it is necessary to invoke polymer-

like steric and bridging interactions, to

quantitatively describe the measured force profiles” 10° 10* 10° 102 10" 1 10

From Somasundaran et al. 1998, Role of
reconformation of hairs in anomalous deposition
of zwitterionic latex particles. Colloids and
Surfaces.

Zeta Potentials tell only

a small part of the
{e]aY

"Fundamental

pH

Na* Concentration (M)

Drummond, Carlos, and Jacob Israelachvili.

studies of crude oil-surface water interactions and its

5. Unconventional deposition of zwitterionic latex
particles

It is proposed that the deposition of the zwitter-
ionic latex particles to be due to the rearrangement
of the mixed charge groups present in the latex
surface in such a manner that the positive charge
sites are extended towards the glass surface and
the negative ones retracted away from it. Thus
even though the overall average zeta potential is
negative. the hairy charges are proposed to recon-
figure when the two surfaces begin to feel each
other.

relationship to reservoir wettability." Journal of Petroleum

Science and Engineering 45, no. 1 (2004): 61-81.
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From: Aghaeifar, Zahra, Skule Strand, Tor Austad, Tina Puntervold, Hakan Aksulu, Kine Navratil, Silje Storas, and Dagny
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Oil Adsorption on lllite

Source: C.R. Bryan, Sandia Labs

10000 Both Oil and lllite have
o negative zeta potentials,
but there is still sorption.
1000 | ®g 0.1 MNaCl
® Decreased ionic strength
P thickens the double layer,
166 L ® but increases oil sorption.

o Something besides
10 | 0.4 M NaCl .~ classical DLVO is

controlling wettability.

Concentration, pg oil /g illite

Oil from West Pearl Queen Field, Hobbs, New Mexico
TBN/TAN ~ 1.3



Electrostatic
bridges

Oil Adhesion to Tight
Formations (lllite)

Electrostatic bridges (mol/L)
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Oil-Limestone Adhesion

Oil

Intervening water
molecules not
shown

[>CaOH,*][-CO0O]

Bond Product

(umol/M?2)?

&Desorption|Adhesion—>

From: Brady, Patrick Vane, James L. Krumhansl|, and Paul E. Mariner.
"Surface complexation modeling for improved oil recovery." In SPE
Improved Oil Recovery Symposium. Society of Petroleum Engineers,
2012.

&Water wet | Oil wet—>



Zeta potential (mV)
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Concentration (umol/M?)

Concentration product (umol/M?2)2
o
(9 0]

o

[-NH* [>Al:Si-O"] Kaolinite

[-COOCa*|[>Al:Si-O7]

0.08

0.06

0.04

0.02

Illite

0.00

pH

Decreasing
salinity increases
pH which
(usually)
decreases the
bond product,
which usually
makes more
water wet, which
usually means
more oil.



pinning
pr:nnts

aspermes

Schmatz, Joyce, Janos L.
Urai, Steffen Berg, and
Holger Ott. "Nanoscale
imaging of pore-scale
fluid-fluid-solid
contacts in sandstone."
Geophysical Research
Letters 42, no. 7 (2015):
2189-2195.

From: Farajzadeh, Rouhi, Hua Guo, Julia van Winden, and J. Bruining.
"Cation exchange in the presence of oil in porous media." ACS Earth and
Space Chemistry (2017).



Sandstone + Kaolinite + Calcite Cement at 60°C
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